Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.839
Filtrar
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 324: 124995, 2025 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-39208544

RESUMEN

Raman Optical Activity combined with Circularly Polarized Luminescence (ROA-CPL) was used in the spectral recognition of glutathione peptide (GSH) and its model post-translational modifications (PTMs). We demonstrate the potential of ROA spectroscopy and CPL probes (EuCl3, Na3[Eu(DPA)3], NaEuEDTA) in the study of unmodified peptide, i.e. GSH, and its derivatives, i.e. glutathione oxidized (GSSG), S-acetylglutathione (GSAc) and S-nitrosoglutathione (GSNO). ROA spectral features of GSH, GSSG, and GSAc were determined along with thier changes upon the different pH conditions. Apart from the ROA, induced CPL signals of Eu(III) probes also proved to be sensitive to the structural modifications of GSH-based model PTMs, enabling their spectral recognition, especially by the NaEuEDTA probe.


Asunto(s)
Glutatión , Espectrometría Raman , Glutatión/química , Luminiscencia , Mediciones Luminiscentes , Procesamiento Proteico-Postraduccional , Concentración de Iones de Hidrógeno
2.
Redox Biol ; 76: 103340, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39250857

RESUMEN

Acute kidney injury (AKI) and chronic kidney disease (CKD) are global health burdens with rising prevalence. Their bidirectional relationship with cardiovascular dysfunction, manifesting as cardio-renal syndromes (CRS) types 3 and 4, underscores the interconnectedness and interdependence of these vital organ systems. Both the kidney and the heart are critically reliant on mitochondrial function. This organelle is currently recognized as a hub in signaling pathways, with emphasis on the redox regulation mediated by glutathione (GSH). Mitochondrial dysfunction, including impaired bioenergetics, redox, and biogenesis pathways, are central to the progression of AKI to CKD and the development of CRS type 3 and 4. This review delves into the metabolic reprogramming and mitochondrial redox signaling and biogenesis alterations in AKI, CKD, and CRS. We examine the pathophysiological mechanisms involving GSH redox signaling and the AMP-activated protein kinase (AMPK)-sirtuin (SIRT)1/3-peroxisome proliferator-activated receptor-gamma coactivator (PGC-1α) axis in these conditions. Additionally, we explore the therapeutic potential of GSH synthesis inducers in mitigating these mitochondrial dysfunctions, as well as their effects on inflammation and the progression of CKD and CRS types 3 and 4.

3.
Pharmacol Ther ; 263: 108723, 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39284369

RESUMEN

The organic anion transporters, OAT1 and OAT3, regulate the movement of drugs, toxins, and endogenous metabolites. In 2007, we proposed that OATs and other SLC22 transporters are involved in "remote sensing" and organ crosstalk. This is now known as the Remote Sensing and Signaling Theory (RSST). In the proximal tubule of the kidney, OATs regulate signaling molecules such as fatty acids, bile acids, indoxyl sulfate, kynurenine, alpha-ketoglutarate, urate, flavonoids, and antioxidants. OAT1 and OAT3 function as key hubs in a large homeostatic network involving multi-, oligo- and monospecific transporters, enzymes, and nuclear receptors. The Remote Sensing and Signaling Theory emphasizes the functioning of OATs and other "drug" transporters in the network at multiple biological scales (inter-organismal, organism, organ, cell, organelle). This network plays an essential role in the homeostasis of urate, bile acids, prostaglandins, sex steroids, odorants, thyroxine, gut microbiome metabolites, and uremic toxins. The transported metabolites have targets in the kidney and other organs, including nuclear receptors (e.g., HNF4a, AHR), G protein-coupled receptors (GPCRs), and protein kinases. Feed-forward and feedback loops allow OAT1 and OAT3 to mediate organ crosstalk as well as modulate energy metabolism, redox state, and remote sensing. Furthermore, there is intimate inter-organismal communication between renal OATs and the gut microbiome. Extracellular vesicles containing microRNAs and proteins (exosomes) play a key role in the Remote Sensing and Signaling System as does the interplay with the neuroendocrine, hormonal, and immune systems. Perturbation of function with OAT-interacting drugs (e.g., probenecid, diuretics, antivirals, antibiotics, NSAIDs) can lead to drug-metabolite interactions. The RSST has general applicability to other multi-specific SLC and ABC "drug" transporters (e.g., OCT1, OCT2, SLCO1B1, SLCO1B3, ABCG2, P-gp, ABCC2, ABCC3, ABCC4). Recent high-resolution structures of SLC22 and other transporters, together with chemoinformatic and artificial intelligence methods, will aid drug development and also lead to a deeper mechanistic understanding of polymorphisms.

4.
Mikrochim Acta ; 191(10): 618, 2024 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-39316193

RESUMEN

A chemiluminescence (CL) method for determination of glutathione (GSH) was developed with magnetic nanoparticle-decorated metal organic frameworks (Fe3O4 NPs@Cu-TATB). The composite material was synthesized via a hydrothermal method and glutathione (GSH) can be detected by both visual and chemiluminescence (CL) methods. The synthesized Fe3O4 NPs@Cu-TATB exhibited excellent catalytic activity in the luminol-H2O2 CL system. The mechanism revealed that three types of oxygen-containing radicals (ROS) were generated in this system. As GSH can reduce the catalytic effect of generated ROS radicals, the inhibiting CL signal was produced in the Fe3O4 NPs@Cu-TATB-luminol-H2O2 system. Based on the established CL system, the detection limits for GSH using CL and visual methods were found to be 0.3 µM and 0.7 µM, respectively. This low-cost and convenient detection method can be applied to the determination of GSH content in human blood.


Asunto(s)
Glutatión , Peróxido de Hidrógeno , Límite de Detección , Mediciones Luminiscentes , Luminol , Nanopartículas de Magnetita , Estructuras Metalorgánicas , Glutatión/sangre , Glutatión/química , Glutatión/análisis , Humanos , Estructuras Metalorgánicas/química , Mediciones Luminiscentes/métodos , Luminol/química , Nanopartículas de Magnetita/química , Peróxido de Hidrógeno/química , Cobre/química , Catálisis
5.
Plant Physiol ; 2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39324634

RESUMEN

Salt stress adversely affects the growth and yield of crops. Glutathione S-transferases (GSTs) are involved in plant growth and responses to biotic and abiotic stresses. In this study, 400 mM NaCl stress significantly induced the expression of Glutathione S-transferase U43 (SlGSTU43) in the roots of the wild-type tomato (Solanum lycopersicum L.) plants. Overexpressing SlGSTU43 enhanced the ability of scavenging reactive oxygen species (ROS) in tomato leaves and roots under NaCl stress, while SlGSTU43 knock-out mutants showed the opposite performance. RNA sequencing analysis revealed that overexpressing SlGSTU43 affected the expression of genes related to lignin biosynthesis. We demonstrated that SlGSTU43 can regulate the lignin content in tomato through its interaction with SlCOMT2, a key enzyme involved in lignin biosynthesis, and promote the growth of tomato plants under NaCl stress. In addition, SlMYB71 and SlWRKY8 interact each other, and can directly bind to the promoter of SlGSTU43 to transcriptionally activate its expression separately or in combination. When SlMYB71 and SlWRKY8 were silenced in tomato plants individually or collectively, the plants were sensitive to NaCl stress, and their GST activities and lignin contents decreased. Our research indicates that SlGSTU43 can enhance salt stress tolerance in tomato by regulating lignin biosynthesis, which is regulated by interacting with SlCOMT2, as well as SlMYB71 and SlWRKY8. This finding broadens our understanding of GST functions.

6.
J Appl Microbiol ; 135(9)2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39227165

RESUMEN

AIMS: This study identifies a unique glutathione S-transferase (GST) in extremophiles using genome, phylogeny, bioinformatics, functional characterization, and RNA sequencing analysis. METHODS AND RESULTS: Five putative GSTs (H0647, H0729, H1478, H3557, and H3594) were identified in Halothece sp. PCC7418. Phylogenetic analysis suggested that H0647, H1478, H0729, H3557, and H3594 are distinct GST classes. Of these, H0729 was classified as an iota-class GST, encoding a high molecular mass GST protein with remarkable features. The protein secondary structure of H0729 revealed the presence of a glutaredoxin (Grx) Cys-Pro-Tyr-Cys (C-P-Y-C) motif that overlaps with the N-terminal domain and harbors a topology similar to the thioredoxin (Trx) fold. Interestingly, recombinant H0729 exhibited a high catalytic efficiency for both glutathione (GSH) and 1-chloro-2, 4-dinitrobenzene (CDNB), with catalytic efficiencies that were 155- and 32-fold higher, respectively, compared to recombinant H3557. Lastly, the Halothece gene expression profiles suggested that antioxidant and phase II detoxification encoding genes are crucial in response to salt stress. CONCLUSION: Iota-class GST was identified in cyanobacteria. This GST exhibited a high catalytic efficiency toward xenobiotic substrates. Our findings shed light on a diversified evolution of GST in cyanobacteria and provide functional dynamics of the genes encoding the enzymatic antioxidant and detoxification systems under abiotic stresses.


Asunto(s)
Cianobacterias , Glutatión Transferasa , Filogenia , Glutatión Transferasa/genética , Glutatión Transferasa/metabolismo , Glutatión Transferasa/química , Cianobacterias/genética , Cianobacterias/enzimología , Cianobacterias/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Glutatión/metabolismo , Secuencia de Aminoácidos , Glutarredoxinas/genética , Glutarredoxinas/metabolismo , Glutarredoxinas/química
7.
Heliyon ; 10(18): e38046, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39328530

RESUMEN

The potential of L-glutathione (GSH) (0, 4, 16, 32 and 64 mM) to improve the post-harvest quality and antioxidant capacity of strawberries was investigated during storage (0, 5, 10, and 15 days) in this study. Results showed that weight loss in fruits treated with 64 mM GSH was significantly lower than the control. GSH treatments resulted in higher levels of total phenol content and antioxidant capacity in treated fruits of strawberry. Based on the results, GSH 64 mM significantly increased the levels of total flavonoid, anthocyanin, ascorbic acid, total soluble protein, antioxidant enzymes such as catalase (CAT), superoxide dismutase (SOD), guaiacol peroxidase (POD), ascorbate peroxidase (APX) and Phenylalanine ammonia-lyase (PAL). In addition, GSH 64 mM decreased Malondialdehyde (MDA) levels and prevented cell membrane lipid peroxidation. In conclusion, the results of the present study showed that the use of GSH 64 mM may be a promising strategy to improve the marketability, quality and antioxidant capacity of strawberry fruits during storage.

8.
J Biochem ; 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39315605

RESUMEN

Ferroptosis is regulated cell death characterized by iron-dependent phospholipid peroxidation, and is closely related to various diseases. System Xc -, a cystine/glutamate antiporter, and glutathione peroxidase 4 (GPX4) are the key molecules in ferroptosis. Erastin and RSL3, known as inhibitors of system Xc - and GPX4, respectively, are commonly used as ferroptosis inducers. BTB and CNC homology 1 (BACH1), a heme-binding transcription repressor, promotes pro-ferroptotic signaling, and therefore, Bach1-deficient cells are resistant to ferroptosis. Irikura et al. constructed Bach1-re-expressing immortalized mouse embryonic fibroblasts (iMEFs) from Bach1-/- mice, which induce ferroptosis simply by the depletion of 2-mercaptoethanol from the culture medium (J. Biochem. 2023; 174:239-252). Transcriptional repression by re-expressed BACH1 induces suppressed glutathione synthesis and increases labile iron. Furthermore, the ferroptosis initiated by BACH1-re-expressing iMEFs is propagated to surrounding cells. Thus, the BACH1-re-expression system is a novel and powerful tool to investigate the cellular basis of ferroptosis.

9.
Biochem Genet ; 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39316306

RESUMEN

The metabolic imbalance of glutathione (GSH) has been widely recognized in most cancers, but the specific molecular mechanism of GSH metabolic regulation in the malignant progression of colorectal cancer (CRC) is unexplored. The objective of our project is to elucidate whether ETV4 affects the malignant progression of CRC through GSH metabolic reprogramming. Bioinformatics and molecular experiments measured the expression of ETV4 in CRC, and in vitro experiments explored the impact of ETV4 on CRC malignant progression. The Kyoto Encyclopedia of Genes and Genomes (KEGG) identified the pathway of ETV4 enrichment. The bioinformatics approach identified FOXA2 as an upstream regulatory factor of ETV4. The dual-luciferase assay, chromatin immunoprecipitation (ChIP) and co-immunoprecipitation (Co-IP) experiment verified the binding relationship between ETV4 and FOXA2. Cell viability, migration, and invasion abilities were determined by conducting CCK-8, wound healing, and Transwell assays, respectively. The expression levels of N-cadherin, E-cadherin, and vimentin were determined by utilizing immunofluorescence (IF). Metabolism-related enzymes GCLM, GCLC, and GSTP1 levels were detected to evaluate the GSH metabolism level by analyzing the GSH/GSSG ratio. In vivo experiments were performed to explore the effect of FOXA2/ETV4 on CRC progression, and the expression of related proteins was detected by western blot. ETV4 was highly expressed in CRC. Knocking down ETV4 suppressed CRC cell viability, migration, invasion, and epithelial-mesenchymal transition (EMT) progression in vitro. ETV4 was abundant in the GSH metabolic pathway, and overexpression of ETV4 facilitated CRC malignant progression through activation of the GSH metabolism. In addition, in vitro cellular experiments and in vivo experiments in nude mice confirmed that FOXA2 transcriptionally activated ETV4. Knocking down FOXA2 repressed the malignant phenotype of CRC cells by suppressing GSH metabolism. These effects were reversed by overexpressing ETV4. Our results indicated that FOXA2 transcriptionally activates ETV4 to facilitate CRC malignant progression by modulating the GSH metabolic pathway. Targeting the FOXA2/ETV4 axis or GSH metabolism may be an effective approach for CRC treatment.

10.
Arch Biochem Biophys ; : 110162, 2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39322101

RESUMEN

Thioredoxin/glutathione reductase from Schistosoma mansoni (SmTGR) is a multifunctional enzyme that catalyzes the reduction of glutathione (GSSG) and thioredoxin, as well as the deglutathionylation of peptide and non-peptide substrates. SmTGR structurally resembles known glutathione reductases (GR) and thioredoxin reductases (TrxR) but with an appended N-terminal domain that has a typical glutaredoxin (Grx) fold. Despite structural homology with known GRs, the site of glutathione reduction has frequently been reported as the Grx domain, based primarily on aerobic, steady-state kinetic measurements and x-ray crystallography. Here, we present an anaerobic characterization of a series of variant SmTGRs to establish the site of GSSG reduction as the cysteine pair most proximal to the FAD, Cys154/Cys159, equivalent to the site of GSSG reduction in GRs. Anaerobic steady-state analysis of U597C, U597S, U597C+C31S, and I592STOP SmTGR demonstrate that the Grx domain is not involved in the catalytic reduction of GSSG, as redox silencing of the C-terminus results in no modulation of the observed turnover number (∼0.025 s-1) and redox silencing of the Grx domain results in an increased observed turnover number (∼0.08 s-1). Transient-state single turnover analysis of these variants corroborates this, as the slowest rate observed titrates hyperbolically with GSSG concentration and approaches a limit that coincides with the respective steady-state turnover number for each variant. Numerical integration fitting of the transient state data can only account for the observed trends when competitive binding of the C-terminus is included, indicating that the partitioning of electrons to either substrate occurs at the Cys154/Cys159 disulfide rather than the previously proposed Cys596/Sec597 sulfide/selenide. Paradoxically, truncating the C-terminus at Ile592 results in a loss of GR activity, indicating a crucial non-redox role for the C-terminus.

11.
Talanta ; 281: 126868, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39288584

RESUMEN

A novel fluorescence/colorimetric dual-mode sensor, based on enhancement of the oxidase-like activity of CeO2/CuxO nanozyme towards the oxidation of o-phenylenediamine (OPD) induced by thiourea (TU), has been proposed for TU detection. The catalytic activity enhancement on CeO2/CuxO can be attributed to the strong electron-donation ability of TU, which promoted hydroxyl radical generation and amplified OPD oxidization with enhanced dual-signal readout. By integrating a portable paper-chip and smartphone system, this CeO2/CuxO-OPD system achieved on-site visual colorimetric analysis of TU. The dual-mode sensor demonstrated high sensitivity and specificity in recognizing TU, with a detection limit (LOD) of 1.90 µM and a linear range (LR) 2.5-80 µM in fluorescent mode; as well as an LOD of 6.69 µM and an LR 10-250 µM in colorimetric mode. Furthermore, the CeO2/CuxO-TU-OPD system has been designed for dual-mode glutathione (GSH) detection with enhanced sensitivity, achieving an LOD of 0.19 µM and an LR 0.5-10 µM in fluorescent mode; as well as an LOD of 1.24 µM and an LR 1.25-25 µM in colorimetric mode. Additionally, GSH discrimination (fluorescent mode) was successfully achieved in different biological samples, showing good consistency with the standard method. The recoveries ranged from 96.8 % to 116.7 % in serum samples and from 97.3 % to 107.7 % in cell lysates, with RSDs less than 2 %. This work not only introduced a novel approach to enhance oxidase-like activity of nanozymes but also provided an efficient field-suitable tool for enhanced dual-mode response towards TU and GSH.

12.
Biomed Eng Online ; 23(1): 93, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39261942

RESUMEN

Radiation-induced brain injury (RBI) presents a significant challenge for patients undergoing radiation therapy for head, neck, and intracranial tumors. This review aims to elucidate the role of ferroptosis in RBI and its therapeutic implications. Specifically, we explore how ferroptosis can enhance the sensitivity of tumor cells to radiation while also examining strategies to mitigate radiation-induced damage to normal brain tissues. By investigating the mechanisms through which radiation increases cellular reactive oxygen species (ROS) and initiates ferroptosis, we aim to develop targeted therapeutic strategies that maximize treatment efficacy and minimize neurotoxicity. The review highlights key regulatory factors in the ferroptosis pathway, including glutathione peroxidase 4 (GPX4), cystine/glutamate antiporter system Xc- (System Xc-), nuclear factor erythroid 2-related factor 2 (NRF2), Acyl-CoA synthetase long-chain family member 4 (ACSL4), and others, and their interactions in the context of RBI. Furthermore, we discuss the clinical implications of modulating ferroptosis in radiation therapy, emphasizing the potential for selective induction of ferroptosis in tumor cells and inhibition in healthy cells. The development of advanced diagnostic tools and therapeutic strategies targeting ferroptosis offers a promising avenue for enhancing the safety and efficacy of radiation therapy, underscoring the need for further research in this burgeoning field.


Asunto(s)
Lesiones Encefálicas , Ferroptosis , Traumatismos por Radiación , Humanos , Lesiones Encefálicas/metabolismo , Traumatismos por Radiación/metabolismo , Animales
13.
Phytomedicine ; 134: 155989, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39217656

RESUMEN

BACKGROUND: Doxorubicin (DOX) is a potent anticancer medication, but its significant cardiotoxicity poses a challenge in clinical practice. Galangin (Gal), a flavonoid compound with diverse pharmacological activities, has shown potential in exerting cardioprotective effects. However, the related molecular mechanism has not been fully elucidated. PURPOSE: Combined with bioinformatics and experimental verification methods to investigate Gal's potential role and underlying mechanisms in mitigating DOX-induced cardiotoxicity (DIC). METHODS: C57BL/6 mice received a single dose of DOX via intraperitoneal injection 4 days before the end of the gavage period with Gal. Myocardial injury was evaluated using echocardiography, myocardial injury biomarkers, Sirius Red and H&E staining. H9c2 cells were stimulated with DOX to mimic DIC in vitro. The potential therapeutic target of Gal was identified through network pharmacology, molecular docking and cellular thermal shift assay (CETSA), complemented by an in-depth exploration of the GSTP1/JNK signaling pathway using immunofluorescence. Subsequently, the GSTP1 inhibitor Ezatiostat (Eza) substantiated the signaling pathway. RESULTS: Gal administration considerably raised DOX-inhibited the left ventricular ejection fractions (LVEF), reduced levels of myocardial injury markers (c-TnI, c-TnT, CKMB, LDH, and AST), and alleviated DOX-induced myocardial histopathological injury and fibrosis in mice, thereby improving cardiac dysfunction. The ferroptosis induced by DOX was inhibited by Gal treatment. Gal remarkably ameliorated the DOX-induced lipid peroxidation, accumulation of iron and Ptgs2 expression both in H9c2 cells and cardiac tissue. Furthermore, Gal effectively rescued the DOX-inhibited crucial regulators of ferroptosis such as Gpx4, Nrf2, Fpn, and Slc7a11. The mechanistic investigations revealed that Glutathione S-transferase P1 (GSTP1) may be a potential target for Gal in attenuating DIC. Gal act on GSTP1 by stimulating its expression, thereby enhancing the interaction between GSTP1 and c-Jun N-terminal kinase (JNK), leading to the deactivation of JNK/c-Jun pathway. Furthermore, interference of GSTP1 with inhibitor Eza abrogated the cardioprotective and anti-ferroptotic effects of Gal, as evidenced by decreased cell viability, reduced expression of GSTP1 and Gpx4, elevated MDA levels, and promoted phosphorylation of JNK and c-Jun compared with Gal treatment. CONCLUSION: Gal could inhibit ferroptosis and protect against DIC through regulating the GSTP1/JNK pathway. Our research has identified a novel pathway through which Gal regulates DIC, providing valuable insights into the potential therapeutic efficacy of Gal in mitigating cardiotoxic effects.


Asunto(s)
Cardiotoxicidad , Doxorrubicina , Ferroptosis , Flavonoides , Ratones Endogámicos C57BL , Animales , Doxorrubicina/efectos adversos , Ferroptosis/efectos de los fármacos , Flavonoides/farmacología , Cardiotoxicidad/tratamiento farmacológico , Ratones , Masculino , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Gutatión-S-Transferasa pi/metabolismo , Línea Celular , Transducción de Señal/efectos de los fármacos , Simulación del Acoplamiento Molecular , Ratas , Miocardio
14.
Cells ; 13(17)2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39273059

RESUMEN

This study aims to investigate the role of ferroptosis, an iron-dependent form of regulated cell death, in male infertility. The motivation behind this research stems from the increasing recognition of oxidative stress and iron metabolism dysregulation as critical factors in male reproductive health. In this study, 28 infertile patients (grouped by the presence of urogenital infections or varicocele) and 19 fertile men were selected. Spermiograms were performed by light microscopy (WHO, 2021). Testosterone, ferritin, transferrin-bound iron, transferrin, and F2-isoprostanes (F2-IsoPs) were detected in seminal plasma. Glutathione peroxidase 4 (GPX4) and acyl coenzyme A synthetase long chain family member 4 (ACSL4) were also assessed in sperm cells using enzyme-linked immunosorbent assays (ELISA). All the variables were correlated (statistically significant Spearman's rank correlations) in the whole population, and then the comparison between variables of the different groups of men were carried out. Seminal ferritin and transferrin positively correlated with seminal F2-IsoPs, which had positive correlations with ACSL4 detected in sperm cells. Ferritin and ACSL4 negatively correlated with the seminal parameters. No correlation was detected for GPX4. Comparing the variables in the three examined groups, elevated levels of ACSL4 were observed in infertile patients with urogenital infections and varicocele; GPX4 levels were similar in the three groups. These results suggested a mechanism of ferroptosis, identified by increased ACSL4 levels and the occurrence of lipid peroxidation. Such events appear to be GPX4-independent in reproductive pathologies such as varicocele and urogenital infections.


Asunto(s)
Biomarcadores , Ferroptosis , Infertilidad Masculina , Semen , Humanos , Masculino , Semen/metabolismo , Adulto , Biomarcadores/metabolismo , Infertilidad Masculina/metabolismo , Infertilidad Masculina/patología , Coenzima A Ligasas/metabolismo , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , Fertilidad , Espermatozoides/metabolismo , Espermatozoides/patología
15.
Stem Cell Res Ther ; 15(1): 303, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39278906

RESUMEN

BACKGROUND: Hematopoietic stem progenitor cells (HSPCs) undergo phenotypical and functional changes during their emergence and development. Although the molecular programs governing the development of human hematopoietic stem cells (HSCs) have been investigated broadly, the relationships between dynamic metabolic alterations and their functions remain poorly characterized. METHODS: In this study, we comprehensively described the proteomics of HSPCs in the human fetal liver (FL), umbilical cord blood (UCB), and adult bone marrow (aBM). The metabolic state of human HSPCs was assessed via a Seahorse assay, RT‒PCR, and flow cytometry-based metabolic-related analysis. To investigate whether perturbing glutathione metabolism affects reactive oxygen species (ROS) production, the metabolic state, and the expansion of human HSPCs, HSPCs were treated with buthionine sulfoximine (BSO), an inhibitor of glutathione synthetase, and N-acetyl-L-cysteine (NAC). RESULTS: We investigated the metabolomic landscape of human HSPCs from the fetal, perinatal, and adult developmental stages by in-depth quantitative proteomics and predicted a metabolic switch from the oxidative state to the glycolytic state during human HSPC development. Seahorse assays, mitochondrial activity, ROS level, glucose uptake, and protein synthesis rate analysis supported our findings. In addition, immune-related pathways and antigen presentation were upregulated in UCB or aBM HSPCs, indicating their functional maturation upon development. Glutathione-related metabolic perturbations resulted in distinct responses in human HSPCs and progenitors. Furthermore, the molecular and immunophenotypic differences between human HSPCs at different developmental stages were revealed at the protein level for the first time. CONCLUSION: The metabolic landscape of human HSPCs at three developmental stages (FL, UCB, and aBM), combined with proteomics and functional validations, substantially extends our understanding of HSC metabolic regulation. These findings provide valuable resources for understanding human HSC function and development during fetal and adult life.


Asunto(s)
Células Madre Hematopoyéticas , Proteómica , Especies Reactivas de Oxígeno , Humanos , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/citología , Proteómica/métodos , Especies Reactivas de Oxígeno/metabolismo , Feto/metabolismo , Feto/citología , Adulto , Sangre Fetal/citología , Sangre Fetal/metabolismo , Butionina Sulfoximina/farmacología , Glutatión/metabolismo
16.
Front Plant Sci ; 15: 1418762, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39280946

RESUMEN

Phytochelatin synthase (PCS) is a critical enzyme involved in heavy metal detoxification in organisms. In this study, we aim to comprehensively investigate the molecular and functional characteristics of the PCS1 gene from Nicotiana tabacum by examining its enzymatic activity, tissue-specific expression pattern, Cd-induced expression, as well as the impact on Cd tolerance and accumulation. The results demonstrated that the amino acid sequence of NtPCS1 shared a high similarity in its N-terminal region with PCS from other species. The enzymatic activity of NtPCS1 was found to be enhanced in the order Ag2+ > Cd2+ > Cu2+ > Pb2+ > Hg2+ > Fe2+ > Zn2+. In addition, RT-PCR data indicated that NtPCS1 gene is constitutively expressed, with the highest expression observed in flowers, and that its transcript levels are up-regulated by CdCl2. When tobacco overexpressing NtPCS1 (PCS1 lines) were grown under CdCl2 stress, they produced more phytochelatins (PCs) than WT plants, but this did not result in increased Cd accumulation. However, in a root growth assay, the PCS1 lines exhibited hypersensitivity to Cd. The overexpression of NtPCS1 itself does not appear to be the primary cause of this heightened sensitivity to Cd, as the Arabidopsis thaliana Atpcs1 mutant overexpressing NtPCS1 actually exhibited enhanced tolerance to Cd. Furthermore, the addition of exogenous glutathione (GSH) progressively reduced the Cd hypersensitivity of the PCS1 lines, with the hypersensitivity even being completely eliminated. Surprisingly, the application of exogenous GSH led to a remarkably enhanced Cd accumulation in the PCS1 lines. This study enriches our understanding of the molecular function of the NtPCS1 gene and suggests a promising avenue for Cd tolerance through the heterologous expression of PCS genes in different species.

17.
ACS Nano ; 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39287044

RESUMEN

The refractory luminal androgen receptor (LAR) subtype of triple-negative breast cancer (TNBC) patients is challenged by significant resistance to neoadjuvant chemotherapy and increased immunosuppression. Regarding the distinct upregulation of glutathione (GSH) and glutathione peroxidase 4 (GPX4) in LAR TNBC tumors, we herein designed a GSH-depleting phospholipid derivative (BPP) and propose a BPP-based nanotherapeutics of RSL-3 (GDNS), aiming to deplete intracellular GSH and repress GPX4 activity, thereby potentiating ferroptosis for treating LAR-subtype TNBC. GDNS treatment drastically downregulated the expression of GSH and GPX4, resulting in a 33.88-fold enhancement of lipid peroxidation and significant relief of immunosuppression in the 4T1 TNBC model. Moreover, GDNS and its combination with antibody against programed cell death protein 1 (antiPD-1) retarded tumor growth and produced 2.83-fold prolongation of survival in the LAR-positive TNBC model. Therefore, the GSH-disrupting GDNS represents an encouraging strategy to potentiate ferroptosis for treating refractory LAR-subtype TNBC.

18.
Adv Exp Med Biol ; 1460: 697-726, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39287870

RESUMEN

Obesity is a constantly growing health problem which reduces quality of life and life expectancy. Bariatric surgery (BS) for obesity is considered when all other conservative treatment modalities have failed. Comparison of the multidisciplinary programs with BS regarding to the weight loss showed that substantial and durable weight reduction have been achieved only with bariatric surgical treatments. Although laparoscopic sleeve gastrectomy is the most popular BS, it has high long-term failure rates, and it is claimed that one of every three patients will undergo another bariatric procedure within a 10-year period. Although BS provides weight loss and improvement of metabolic comorbidities, in long-term follow-up, weight gain is observed in half of the patients, while decrease in bone mass and nutritional deficiencies occur in up to 90%. Moreover, despite significant weight loss, several psychological aspects of patients are worsened in comparison to preoperative levels. Nearly one-fifth of postoperative patients with "Loss-of-eating control" meet food addiction criteria. Therefore, the benefits of weight loss following bariatric procedures alone are still debated in terms of the proinflammatory and metabolic profile of obesity.


Asunto(s)
Cirugía Bariátrica , Obesidad , Pérdida de Peso , Humanos , Cirugía Bariátrica/métodos , Obesidad/cirugía , Obesidad/metabolismo , Obesidad/fisiopatología , Calidad de Vida , Resultado del Tratamiento , Gastrectomía/métodos , Laparoscopía/métodos
19.
Adv Exp Med Biol ; 1460: 629-655, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39287867

RESUMEN

Obesity activates both innate and adaptive immune responses in adipose tissue. Adipose tissue macrophages are functional antigen-presenting cells that promote the proliferation of interferon-gamma (IFN-γ)-producing cluster of differentiation (CD)4+ T cells in adipose tissue of obese subjects. The increased formation of neopterin and degradation of tryptophan may result in decreased T-cell responsiveness and lead to immunodeficiency. The activity of inducible indoleamine 2,3-dioxygenase-1 (IDO1) plays a major role in pro-inflammatory, IFN-γ-dominated settings. The expression of several kynurenine pathway enzyme genes is significantly increased in obesity. IDO1 in obesity shifts tryptophan metabolism from serotonin and melatonin synthesis to the formation of kynurenines and increases the ratio of kynurenine to tryptophan as well as with neopterin production. Reduction in serotonin (5-hydroxytryptamine; 5-HT) production provokes satiety dysregulation that leads to increased caloric uptake and obesity. According to the monoamine-deficiency hypothesis, a deficiency of cerebral serotonin is involved in neuropsychiatric symptomatology of depression, mania, and psychosis. Indeed, bipolar disorder (BD) and related cognitive deficits are accompanied by a higher prevalence of overweight and obesity. Furthermore, the accumulation of amyloid-ß in Alzheimer's disease brains has several toxic effects as well as IDO induction. Hence, abdominal obesity is associated with vascular endothelial dysfunction. kynurenines and their ratios are prognostic parameters in coronary artery disease. Increased kynurenine/tryptophan ratio correlates with increased intima-media thickness and represents advanced atherosclerosis. However, after bariatric surgery, weight reduction does not lead to the normalization of IDO1 activity and atherosclerosis. IDO1 is involved in the mechanisms of immune tolerance and in the concept of tumor immuno-editing process in cancer development. Serum IDO1 activity is still used as a parameter in cancer development and growth. IDO-producing tumors show a high total IDO immunostaining score, and thus, using IDO inhibitors, such as Epacadostat, Navoximod, and L isomer of 1-methyl-tryptophan, seems an important modality for cancer treatment. There is an inverse correlation between serum folate concentration and body mass index, thus folate deficiency leads to hyperhomocysteinemia-induced oxidative stress. Immune checkpoint blockade targeting cytotoxic T-lymphocyte-associated protein-4 synergizes with imatinib, which is an inhibitor of mitochondrial folate-mediated one-carbon (1C) metabolism. Antitumor effects of imatinib are enhanced by increasing T-cell effector function in the presence of IDO inhibition. Combining IDO targeting with chemotherapy, radiotherapy and/or immunotherapy, may be an effective tool against a wide range of malignancies. However, there are some controversial results regarding the efficacy of IDO1 inhibitors in cancer treatment.


Asunto(s)
Indolamina-Pirrol 2,3,-Dioxigenasa , Obesidad , Triptófano , Humanos , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Obesidad/metabolismo , Obesidad/enzimología , Triptófano/metabolismo , Animales , Serotonina/metabolismo , Tejido Adiposo/metabolismo , Quinurenina/metabolismo
20.
Biofactors ; 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39302148

RESUMEN

Thiamine (vitamin B1), under the proper conditions, is able to reversibly open the thiazole ring, forming a thiol-bearing molecule that can be further oxidized to the corresponding disulfide. To improve the bioavailability of the vitamin, several derivatives of thiamine in the thioester or disulfide form were developed and extensively studied over time, as apparent from the literature. We have examined three thiamine-derived disulfides: thiamine disulfide, sulbutiamine, and fursultiamine with reference to their intervention in modulating the thiol redox state. First, we observed that both glutathione and thioredoxin (Trx) systems were able to reduce the three disulfides. In particular, thioredoxin reductase (TrxR) reduced these disulfides either directly or in the presence of Trx. In Caco-2 cells, the thiamine disulfide derivatives did not modify the total thiol content, which, however, was significantly decreased by the concomitant inhibition of TrxR. When oxidative stress was induced by tert-butyl hydroperoxide, the thiamine disulfides exerted a protective effect, indicating that the thiol form deriving from the reduction of the disulfides might be the active species. Further, the thiamine disulfides examined were shown to increase the nuclear levels of the transcription factor nuclear factor erythroid 2 related factor 2 and to stimulate both expression and activity of NAD(P)H quinone dehydrogenase 1 and TrxR. However, other enzymes of the glutathione and Trx systems were scarcely affected. As the thiol redox balance plays a critical role in oxidative stress and inflammation, the information presented can be of interest for further research, considering the potential favorable effect exerted in the cell by many sulfur compounds, including the thiamine-derived disulfides.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA