Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ChemSusChem ; : e202400624, 2024 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-38616165

RESUMEN

Glycerol oxidation-assisted water electrolysis has emerged as a cost-effective way of co-producing green hydrogen and HCOOH. Still, preparing highly selective and stable nickel-based metal electrocatalysts remains a challenge. Herein, heterostructure Ni3N/WO3 nanosheet arrays of bifunctional catalysts with large specific surface areas loaded on nickel foam (denoted as Ni3N/WO3/NF) were synthesized. This catalyst was for glycerol oxidation reaction (GOR) and hydrogen evolution reaction (HER) with excellent catalytic performance, a voltage saving of 267 mV compared to oxygen evolution reaction (OER), and a HER overpotential of 104 mV at 100 mA cm-2. The cell voltage in the assembled GOR//HER hybrid electrolysis system reaches 100 mA cm-2 at 1.50 V, 296 mV lower than the potential required for overall water splitting. This work demonstrates that replacing GOR with OER using a cost-effective and highly active Ni-based bifunctional electrocatalyst can make hybrid water electrolysis an energy-efficient, sustainable, and green strategy for hydrogen production.

2.
Proc Natl Acad Sci U S A ; 121(17): e2320777121, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38630719

RESUMEN

The hybrid electrolyzer coupled glycerol oxidation (GOR) with hydrogen evolution reaction (HER) is fascinating to simultaneously generate H2 and high value-added chemicals with low energy input, yet facing a challenge. Herein, Cu-based metal-organic frameworks (Cu-MOFs) are reported as model catalysts for both HER and GOR through doping of atomically dispersed precious and nonprecious metals. Remarkably, the HER activity of Ru-doped Cu-MOF outperformed a Pt/C catalyst, with its Faradaic efficiency for formate formation at 90% at a low potential of 1.40 V. Furthermore, the hybrid electrolyzer only needed 1.36 V to achieve 10 mA cm-2, 340 mV lower than that for splitting pure water. Theoretical calculations demonstrated that electronic interactions between the host and guest (doped) metals shifted downward the d-band centers (εd) of MOFs. This consequently lowered water adsorption and dissociation energy barriers and optimized hydrogen adsorption energy, leading to significantly enhanced HER activities. Meanwhile, the downshift of εd centers reduced energy barriers for rate-limiting step and the formation energy of OH*, synergistically enhancing the activity of MOFs for GOR. These findings offered an effective means for simultaneous productions of hydrogen fuel and high value-added chemicals using one hybrid electrolyzer with low energy input.

3.
Adv Sci (Weinh) ; 11(23): e2402343, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38572506

RESUMEN

Rechargeable Zn-air batteries (ZABs) are considered highly competitive technologies for meeting the energy demands of the next generation, whether for energy storage or portable power. However, their practical application is hindered by critical challenges such as low voltage, CO2 poisoning at the cathode, low power density, and poor charging efficiency Herein, a rechargeable hybrid alkali/acid Zn-air battery (h-RZAB) that effectively separates the discharge process in an acidic environment from the charging process in an alkaline environment, utilizing oxygen reduction reaction (ORR) and glycerol oxidation reaction (GOR) respectively is reported. Compared to previously reported ZABs, this proof-of-concept device demonstrates impressive performance, exhibiting a high power density of 562.7 mW cm-2 and a high operating voltage during discharging. Moreover, the battery requires a significantly reduced charging voltage due to the concurrent utilization of biomass-derived glycerol, resulting in practical and cost-effective advantages. The decoupled system offers great flexibility for intermittently generated renewable power sources and presents cost advantages over traditional ZABs. As a result, this technology holds significant promise in opening avenues for the future development of renewable energy-compatible electrochemical devices.

4.
Adv Mater ; 36(26): e2401857, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38594018

RESUMEN

Defect-engineered bimetallic oxides exhibit high potential for the electrolysis of small organic molecules. However, the ambiguity in the relationship between the defect density and electrocatalytic performance makes it challenging to control the final products of multi-step multi-electron reactions in such electrocatalytic systems. In this study, controllable kinetics reduction is used to maximize the oxygen vacancy density of a Cu─Co oxide nanosheet (CuCo2O4 NS), which is used to catalyze the glycerol electrooxidation reaction (GOR). The CuCo2O4-x NS with the highest oxygen-vacancy density (CuCo2O4-x-2) oxidizes C3 molecules to C1 molecules with selectivity of almost 100% and a Faradaic efficiency of ≈99%, showing the best oxidation performance among all the modified catalysts. Systems with multiple oxygen vacancies in close proximity to each other synergistically facilitate the cleavage of C─C bonds. Density functional theory calculations confirm the ability of closely spaced oxygen vacancies to facilitate charge transfer between the catalyst and several key glycolic-acid (GCA) intermediates of the GOR process, thereby facilitating the decomposition of C2 intermediates to C1 molecules. This study reveals qualitatively in tuning the density of oxygen vacancies for altering the reaction pathway of GOR by the synergistic effects of spatial proximity of high-density oxygen vacancies.

5.
J Colloid Interface Sci ; 665: 152-162, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38520932

RESUMEN

H2 and formate are important energy carriers in fuel-cells and feedstocks in chemical industry. The hydrogen evolution reaction (HER) coupling with electro-oxidative cleavage of thermodynamically favorable polyols is a promising way to coproduce H2 and formate via electrochemical means, highly active catalysts for HER and electrooxidative cleavage of polycols are the key to achieve such a goal. Herein, molybdenum (Mo), tungsten (W) doped cobalt phosphides (Co2P) deposited onto nickel foam (NF) substrate, denoted as Mo-Co2P/NF and W-Co2P/NF, respectively, were investigated as catalytic electrodes for HER and electrochemical glycerol oxidation reaction (GOR) to yield H2 and formate. The W-Co2P/NF electrode exhibited low overpotential (η) of 113 mV to attain a current density (J) of -100 mA cm-2 for HER, while the Mo-Co2P/NF electrode demonstrated high GOR efficiency for selective production of formate. In situ Raman and infrared spectroscopic characterizations revealed that the evolved CoO2 from Co2P is the genuine catalytic sites for GOR. The asymmetric electrolyzer based on W-Co2P/NF cathode and Mo-Co2P/NF anode delivered a J = 100 mA cm-2 at 1.8 V voltage for glycerol electrolysis, which led to 18.2 % reduced electricity consumption relative to water electrolysis. This work highlights the potential of heteroelement doped phosphide in catalytic performances for HER and GOR, and opens up new avenue to coproduce more widespread commodity chemicals via gentle and sustainable electrocatalytic means.

6.
Angew Chem Int Ed Engl ; 63(14): e202319153, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38356309

RESUMEN

As a sustainable valorization route, electrochemical glycerol oxidation reaction (GOR) involves in formation of key OH* and selective adsorption/cleavage of C-C(O) intermediates with multi-step electron transfer, thus suffering from high potential and poor formate selectivity for most non-noble-metal-based electrocatalysts. So, it remains challenging to understand the structure-property relationship as well as construct synergistic sites to realize high-activity and high-selectivity GOR. Herein, we successfully achieve dual-high performance with low potentials and superior formate selectivity for GOR by forming synergistic Lewis and Brønsted acid sites in Ni-alloyed Co-based spinel. The optimized NiCo oxide solid-acid electrocatalyst exhibits low reaction potential (1.219 V@10 mA/cm2) and high formate selectivity (94.0 %) toward GOR. In situ electrochemical impedance spectroscopy and pH-dependence measurements show that the Lewis acid centers could accelerate OH* production, while the Brønsted acid centers are proved to facilitate high-selectivity formation of formate. Theoretical calculations reveal that NiCo alloyed oxide shows appropriate d-band center, thus balancing adsorption/desorption of C-O intermediates. This study provides new insights into rationally designing solid-acid electrocatalysts for biomass electro-upcycling.

7.
Angew Chem Int Ed Engl ; 62(52): e202314569, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-37942995

RESUMEN

Developing novel synthesis technologies is crucial to expanding bifunctional electrocatalysts for energy-saving hydrogen production. Herein, we report an ambient and controllable γ-ray radiation reduction to synthesize a series of noble metal nanoparticles anchored on defect-rich manganese oxides (M@MnO2-x , M=Ru, Pt, Pd, Ir) for glycerol-assisted H2 evolution. Benefiting from the strong penetrability of γ-rays, nanoparticles and defect supports are formed simultaneously and bridged by metal-oxygen bonds, guaranteeing structural stability and active site exposure. The special Ru-O-Mn bonds activate the Ru and Mn sites in Ru@MnO2-x through strong interfacial coordination, driving glycerol electrolysis at low overpotential. Furthermore, only a low cell voltage of 1.68 V is required to achieve 0.5 A cm-2 in a continuous-flow electrolyzer system along with excellent stability. In situ spectroscopic analysis reveals that the strong interfacial coordination in Ru@MnO2-x balances the competitive adsorption of glycerol and OH* on the catalyst surface. Theoretical calculations further demonstrate that the defect-rich MnO2 support promotes the dissociation of H2 O, while the defect-regulated Ru sites promote deprotonation and hydrogen desorption, synergistically enhancing glycerol-assisted hydrogen production.

8.
J Colloid Interface Sci ; 650(Pt B): 1983-1992, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37527603

RESUMEN

Developing a high-efficiency photoelectrochemical (PEC) electrode for the glycerol oxidation reaction (GOR) is important for producing valuable products. The PEC performance could be enhanced by rationally designing heterostructures with inhibited recombination of charge carriers. Nevertheless, the interface electronic structure of heterostructures has not been comprehensively analyzed. In this work, the PEC GOR performance of ZnIn2S4/TiO2 heterostructure photoanode showed 1.7 folds enhancement than that of pure TiO2 photoanode at 1.23 V vs. RHE. The ZnIn2S4/TiO2 heterostructure was simulated by constructing ZnIn2S4 on the TiO2 single crystal, which was beneficial for investigating the interface electronic structure of heterostructure. Single-particle spectroscopy demonstrated a significantly increased lifetime of charge carriers. Combined with the in-situ X-ray photoelectron spectroscopy, Kelvin probe force microscopy, work function, and electron paramagnetic resonance, the interface electronic structure of the ZnIn2S4/TiO2 heterostructure was proposed with a Z-scheme mechanism. This work provides a comprehensive strategy for analyzing the interface electronic structure of heterostructures.

9.
J Colloid Interface Sci ; 650(Pt A): 701-709, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37441963

RESUMEN

Glycerol oxidation reaction can be substituted for oxygen evolution reaction for more efficient hydrogen production due to its lower thermodynamic potential. Herein, a series of NiCo hydroxide nanosheets containing abundant Ni3+ species and surface ligands were synthesized by in-situ structural transformation of bimetallic organic frameworks in alkaline media for efficient glycerol oxidation reaction. It is found that the incorporation of Co ions increases the content of the Ni3+ species, and that the Ni/Co ratio of 1.0 lead to the optimal catalytic performance. The oxalate-modified nickel-cobalt hydroxide with the optimized Ni/Co ratio can deliver a current density of 10 mA cm-2 at 1.26 V vs. RHE (reversible hydrogen electrode), and reaches its maximum selectivity and Faradaic efficiency at 1.30 V vs. RHE. A high selectivity of 82.9% and a Faradaic efficiency of 91.0% are achieved. The high catalytic activity can be mainly attributed to the abundant Ni3+ species and surface carboxyl groups.

10.
Nanomicro Lett ; 15(1): 190, 2023 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-37515596

RESUMEN

Glycerol (electrochemical) oxidation reaction (GOR) producing organic small molecule acid and coupling with hydrogen evolution reaction is a critical aspect of ensuring balanced glycerol capacity and promoting hydrogen generation on a large scale. However, the development of highly efficient and selective non-noble metal-based GOR electrocatalysts is still a key problem. Here, an S-doped CuO nanorod array catalyst (S-CuO/CF) constructed by sulfur leaching and oxidative remodeling is used to drive GOR at low potentials: It requires potentials of only 1.23 and 1.33 V versus RHE to provide currents of 100 and 500 mA cm-2, respectively. Moreover, it shows satisfactory comprehensive performance (at 100 mA cm-2, Vcell = 1.37 V) when assembled as the anode in asymmetric coupled electrolytic cell. Furthermore, we propose a detailed cycle reaction pathway (in alkaline environment) of S-doped CuO surface promoting GOR to produce formic acid and glycolic acid. Among them, the C-C bond breaking and lattice oxygen deintercalation steps frequently involved in the reaction pathway are the key factors to determine the catalytic performance and product selectivity. This research provides valuable guidance for the development of transition metal-based electrocatalysts for GOR and valuable insights into the glycerol oxidation cycle reaction pathway.

11.
Nanomicro Lett ; 15(1): 189, 2023 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-37515627

RESUMEN

Hydrogen production from electrolytic water is an important sustainable technology to realize renewable energy conversion and carbon neutrality. However, it is limited by the high overpotential of oxygen evolution reaction (OER) at the anode. To reduce the operating voltage of electrolyzer, herein thermodynamically favorable glycerol oxidation reaction (GOR) is proposed to replace the OER. Moreover, vertical NiO flakes and NiMoNH nanopillars are developed to boost the reaction kinetics of anodic GOR and cathodic hydrogen evolution, respectively. Meanwhile, excluding the explosion risk of mixed H2/O2, a cheap organic membrane is used to replace the expensive anion exchange membrane in the electrolyzer. Impressively, the electrolyzer delivers a remarkable reduction of operation voltage by 280 mV, and exhibits good long-term stability. This work provides a new paradigm of hydrogen production with low cost and good feasibility.

12.
Adv Mater ; 35(35): e2302233, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37261943

RESUMEN

Intermetallic nanomaterials have shown promising potential as high-performance catalysts in various catalytic reactions due to their unconventional crystal phases with ordered atomic arrangements. However, controlled synthesis of intermetallic nanomaterials with tunable crystal phases and unique hollow morphologies remains a challenge. Here, a seeded method is developed to synthesize hollow PdSn intermetallic nanoparticles (NPs) with two different intermetallic phases, that is, orthorhombic Pd2 Sn and monoclinic Pd3 Sn2 . Benefiting from the rational regulation of the crystal phase and morphology, the obtained hollow orthorhombic Pd2 Sn NPs deliver excellent electrocatalytic performance toward glycerol oxidation reaction (GOR), outperforming solid orthorhombic Pd2 Sn NPs, hollow monoclinic Pd3 Sn2 NPs, and commercial Pd/C, which places it among the best reported Pd-based GOR electrocatalysts. The reaction mechanism of GOR using the hollow orthorhombic Pd2 Sn as the catalyst is investigated by operando infrared reflection absorption spectroscopy, which reveals that the hollow orthorhombic Pd2 Sn catalyst cleaves the CC bond more easily compared to the commercial Pd/C. This work can pave an appealing route to the controlled synthesis of diverse novel intermetallic nanomaterials with hollow morphology for various promising applications.

13.
Small ; 19(35): e2301986, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37096917

RESUMEN

Glycerol-assisted hybrid water electrolysis is a potential strategy to achieve energy-efficient hydrogen production. However, the design of an efficient catalyst for the specific reaction is still a key challenge, which suffers from the barrier of regulating the adsorption characteristics of distinctive intermediates in different reactions. Herein, a novel rationale that achieves selective adsorption behavior modulation for self-supported nickel selenide electrode by heteroatom implantation and heterointerface construction through electrodeposition is developed, which can realize nichetargeting optimization on hydrogen evolution reaction (HER) and glycerol oxidation reaction (GOR), respectively. Specifically, the prepared Mo-doped Ni3 Se2 electrode exhibits superior catalytic activity for HER, while the NiSe-Ni3 Se2 electrode exhibits high Faradaic efficiency (FE) towards formate production for GOR. A two-electrode electrolyzer exhibits superb activity that only needs an ultralow cell voltage of 1.40 V to achieve 40 mA cm-2 with a high FE (97%) for formate production. Theoretical calculation unravels that the introduction of molybdenum contributes to the deviation of the d-band center of Ni3 Se2 from the Fermi level, which is conducive to hydrogen desorption. Meanwhile, the construction of the heterojunction induces the distortion of the surface structure of nickel selenide, which exposes highly active nickel sites for glycerol adsorption, thus contributing to the excellent electrocatalytic performance.

14.
Angew Chem Int Ed Engl ; 60(39): 21464-21472, 2021 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-34322983

RESUMEN

Electrocatalytic hydrogen production under acidic conditions is of great importance for industrialization in comparison to that in alkaline media, which, unfortunately, still remains challenging due to the lack of earth-abundant, cost-effective and highly active anodic electrocatalysts that can be used durably under strongly acidic conditions. Here we report an unexpected finding that manganese oxide, a kind of common non-noble catalysts easily soluble in acidic solutions, can be applied as a highly efficient and extremely durable anodic electrocatalyst for hydrogen production from an acidic aqueous solution of alcohols. Particularly in a glycerol solution, a potential of as low as 1.36 V (vs. RHE) is needed at 10 mA cm-2 , which is 270 mV lower than that of oxygen evolution reaction (OER), to oxidize glycerol into value-added chemicals such as formic acid, without oxygen production. To our surprise, the manganese oxide exhibits extremely high stability for electrocatalytic hydrogen production in coupling with glycerol oxidation for longer than 865 hours compared to shorter than 10 h for OER. Moreover, the effect of the addition of glycerol on the electrochemical durability has been probed via in situ Raman spectroscopic analysis and density functional theory (DFT) calculations. This work demonstrates that acid-unstable metal oxide electrocatalysts can be used robustly in acidic media under the presence of certain substances for electrochemical purposes, such as hydrogen production.

15.
J Colloid Interface Sci ; 601: 42-49, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34052725

RESUMEN

Recently, intensive attention has been attracted to the two-dimensional metal nanosheets, owing to their excellent electrocatalytic performance for direct alcohol fuel cells (DAFCs). Herein, PdRu nanosheets have been synthesized successfully by a facile one-pot method. The rugged nanosheet structure provided plentiful surface active sites to enhance the electrocatalytic activity. Moreover, benefiting from the synergistic effect and improved electronic structure, PdRu NSs exhibited splendid electrocatalytic performance in ethylene glycol oxidation reaction (EGOR) and glycerol oxidation reaction (GOR). Specifically, the mass activity of PdRu NSs was 1.72 and 3.69 times over those of Pd NSs and Pd/C catalysts in EGOR. Moreover, PdRu NSs displayed the largest mass activity in GOR, 1.48 and 2.47 times as large as Pd NSs and Pd/C catalysts. The results of stability tests demonstrated that the durability of PdRu NSs was the highest among the obtained catalysts. This work plays a directive role on the in-depth engineering on Pd-based catalysts with nanosheet architectures.


Asunto(s)
Glicol de Etileno , Glicerol , Catálisis , Etanol , Oxidación-Reducción
16.
J Colloid Interface Sci ; 556: 441-448, 2019 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-31472318

RESUMEN

Direct fuel cells are regarded as the most portable device for alleviating the problems of the energy dilemma and environmental disruption. Although direct fuel cells have a number of advantages, the lack of highly-efficient anode catalysts inhibits their wide application. To address this challenge, we report a facile one-pot method to fabricate a series of ultrathin platinum-cobalt (Pt-Co) nanowires with different proportions. The as-prepared catalysts all have one-dimensional ultrathin nanowire structures with high yields. Among all these catalysts, the ultrathin Pt89Co11 nanowires with optimized compositions, whose diameters are 1.8 nm on average, show the best catalytic activity for the glycerol oxidation reaction in alkaline conditions, and their mass and specific activities reach 4573.0 mA mg-1 and 11.9 mA cm-2, which are 5.4 and 3.6 times higher than those of commercial Pt/C catalysts, respectively. The as-obtained Pt89Co11 nanowires are also the most durable nanowires according to long-term stability tests. This method may provide guidelines for the preparation of other Pt-based bimetallic nanowires, which could somewhat accelerate the development and commercialization of catalysts for fuel cells.

17.
J Colloid Interface Sci ; 555: 276-283, 2019 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-31386996

RESUMEN

Synthesis of high-efficiency catalysts for alcohol oxidation reaction caused great interest in direct alcohol fuel cells (DAFCs). Ultrathin PdFePb nanowires (NWs) with an average diameter of 2.3 nm were synthesized by a simple and fast one-pot aqueous synthesis, using octylphenoxypolyethoxyethanol (NP-40) as the structure-directing agent. The as-prepared PdFePb NWs displayed an increscent electrochemically active surface area (ECSA, 121.18 m2 g-1 Pd). For ethylene glycol oxidation reaction (EGOR) and glycerol oxidation reaction (GOR), PdFePb NWs exhibited much higher activity and superior stability, outperforming those of homemade PdFe NWs, PdPb NWs, commercial Pd black and Pd/C (20 wt%). These results reveal dramatically high catalytic activity and durability of ultrathin PdFePb NWs in enhancing polyols electrooxidation.

18.
J Colloid Interface Sci ; 540: 486-494, 2019 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-30665171

RESUMEN

High activity and good durability of electrocatalysts are of significance in practical applications of fuel cells. Among them, multi-component metallic hollow nanocages/nanoframes show great potential as advanced catalysts because of their highly open structures, large surface area and good stability. Herein, we report a general uric acid-mediated solvothermal method for shape-controlled synthesis of rhombic-like Pt35Cu65 hollow nanocages (HNCs) with uric acid as co-reductant and co-structure-directing agent. Uric acid and cetyltrimethylammonium chloride (CTAC) played important roles in the hollow cages. The specific architectures showed remarkably enhanced catalytic properties towards glycerol oxidation reaction (GOR), ethylene glycol oxidation reaction (EGOR) and oxygen reduction reaction (ORR) with the enhanced specific activity, outperforming commercial Pt/C (20 wt%). This work provides a new avenue for rational design of novel bimetallic nanocatalysts with enhanced characters in energy storage and conversion.

19.
J Colloid Interface Sci ; 509: 73-81, 2018 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-28886371

RESUMEN

Herein, a one-pot wet-chemical route was used to prepare well-defined dendritic core-shell gold@gold-palladium nanoflowers supported on reduced graphene oxide (Au@AuPd NFs/rGO), using 2, 4-dihydroxypyridine (2, 4-DHP) asa new stabilizer and structure-director. Their morphology, size, composition, and crystal structure were characterized by a set of characterization techniques. Control experiments demonstrated that the molar ratio of the metal precursors and the dosage of 2,4-DHP play essential roles in this synthesis. The growth mechanism of dendritic core-shell Au@AuPd nanoflowers was investigated in details. The synthesized branched architectures exhibited enlarged electrochemically active surface area (ECSA), improved catalytic properties, enhanced stability and durability toward glycerol oxidation in alkaline media when compared to the home-made Au26Pd74 nanocrystals (NCs)/rGO and Au78Pd22 NCs/rGO, along with commercially available Pd/C catalyst.

20.
J Colloid Interface Sci ; 494: 15-21, 2017 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-28131029

RESUMEN

In this work, solid-core@porous-shell alloyed PtAg nanocrystals (PtAg NCs) were fabricated via a simple one-pot co-reduction wet-chemical method on a large scale. Diprophylline (DPP) was employed as the stabilizing agent and shape-directing agent, without any surfactant, polymer, seed or template. The products were mainly analyzed by a series of characterization technique. The hierarchical architectures had enhanced stability and improved electrocatalytic activity for hydrogen evolution reaction (HER) and glycerol oxidation reaction (GOR) in contrast with commercial available Pt/C and Pt black catalysts. For the prepared PtAg NCs catalyst, the Tafel slope is 40mVdec-1 toward HER in 0.5M H2SO4, coupled with the specific activity and mass activity of 77.91mAcm-2 and 1303mAmg-1Pt toward GOR, respectively.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA