Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.734
Filtrar
1.
J Ethnopharmacol ; 336: 118704, 2025 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-39182703

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Viral pneumonia is the leading cause of death after SARS-CoV-2 infection. Despite effective at early stage, long-term treatment with glucocorticoids can lead to a variety of adverse effects and limited benefits. The Chinese traditional herb Pogostemonis Herba is the aerial part of Pogostemon Cablin (Blanco) Benth., which has potent antiviral, antibacterial, anti-inflammatory, and anticancer effects. It was used widely for treating various throat and respiratory diseases, including COVID-19, viral infection, cough, allergic asthma, acute lung injury and lung cancer. AIM OF THE STUDY: To investigate the antiviral and anti-inflammatory effects of chemical compounds from Pogostemonis Herba in SARS-CoV-2-infected hACE2-overexpressing mouse macrophage RAW264.7 cells and hACE2 transgenic mice. MATERIALS AND METHODS: The hACE2-overexpressing RAW264.7 cells were exposed with SARS-CoV-2. The cell viability was detected by CCK8 assay and cell apoptotic rate was by flow cytometric assay. The expressions of macrophage M1 phenotype markers (TNF-α and IL-6) and M2 markers (IL-10 and Arg-1) as well as the viral loads were detected by qPCR. The mice were inoculated intranasally with SARS-CoV-2 omicron variant to induce viral pneumonia. The levels of macrophages, neutrophils, and T cells in the lung tissues of infected mice were analyzed by full spectrum flow cytometry. The expressions of key proteins were detected by Western blot assay. RESULTS: Diosmetin-7-O-ß-D-glucopyranoside (DG) presented the strongest anti-SARS-CoV-2 activity. Intervention with DG at the concentrations of 0.625-2.5 µM not only reduced the viral replication, cell apoptosis, and the productions of inflammatory cytokines (IL-6 and TNF-α) in SARS-CoV-2-infected RAW264.7 cells, but also reversed macrophage polarity from M1 to M2 phenotype. Furthermore, treatment with DG (25-100 mg/kg) alleviated acute lung injury, and reduced macrophage infiltration in SARS-COV-2-infected mice. Mechanistically, DG inhibited SARS-COV-2 gene expression and HK3 translation via targeting YTHDF1, resulting in the inactivation of glycolysis-mediated NF-κB pathway. CONCLUSIONS: DG exerted the potent antiviral and anti-inflammatory activities. It reduced pneumonia in SARS-COV-2-infected mice via inhibiting the viral replication and accelerating M2 macrophage polarization via targeting YTHDF1, indicating its potential for COVID-19 treatment.


Asunto(s)
Antivirales , Tratamiento Farmacológico de COVID-19 , COVID-19 , Macrófagos , SARS-CoV-2 , Replicación Viral , Animales , Ratones , Células RAW 264.7 , Replicación Viral/efectos de los fármacos , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Macrófagos/virología , SARS-CoV-2/efectos de los fármacos , Antivirales/farmacología , Ratones Transgénicos , Pogostemon/química , Citocinas/metabolismo , Apoptosis/efectos de los fármacos , Pulmón/efectos de los fármacos , Pulmón/virología , Pulmón/patología , Glucósidos/farmacología , Glucósidos/aislamiento & purificación , Flavonoides/farmacología , Flavonoides/aislamiento & purificación , Flavonoides/uso terapéutico , Enzima Convertidora de Angiotensina 2/metabolismo , Antiinflamatorios/farmacología , Masculino , Neumonía Viral/tratamiento farmacológico , Neumonía Viral/virología , Humanos
2.
Appl Environ Microbiol ; : e0077924, 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39315794

RESUMEN

6-Gingerol is a major phenolic compound within ginger (Zingiber officinale), often used in healthcare; however, its lower bioavailability is partly due to its poor solubility. Four bacterial glycosyltransferases (GTs) were tested to glycosylate 6-gingerol into soluble gingerol glucosides. BsUGT489 was a suitable GT to biotransform 6-gingerol into five significant products, which could be identified via nucleic magnetic resonance and mass spectrometry as 6-gingerol-4',5-O-ß-diglucoside (1), 6-gingerol-4'-O-ß-glucoside (2), 6-gingerol-5-O-ß-glucoside (3), 6-shogaol-4'-O-ß-glucoside (4), and 6-shogaol (5). The enzyme kinetics of BsUGT489 showed substrate inhibition toward 6-gingerol for producing two glucosides. The kinetic parameters were determined as KM (110 µM), kcat (862 min-1), and KI (571 µM) for the production of 6-gingerol-4'-O-ß-glucoside (2) and KM (104 µM), kcat (889 min-1), and KI (545 µM) for the production of 6-gingerol-5-O-ß-glucoside (3). The aqueous solubility of the three 6-gingerol glucosides, compound (1) to (3), was greatly improved. However, 6-shogaol-4'-O-ß-glucoside (4) was found to be a product biotransformed from 6-shogaol (5). This study first confirmed that the glucose moiety at the C-5 position of both 6-gingerol-4',5-O-ß-diglucoside (1) and 6-gingerol-5-O-ß-glucoside (3) caused spontaneous deglucosylation through ß-elimination to form 6-shogaol-4'-O-ß-glucoside (4) and 6-shogaol (5), respectively. Moreover, the GTs could glycosylate 6-shogaol to form 6-shogaol-4'-O-ß-glucoside (4). The assays showed 6-shogaol-4'-O-ß-glucoside (4) had higher anti-inflammatory activity (IC50 value of 10.3 ± 0.2 µM) than 6-gingerol. The 6-gingerol-5-O-ß-glucoside (3) possessed 346-fold higher solubility than 6-shogaol, in which the highly soluble glucoside is a potential prodrug of 6-shogaol via spontaneous deglucosylation. This unusual deglucosylation plays a vital role in influencing the anti-inflammatory activity. IMPORTANCE: Both 6-gingerols and 6-shogaol possess multiple bioactivities. However, their poor solubility limits their application. The present study used bacterial GTs to catalyze the glycosylation of 6-gingerol, and the resulting gingerol glycosides were found to be new compounds with improved solubility and anti-inflammatory activity. In addition, two of the 6-gingerol glucosides were found to undergo spontaneous deglucosylation to form 6-shogaol or 6-shogaol glucosides. The unique spontaneous deglucosylation property of the new 6-gingerol glucosides makes them a good candidate for the prodrug of 6-shogaol.

3.
Fitoterapia ; 178: 106174, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39122119

RESUMEN

Under the guidance of MS/MS-based molecular networking, five new clerodane diterpenoid glucosides, tinosinesides R-V (1-5), along with 15 known diterpenoids (6-20), were isolated from the stems of Tinospora sinensis. Compound 1 represents the first example of diterpenoid bearing a thio sugar and compound 5 is the first 18,19-dinor-clerodane with cis-fused A/B ring. The structures of the new compounds were elucidated by spectroscopic means, and their absolute configurations were established on the basis of time-dependent density functional theory (TD-DFT) based electronic circular dichroism (ECD) calculation and chemical methods. Selected compounds were evaluated for their immunomodulatory effect and several compounds could enhance the proliferation of B lymphocytes. Preliminary mechanistic studies disclosed that 3 could promote B cell generation and inhibit B cell differentiation.


Asunto(s)
Linfocitos B , Diterpenos de Tipo Clerodano , Fitoquímicos , Tinospora , Diterpenos de Tipo Clerodano/farmacología , Diterpenos de Tipo Clerodano/aislamiento & purificación , Diterpenos de Tipo Clerodano/química , Tinospora/química , Estructura Molecular , Linfocitos B/efectos de los fármacos , Animales , Fitoquímicos/farmacología , Fitoquímicos/aislamiento & purificación , Tallos de la Planta/química , China , Ratones , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Agentes Inmunomoduladores/farmacología , Agentes Inmunomoduladores/aislamiento & purificación , Agentes Inmunomoduladores/química
4.
Int J Biol Macromol ; 278(Pt 4): 135035, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39182864

RESUMEN

Site-directed protein immobilization allows the homogeneous orientation of proteins while maintaining high activity, which is advantageous for various applications. In this study, the use of SpyCatcher/SpyTag technology and magnetic nickel ferrite (NiFe2O4 NPs) nanoparticles were used to prepare a site-directed immobilization of BsUGT2m from Bacillus subtilis and AtSUSm from Arabidopsis thaliana for enhancing curcumin glucoside production with UDP-glucose regeneration from sucrose and UDP. The immobilization of self-assembled multienzyme complex (MESAs) enzymes were characterized for immobilization parameters and stability, including thermal, pH, storage stability, and reusability. The immobilized MESAs exhibited a 2.5-fold reduction in UDP consumption, enhancing catalytic efficiency. Moreover, the immobilized MESAs demonstrated high storage and temperature stability over 21 days at 4 °C and 25 °C, outperforming their free counterparts. Reusability assays showed that the immobilized MESAs retained 78.7 % activity after 10 cycles. Utilizing fed-batch technology, the cumulative titer of curcumin 4'-O-ß-D-glucoside reached 6.51 mM (3.57 g/L) and 9.45 mM (5.18 g/L) for free AtSUSm/BsUGT2m and immobilized MESAs, respectively, over 12 h. This study demonstrates the efficiency of magnetic nickel ferrite nanoparticles in co-immobilizing enzymes, enhancing biocatalysts' catalytic efficiency, reusability, and stability.


Asunto(s)
Biocatálisis , Curcumina , Enzimas Inmovilizadas , Uridina Difosfato Glucosa , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , Uridina Difosfato Glucosa/química , Uridina Difosfato Glucosa/metabolismo , Curcumina/química , Bacillus subtilis/enzimología , Glucósidos/química , Glucósidos/metabolismo , Temperatura , Estabilidad de Enzimas , Concentración de Iones de Hidrógeno , Arabidopsis/enzimología , Níquel/química , Nanopartículas de Magnetita/química
5.
J Agric Food Chem ; 72(34): 19093-19106, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39161099

RESUMEN

Luteolin-7-O-glucoside(L7G), a glycosylation product of luteolin, is present in a variety of foods, vegetables, and medicinal herbs and is commonly used in dietary supplements due to its health benefits. Meanwhile, luteolin-7-O-glucoside is an indicator component for the quality control of honeysuckle in the pharmacopoeia. However, its low content in plants has hindered its use in animal pharmacological studies and clinical practice. In this study, a novel 7-O-glycosyltransferase CmGT from Cucurbita moschata was cloned, which could efficiently convert luteolin into luteolin-7-O-glucoside under optimal conditions (40 °C and pH 8.5). To further improve the catalytic efficiency of CmGT, a 3D structure of CmGT was constructed, and directed evolution was performed. The mutant CmGT-S16A-T80W was obtained by using alanine scanning and iterative saturation mutagenesis. This mutant exhibited a kcat/Km value of 772 s-1·M-1, which was 3.16-fold of the wild-type enzyme CmGT. Finally, by introducing a soluble tag and UDPG synthesis pathway, the strain BXC was able to convert 1.25 g/L of luteolin into 1.91 g/L of luteolin-7-O-glucoside under optimal conditions, achieving a molar conversion rate of 96% and a space-time yield of 27.08 mg/L/h. This study provides an efficient method for the biosynthesis of luteolin-7-O-glucoside, which holds broad application prospects in the food and pharmaceutical industry.


Asunto(s)
Biocatálisis , Cucurbita , Glucósidos , Glicosiltransferasas , Luteolina , Proteínas de Plantas , Glucósidos/metabolismo , Glucósidos/química , Glucósidos/biosíntesis , Luteolina/química , Luteolina/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/química , Glicosiltransferasas/genética , Glicosiltransferasas/metabolismo , Glicosiltransferasas/química , Cucurbita/genética , Cucurbita/enzimología , Cucurbita/química , Cucurbita/metabolismo , Clonación Molecular , Cinética , Evolución Molecular Dirigida
6.
Pharmaceuticals (Basel) ; 17(8)2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39204144

RESUMEN

Alzheimer's disease (AD) is the most common neurodegenerative disorder in the aging population. An accumulation of amyloid plaques and neurofibrillary tangles causes degeneration of neurons, leading to neuronal cell death. The anthocyanin-rich fraction of black rice (Oryza sativa L. variety "Luem Pua") bran (AFBRB), extracted using a solution of ethanol and water and fractionated using Amberlite XAD7HP column chromatography, contains a high anthocyanin content (585 mg of cyanidin-3-O-glucoside and 24 mg of peonidin-3-O-glucoside per gram of the rich extract), which has been found to reduce neurodegeneration. This study focused on the neuroprotective effects of AFBRB in Aß25-35-induced toxicity in the human neuroblastoma cell line (SK-N-SH). SK-N-SH was exposed to Aß25-35 (10 µM) to induce an AD cell model in vitro. Pretreatment with AFBRB (0.1, 1, or 10 µg/mL) or C3G (20 µM) was conducted for 2 h prior to the treatment with Aß25-35 (10 µM) for an additional 24 h. The results indicate that AFBRB can protect against the cytotoxic effect of Aß25-35 through attenuation of intracellular ROS production, downregulation of the expression of the proteins Bax, cytochrome c, cleaved caspase-9, and cleaved caspase-3, upregulation of the expression of Bcl-2 in the mitochondrial death pathway, and reduction in the expression of the three major markers of ER stress pathways in similar ways. Interestingly, we found that pretreatment with AFBRB significantly alleviated Aß-induced oxidative stress, ER stress, and apoptosis in SK-N-SH cells. This suggests that AFBRB might be a potential therapeutic agent in preventing neurodegenerative diseases.

7.
Food Res Int ; 192: 114802, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39147501

RESUMEN

Ulcerative colitis is a public health issue with a rising worldwide incidence. It has been found that current medications for treating UC may cause varying degrees of damage to male fertility. Our previous study demonstrated that cyanidin-3-O-glucoside (C3G) treatment could effectively restore reproductive damage in a mouse model of DSS induced colitis. However, the underlying mechanism of C3G alleviates UC induced male reproductive disorders remain scarce. The aim of this study is to discover the molecular mechanisms of C3G on the amelioration of UC stimulated reproductive disorders. The targeted genes toward UC-induced reproductive injury upon C3G treatments were explored by transcriptomic analysis. Hematological analysis, histopathological examination, and real time transcription-polymerase chain reaction (RT-PCR) analysis were applied for conjoined identification. Results showed that C3G may effectively target for reducing pro-inflammatory cytokine IL-6 in testis through cytokine-cytokine receptor interaction pathway. Transcriptome sequencing found that a series of genetic pathways involved in the protective effects of C3G on male reproduction were identified by gene ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. Further results presented that C3G could effectively restore mRNA expression levels of Ly6a and Col1a1, closely linked with UC induced male reproductive damage pathways. Sufficient results implied that Ly6a and Col1a1 may be treated as the promising therapeutic targets for the mechanism of C3G in treating UC induced reproductive impairment. C3G administration might be an effective dietary supplementation strategy for male reproduction improvement.


Asunto(s)
Antocianinas , Citocinas , Glucósidos , Transcriptoma , Masculino , Animales , Antocianinas/farmacología , Glucósidos/farmacología , Ratones , Citocinas/metabolismo , Citocinas/genética , Testículo/efectos de los fármacos , Testículo/metabolismo , Testículo/patología , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/metabolismo , Interleucina-6/metabolismo , Interleucina-6/genética , Perfilación de la Expresión Génica , Modelos Animales de Enfermedad , Infertilidad Masculina/tratamiento farmacológico , Reproducción/efectos de los fármacos
8.
J Hazard Mater ; 477: 135366, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39088943

RESUMEN

Deoxynivalenol-3-glucoside (D3G), the masked form of the important mycotoxin deoxynivalenol (DON), displays potential toxicity but is difficult to control owing to the lack of rapid detection methods. Herein, an innovative molecularly imprinted polymer (MIP)-based electrochemical sensor was developed for the rapid detection of D3G. MIP, an efficient recognition element for D3G, was electropolymerized using o-phenylenediamine based on a surface functional monomer-directing strategy for the first time. CeO2, which contains both Ce3+ and Ce4+ oxidation states, was introduced as a nanozyme to catalyze H2O2 reduction, while Mn doping generated more oxygen vacancies and considerably improved the catalytic activity. Mn-CeO2 also served as a promising substrate material because of its large surface area and excellent conductivity. Under optimal conditions, a good linear relationship was observed for D3G detection over the concentration range of 0.01-50 ng/mL. The proposed sensor could detect D3G down to 0.003 ng/mL with excellent selectivity, even distinguishing its precursor DON in complex samples. The sensor exhibited acceptable stability with high reproducibility and accuracy, and could successfully determine D3G in grain samples. To the best of our knowledge, this is the first electrochemical sensing platform for rapid D3G detection that can easily be expanded to other masked mycotoxins.


Asunto(s)
Cerio , Técnicas Electroquímicas , Manganeso , Tricotecenos , Tricotecenos/análisis , Tricotecenos/química , Cerio/química , Manganeso/química , Polímeros Impresos Molecularmente/química , Impresión Molecular , Polímeros/química , Reproducibilidad de los Resultados , Grano Comestible/química , Límite de Detección , Glucósidos/química , Glucósidos/análisis , Contaminación de Alimentos/análisis , Peróxido de Hidrógeno/química , Peróxido de Hidrógeno/análisis
9.
Chem Biodivers ; : e202400874, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39113595

RESUMEN

This study evaluates the pharmacological effects of iridoid glucoside loganic acid, a plant constituent with diverse properties, based on literature, and explores the underlying cellular mechanisms for treating several ailments. Data were collected from reliable electronic databases, including PubMed, Scopus, Web of Science, and Google Scholar, etc. The results demonstrated the anti-inflammatory, anti-oxidant, and other protective effects of loganic acid on metabolic diseases and disorders such as atherosclerosis, diabetes, and obesity, in addition to its osteoprotective and anticancer properties. The antioxidant activity of loganic acid demonstrates its capacity to protect cells from oxidative damage and mitigates inflammation by reducing the activity of inflammatory cytokines involving TNF-α and IL-6, substantially upregulating the expression of PPAR-γ/α, and decreasing the clinical signs of inflammation-related conditions related to hypertriglyceridemia and atherosclerosis. Meanwhile, loganic acid inhibits bone loss, exhibits osteoprotective properties by increasing mRNA expression levels of bone synthesizing genes such as Alpl, Bglap, and Sp7, and significantly increases osteoblastic proliferation in preosteoblast cells. Loganic acid is an anti-metastatic drug that reduces MnSOD expression, inhibits EMT and metastasis, and prevents cellular migration, proliferation, and invasion in hepatocellular carcinoma cells. However, additional clinical trials are required to assess its safety, efficacy, and human dose.

10.
J Mol Histol ; 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39133390

RESUMEN

The aim of this study was to explore the mechanism of bone marrow stem cells (BMSCs) sheets constructed with different doses of Ascorbic acid 2-glucoside (AA-2G) in conjunction with N6-methyladenosine (m6A)-associated epigenetic genes analysing transcriptome sequencing data. Experimental groups of BMSCs induced by different AA-2G concentrations were set up, and the tissue structures were observed by histological staining of cell slices and scanning electron microscopy. Expression patterns of DEGs were analysed using short-time sequence expression mining software, and DEGs associated with m6A were selected for gene ontology analysis and pathway analysis. The protein-protein interaction (PPI) network of DEGs was analysed and gene functions were predicted using the search tool of the Retrieve Interacting Genes database. There were 464 up-regulated DEGs and 303 down-regulated DEGs between the control and high-dose AA-2G treatment groups, and 175 up-regulated DEGs and 37 down-regulated DEGs between the low and high-dose AA-2G treatment groups. The profile 7 exhibited a gradual increase in gene expression levels over AA-2G concentration. In contrast, profile 0 exhibited a gradual decrease in gene expression levels over AA-2G concentration. In the PPI network of m6A-related DEGs in profile 7, the cluster of metallopeptidase inhibitor 1 (Timp1), intercellular adhesion molecule 1 (Icam1), insulin-like growth factor 1 (Igf1), matrix metallopeptidase 2 (Mmp2), serpin family E member 1 (Serpine1), C-X-C motif chemokine ligand 2 (Cxcl2), galectin 3 (Lgals3) and angiopoietin-1 (Angpt1) was the top hub gene cluster. The expression of all hub genes was significantly increased after AA-2G intervention (P < 0.05), and the expression of Igf1 and Timp1 increased with increasing intervention concentration. The m6A epigenetic modifications were involved in the AA-2G-induced formation of BMSCs. Igf1, Serpine1 and Cxcl2 in DEGs were enriched for tissue repair, promotion of endothelial and epithelial proliferation and regulation of apoptosis.

11.
Crit Rev Food Sci Nutr ; : 1-18, 2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39097751

RESUMEN

BACKGROUND: Cyanidin-3-O-glucoside (C3G), is an anthocyanin mainly found in berries, and can also be produced by microorganisms. It has been traditionally used as a natural coloring agent for decades. Recently, it has been investigated for its high antioxidant activity and anti-cancer attributes. C3G has low bioavailability and is sensitive to oxidation and gastric pH; therefore, it is encapsulated in nanoliposomes to enhance its bio-availability, targeted delivery- and efficacy against chronic disease. SCOPE AND APPROACH: In this review, the role of C3G nanoliposomes against major chronic diseases has been discussed. The focus was on research findings and the mechanism of action to affect the proliferation of cancer, neuro disease and cardiovascular problems. It also discussed the formulation of nanoliposomes, their role in nutraceutical delivery and enhancement in C3G bioavailability. KEY FINDINGS AND CONCLUSIONS: Data suggested that nanoliposomes safeguard C3G, enhance bioavailability, and ensure safe, adequate and targeted delivery. It can reduce the impact of cancer and inflammation by inhibiting the ß-catenin/O6-methylguanine-DNA methyltransferase (MGMT) pathway and upregulating miR-214-5p. Formation of C3G nanoliposomes significantly enhances the nutraceutical efficacy of C3G against major chronic disease therefore, C3G nanoliposomes might be a future-based nutraceutical to treat major chronic diseases, including cancer, neuro problems and CVD, but challenges remain in finding correct dose and techniques to maximize its efficacy.

12.
J Sci Food Agric ; 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39179519

RESUMEN

BACKGROUND: Anthocyanins are susceptible to degradation due to external factors. Despite the potential for improved anthocyanin stability with whey protein isolate (WPI), the specific effects of individual components within WPI on the stability of anthocyanins have yet to be studied extensively. This study investigated the interaction of WPI, ß-lactoglobulin (ß-Lg), bovine serum albumin (BSA), and lactoferrin (LF) with cyanidin-3-O-glucoside (C3G), and also considered their effects on stability. RESULTS: Fluorescence analysis revealed static quenching effects between C3G and WPI, ß-Lg, BSA, and LF. The binding constants were 1.923 × 103 L · mol⁻¹ for WPI, 24.55 × 103 L · mol⁻¹ for ß-Lg, 57.25 × 103 L · mol⁻¹ for BSA, and 1.280 × 103 L · mol⁻¹ for LF. Hydrogen bonds, van der Waals forces, and electrostatic attraction were the predominant forces in the interactions between C3G and WPI and between C3G and BSA. Hydrophobic interaction was the main binding force in the interaction between C3G and ß-Lg and between C3G and LF. The binding of C3G with WPI, ß-Lg, BSA, and LF was driven by different thermodynamic parameters. Enthalpy changes (∆H) were -38.76 kJ · mol⁻¹ for WPI, -17.59 kJ · mol⁻¹ for ß-Lg, -16.09 kJ · mol⁻¹ for BSA, and 39.50 kJ · mol⁻¹ for LF. Entropy changes (∆S) were -67.21 J · mol⁻¹·K⁻¹ for WPI, 3.72 J · mol⁻¹·K⁻¹ for ß-Lg, 37.09 J · mol⁻¹·K⁻¹ for BSA, and 192.04 J · mol⁻¹·K⁻¹ for LF. The addition of C3G influenced the secondary structure of the proteins. The decrease in the α-helix content suggested a disruption and loosening of the hydrogen bond network structure. The presence of proteins enhanced the light stability and thermal stability (stability in the presence of light and heat) of C3G. In vitro simulated digestion experiments demonstrated that the addition of proteins led to a delayed degradation of C3G and to improved antioxidant capacity. CONCLUSION: The presence of WPI and its components enhanced the thermal stability, light stability, and oxidation stability of C3G. Preheated proteins exhibited a more pronounced effect than unheated proteins. These findings highlight the potential of preheating protein at appropriate temperatures to preserve C3G stability and bioactivity during food processing. © 2024 Society of Chemical Industry.

13.
Food Chem X ; 23: 101698, 2024 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-39211764

RESUMEN

Peach fruit is an important natural source of phenolic compounds that are well-known to have health benefits, but their metabolic basis remain elusive. Here, we report on phenolic compounds accumulation and antioxidant activity of ripe fruits in peach. A considerable variation in phenolic compounds content was observed among peach germplasm, with significantly higher levels detected in red-fleshed peaches compared to non-red-fleshed peaches. Antioxidant activity of crude extracts from ripe fruits showed significant differences among peach germplasm, with red-fleshed peaches having the strongest antioxidant activity. Intriguingly, it was observed that total phenolics instead of anthocyanins were strongly associated with antioxidant activity. Phenolic compounds content and antioxidant activity showed dynamic changes throughout fruit development, and these were much higher in the peel than in the flesh. Metabolomic analysis unveiled a coordinated accumulation of anthocyanins as well as key components of flavonoids and phenolic acids, which endows red-fleshed peaches with superior antioxidant activity.

14.
J Food Sci ; 89(8): 4899-4913, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38980988

RESUMEN

Nonenzymatic glycosylation of proteins can generate advanced glycosylation end products, which are closely associated with the pathogenesis of certain chronic physiological diseases and aging. In this study, we characterized the covalent binding of cyanidin-3-glucoside (C3G) to bovine serum albumin (BSA) and investigated the mechanism by which this covalent binding inhibits the nonenzymatic glycosylation of BSA. The results indicated that the covalent interaction between C3G and BSA stabilized the protein's secondary structure. Through liquid chromatography-electrospray ionization tandem mass spectrometry analysis, we identified the covalent binding sites of C3G on BSA as lysine, arginine, asparagine, glutamine, and cysteine residues. This covalent interaction significantly suppressed the nonenzymatic glycosylation of BSA, consequently reducing the formation of nonenzymatic glycosylation products. C3G competitively binds to nonenzymatic glycosylation sites (e.g., lysine and arginine) on BSA, thereby impeding the glycosylation process and preventing the misfolding and structural alterations of BSA induced by fructose. Furthermore, the covalent attachment of C3G to BSA preserves the secondary structure of BSA and hinders subsequent nonenzymatic glycosylation events.


Asunto(s)
Antocianinas , Glucósidos , Albúmina Sérica Bovina , Glicosilación , Albúmina Sérica Bovina/química , Albúmina Sérica Bovina/metabolismo , Antocianinas/química , Antocianinas/metabolismo , Glucósidos/metabolismo , Glucósidos/química , Animales , Sitios de Unión , Bovinos , Estructura Secundaria de Proteína , Productos Finales de Glicación Avanzada/química , Productos Finales de Glicación Avanzada/metabolismo , Unión Proteica , Espectrometría de Masas en Tándem , Espectrometría de Masa por Ionización de Electrospray
15.
Nat Prod Res ; : 1-5, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39021079

RESUMEN

Endometritis is a common disease that endangers human and animal health. Cyanidin-3-O-glucoside (C3G), a kind of anthocyanin, exists in a variety of plants and shows many biological activities. Here, we investigated the effect and mechanism of C3G on LPS-induced endometritis in mice. The results showed that C3G significantly decreased wet to dry weight (W/D) ratio of uterine, improved uterine pathological injury, and inhibited MPO activity. Further mechanism investigation showed that the activation of NFκB pathway and the levels of TNF-a, IL-1ß, and IL-6 were significantly suppressed after C3G treatment. Conversely, C3G promoted LPS-induced the activation of the PPARγ/ABCA1 pathway. Interestingly, the anti-inflammatory effect of C3G was significantly weakened by GW9662, a PPARγ inhibitor. In addition, the anti-oxidative stress effect of C3G was also found. For the first time, our results showed that treatment with C3G might be a new strategy for treating endometritis.

16.
EFSA J ; 22(7): e8872, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38966133

RESUMEN

The food enzyme ß-glucosidase (ß-D-glucoside glucohydrolase; EC 3.2.1.21) is produced with the non-genetically modified Penicillium guanacastense strain AE-GLY by Amano Enzyme Inc. The food enzyme is intended to be used in four food manufacturing processes. Dietary exposure to the food enzyme-total organic solids (TOS) was estimated to be up to 4.054 mg TOS/kg body weight (bw) per day in European populations. Genotoxicity tests did not raise a safety concern. The systemic toxicity was assessed by means of a repeated dose 90-day oral toxicity study in rats. The Panel identified a no observed adverse effect level of 943 mg TOS/kg bw per day, the highest dose tested, which when compared with the estimated dietary exposure, resulted in a margin of exposure of at least 233. A search for the similarity of the amino acid sequence of the food enzyme to known allergens was made and no match was found. The Panel considered that the risk of allergic reactions by dietary exposure cannot be excluded, but the likelihood is low. Based on the data provided, the Panel concluded that this food enzyme does not give rise to safety concerns under the intended conditions of use.

17.
Pharmaceuticals (Basel) ; 17(7)2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-39065672

RESUMEN

The expected progress in SARS-CoV-2 vaccinations, as anticipated in 2020 and 2021, has fallen short, exacerbating global disparities due to a lack of universally recognized "safe and effective" vaccines. This study focuses on extracts of South African medicinal plants, Artemisia annua and Artemisia afra, to identify metabolomic bioactive compounds inhibiting the binding of the SARS-CoV-2 spike protein to ACE2 receptors. The extracts were monitored for cytotoxicity using a resazurin cell viability assay and xCELLigence real-time cell analyzer. Chemical profiling was performed using UPLC-MS/MS, orthogonal projection to latent structures (OPLS), and evaluated using principle component analysis (PCA) models. Identified bioactive compounds were subjected to in vitro SARS-CoV-2 enzyme inhibition assay using standard methods and docked into the spike (S) glycoprotein of SARS-CoV-2 using Schrodinger® suite followed by molecular dynamics simulation studies. Cell viability assays revealed non-toxic effects of extracts on HEK293T cells at lower concentrations. Chemical profiling identified 81 bioactive compounds, with compounds like 6″-O-acetylglycitin, 25-hydroxyvitamin D3-26,23-lactone, and sesaminol glucoside showing promising binding affinity. Molecular dynamics simulations suggested less stable binding, but in vitro studies demonstrated the ability of these compounds to interfere with SARS-CoV-2 spike protein's binding to the human ACE2 receptor. Sesaminol glucoside emerged as the most effective inhibitor against this interaction. This study emphasizes the importance of multiplatform metabolite profiling and chemometrics to understand plant extract composition. This finding is of immense significance in terms of unravelling metabolomics bioactive compounds inhibiting the binding of the SARS-CoV-2 spike protein to ACE2 receptors and holds promise for phytotherapeutics against SARS-CoV-2.

18.
Eur J Pharmacol ; 978: 176800, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-38950835

RESUMEN

Adiponectin plays key roles in energy metabolism and ameliorates inflammation, oxidative stress, and mitochondrial dysfunction via its primary receptors, adiponectin receptors -1 and 2 (AdipoR1 and AdipoR2). Systemic depletion of adiponectin causes various metabolic disorders, including MASLD; however adiponectin supplementation is not yet achievable owing to its large size and oligomerization-associated complexities. Small-molecule AdipoR agonists, thus, may provide viable therapeutic options against metabolic disorders. Using a novel luciferase reporter-based assay here, we have identified Apigenin-6-C-glucoside (ACG), but not apigenin, as a specific agonist for the liver-rich AdipoR isoform, AdipoR2 (EC50: 384 pM) with >10000X preference over AdipoR1. Immunoblot analysis in HEK-293 overexpressing AdipoR2 or HepG2 and PLC/PRF/5 liver cell lines revealed rapid AMPK, p38 activation and induction of typical AdipoR targets PGC-1α and PPARα by ACG at a pharmacologically relevant concentration of 100 nM (reported cMax in mouse; 297 nM). ACG-mediated AdipoR2 activation culminated in a favorable modulation of key metabolic events, including decreased inflammation, oxidative stress, mitochondrial dysfunction, de novo lipogenesis, and increased fatty acid ß-oxidation as determined by immunoblotting, QRT-PCR and extracellular flux analysis. AdipoR2 depletion or AMPK/p38 inhibition dampened these effects. The in vitro results were recapitulated in two different murine models of MASLD, where ACG at 10 mg/kg body weight robustly reduced hepatic steatosis, fibrosis, proinflammatory macrophage numbers, and increased hepatic glycogen content. Together, using in vitro experiments and rodent models, we demonstrate a proof-of-concept for AdipoR2 as a therapeutic target for MASLD and provide novel chemicobiological insights for the generation of translation-worthy pharmacological agents.


Asunto(s)
Apigenina , Glucósidos , Receptores de Adiponectina , Receptores de Adiponectina/agonistas , Receptores de Adiponectina/metabolismo , Animales , Humanos , Ratones , Apigenina/farmacología , Apigenina/uso terapéutico , Glucósidos/farmacología , Glucósidos/uso terapéutico , Masculino , Células Hep G2 , Células HEK293 , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Estrés Oxidativo/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Proteínas Quinasas Activadas por AMP/metabolismo
19.
J Agric Food Chem ; 72(30): 16790-16800, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39036896

RESUMEN

Anthocyanins are common natural pigments with a variety of physiological activities. Traditional perspectives attribute their molecular mechanism to noncovalent interactions influencing signaling pathways. However, this ignores the nature of its benzopyrylium skeleton, which readily reacts with the electron-rich groups of proteins. Here, we modified cyanidin-3-O-glucoside (C3G) via activity-based protein profiling technology by our previous synthesis route and prepared the covalent binding probe (C3G-Probe) and the noncovalent photoaffinity probe (C3G-Diazirine). The properties of C3G's covalent binding to proteins were also discovered by comparing the labeling of the two probes to the whole HepG2 cell proteome. We further explored its target proteins and enriched pathways in HepG2 and HeLa cells. Western blot analysis further confirmed the covalent binding of C3G to four target proteins: insulin-degrading enzyme, metal cation symporter ZIP14, spermatid perinuclear RNA-binding protein, and Cystatin-B. Pathway analysis showed that covalent targets of C3G were concentrated in metabolic pathways and several ribonucleoprotein complexes that were also coenriched. The results of this study provide new insights into the interaction of the naturally active molecule C3G with proteins.


Asunto(s)
Antocianinas , Glucósidos , Antocianinas/química , Antocianinas/metabolismo , Humanos , Glucósidos/química , Glucósidos/metabolismo , Células Hep G2 , Células HeLa , Unión Proteica , Proteínas/química , Proteínas/metabolismo
20.
Glycobiology ; 34(9)2024 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-38995933

RESUMEN

Aloesone is a bioactive natural product and biosynthetic precursor of rare glucosides found in rhubarb and some aloe plants including Aloe vera. This study aimed to investigate biocatalytic aloesone glycosylation and more than 400 uridine diphosphate-dependent glycosyltransferase (UGT) candidates, including multifunctional and promiscuous enzymes from a variety of plant species were assayed. As a result, 137 selective aloesone UGTs were discovered, including four from the natural producer rhubarb. Rhubarb UGT72B49 was further studied and its catalytic constants (kcat = 0.00092 ± 0.00003 s-1, KM = 30 ± 2.5 µM) as well as temperature and pH optima (50 °C and pH 7, respectively) were determined. We further aimed to find an efficient aloesone glycosylating enzyme with potential application for biocatalytic production of the glucoside. We discovered UGT71C1 from Arabidopsis thaliana as an efficient aloesone UGT showing a 167-fold higher catalytic efficiency compared to that of UGT72B49. Interestingly, sequence analysis of all the 137 newly identified aloesone UGTs showed that they belong to different phylogenetic groups, with the highest representation in groups B, D, E, F and L. Finally, our study indicates that aloesone C-glycosylation is highly specific and rare, since it was not possible to achieve in an efficient manner with any of the 422 UGTs assayed, including multifunctional GTs and 28 known C-UGTs.


Asunto(s)
Glicosiltransferasas , Glicosilación , Glicosiltransferasas/metabolismo , Glicosiltransferasas/química , Arabidopsis/enzimología , Arabidopsis/metabolismo , Uridina Difosfato/metabolismo , Uridina Difosfato/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA