Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Front Cell Neurosci ; 18: 1354095, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38633445

RESUMEN

Vasoactive intestinal peptide (VIP) is an important component of the suprachiasmatic nucleus (SCN) which relays circadian information to neuronal populations, including GnRH neurons. Human and animal studies have shown an impact of disrupted daily rhythms (chronic shift work, temporal food restriction, clock gene disruption) on both male and female reproduction and fertility. To date, how VIP modulates GnRH neurons remains unknown. Calcium imaging and electrophysiology on primary GnRH neurons in explants and adult mouse brain slice, respectively, were used to address this question. We found VIP excites GnRH neurons via the VIP receptor, VPAC2. The downstream signaling pathway uses both Gs protein/adenylyl cyclase/protein kinase A (PKA) and phospholipase C/phosphatidylinositol 4,5-bisphosphate (PIP2) depletion. Furthermore, we identified a UCL2077-sensitive target, likely contributing to the slow afterhyperpolarization current (IAHP), as the PKA and PIP2 depletion target, and the KCa3.1 channel as a specific target. Thus, VIP/VPAC2 provides an example of Gs protein-coupled receptor-triggered excitation in GnRH neurons, modulating GnRH neurons likely via the slow IAHP. The possible identification of KCa3.1 in the GnRH neuron slow IAHP may provide a new therapeutical target for fertility treatments.

2.
J Comp Neurol ; 532(3): e25599, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38488687

RESUMEN

During embryonic development, the olfactory placode (OP) generates migratory neurons, including olfactory pioneer neurons, cells of the terminal nerve (TN), gonadotropin-releasing hormone-1 (GnRH-1) neurons, and other uncharacterized neurons. Pioneer neurons from the OP induce olfactory bulb (OB) morphogenesis. In mice, GnRH-1 neurons appear in the olfactory system around mid-gestation and migrate via the TN axons to different brain regions. The GnRH-1 neurons are crucial in controlling the hypothalamic-pituitary-gonadal axis. Kallmann syndrome is characterized by impaired olfactory system development, defective OBs, secretion of GnRH-1, and infertility. The precise mechanistic link between the olfactory system and GnRH-1 development remains unclear. Studies in humans and mice highlight the importance of the prokineticin-2/prokineticin-receptor-2 (Prokr2) signaling pathway in OB morphogenesis and GnRH-1 neuronal migration. Prokr2 loss-of-function mutations can cause Kallmann syndrome (KS), and hence the Prokr2 signaling pathway represents a unique model to decipher the olfactory/GnRH-1 connection. We discovered that Prokr2 is expressed in the TN neurons during the critical period of GnRH-1 neuron formation, migration, and induction of OB morphogenesis. Single-cell RNA sequencing identified that the TN is formed by neurons distinct from the olfactory neurons. The TN neurons express multiple genes associated with KS. Our study suggests that the aberrant development of pioneer/TN neurons might cause the KS spectrum.


Asunto(s)
Síndrome de Kallmann , Humanos , Animales , Ratones , Síndrome de Kallmann/genética , Síndrome de Kallmann/metabolismo , Neuronas/metabolismo , Hormona Liberadora de Gonadotropina/metabolismo , Encéfalo/metabolismo , Axones/metabolismo , Bulbo Olfatorio/metabolismo , Movimiento Celular/fisiología
3.
Int J Mol Sci ; 25(4)2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38396659

RESUMEN

Prolactin (PRL) is a pleiotropic hormone released from lactotrophic cells of the anterior pituitary gland that also originates from extrapituitary sources and plays an important role in regulating lactation in mammals, as well as other actions. Acting in an endocrine and paracrine/autocrine manner, PRL regulates the hypothalamic-pituitary-ovarian axis, thus influencing the maturation of ovarian follicles and ovulation. This review provides a detailed discussion of the current knowledge on the role of PRL in the context of ovulation and ovulatory disorders, particularly with regard to hyperprolactinemia, which is one of the most common causes of infertility in women. Much attention has been given to the PRL structure and the PRL receptor (PRLR), as well as the diverse functions of PRLR signaling under normal and pathological conditions. The hormonal regulation of the menstrual cycle in connection with folliculogenesis and ovulation, as well as the current classifications of ovulation disorders, are also described. Finally, the state of knowledge regarding the importance of TIDA (tuberoinfundibular dopamine), KNDγ (kisspeptin/neurokinin B/dynorphin), and GnRH (gonadotropin-releasing hormone) neurons in PRL- and kisspeptin (KP)-dependent regulation of the hypothalamic-pituitary-gonadal (HPG) axis in women is reviewed. Based on this review, a rationale for influencing PRL signaling pathways in therapeutic activities accompanying ovulation disorders is presented.


Asunto(s)
Ovulación , Prolactina , Animales , Femenino , Humanos , Kisspeptinas/metabolismo , Mamíferos/metabolismo , Ovulación/metabolismo , Adenohipófisis/metabolismo , Prolactina/metabolismo , Receptores de Prolactina/metabolismo
4.
Dev Neurobiol ; 84(1): 3-17, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38072668

RESUMEN

Transient expression of somatostatin (SST) has been observed in the olfactory epithelium (OE) and nerves of chick embryos. Intense expression of SST in these regions on embryonic days (E) 5-8 coincides with the migration of neurons producing gonadotropin-releasing hormone (GnRH) from the OE to the forebrain (FB), suggesting that SST plays a role in the development of GnRH neurons. Using in ovo electroporation of small interfering RNA, we found that the suppression of SST mRNA in the olfactory placode (OP) of E3.5 chick embryos significantly reduced the number of GnRH and Islet-1-immunoreactive neurons in the nasal region without affecting the entry of GnRH neurons into the FB at E5.5-6. SST knockdown did not lead to changes in the number of apoptotic, proliferating, or HuC/D-positive neuronal cells in the OE; therefore, it is possible that SST is involved in the neurogenesis/differentiation of GnRH neurons and OP-derived GnRH-negative migratory neurons. In whole OP explant cultures, we also found that SST or its analog octreotide treatment significantly increased the number of migratory GnRH neurons and the migratory distance from the explants. The co-application of an SST antagonist blocked the octreotide-induced increase in the number of GnRH neurons. Furthermore, the fasciculation of polysialylated neural cell adhesion molecule-immunoreactive fibers emerging from the explants was dependent on octreotide. Taken together, our results provide evidence that SST exerts facilitatory effects on the development of neurons expressing GnRH or Islet-1 and on GnRH neuronal migration, in addition to olfactory-related fiber fasciculation.


Asunto(s)
Hormona Liberadora de Gonadotropina , Octreótido , Animales , Embrión de Pollo , Hormona Liberadora de Gonadotropina/metabolismo , Hormona Liberadora de Gonadotropina/farmacología , Octreótido/metabolismo , Octreótido/farmacología , Fasciculación/metabolismo , Neuronas/fisiología , Somatostatina/farmacología , Somatostatina/metabolismo , Movimiento Celular/fisiología
5.
Endocrinology ; 164(12)2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37935042

RESUMEN

Postnatal development of functional pituitary gonadotrophs is necessary for maturation of the hypothalamic-pituitary-gonadal axis, puberty, and reproduction. Here we examined the role of PI4-kinase A, which catalyzes the biosynthesis of PI4P in mouse reproduction by knocking out this enzyme in cells expressing the gonadotropin-releasing hormone (GnRH) receptor. Knockout (KO) mice were infertile, reflecting underdeveloped gonads and reproductive tracts and lack of puberty. The number and distribution of hypothalamic GnRH neurons and Gnrh1 expression in postnatal KOs were not affected, whereas Kiss1/kisspeptin expression was increased. KO of PI4-kinase A also did not alter embryonic establishment and neonatal development and function of the gonadotroph population. However, during the postnatal period, there was a progressive loss of expression of gonadotroph-specific genes, including Fshb, Lhb, and Gnrhr, accompanied by low gonadotropin synthesis. The postnatal gonadotroph population also progressively declined, reaching approximately one-third of that observed in controls at 3 months of age. In these residual gonadotrophs, GnRH-dependent calcium signaling and calcium-dependent membrane potential changes were lost, but intracellular administration of inositol-14,5-trisphosphate rescued this signaling. These results indicate a key role for PI4-kinase A in the postnatal development and maintenance of a functional gonadotroph population.


Asunto(s)
Gonadotrofos , Enfermedades de la Hipófisis , Ratones , Animales , Gonadotrofos/metabolismo , Ratones Noqueados , Maduración Sexual , Hipófisis/metabolismo , Hormona Liberadora de Gonadotropina/genética , Hormona Liberadora de Gonadotropina/metabolismo , Enfermedades de la Hipófisis/metabolismo
6.
Eur J Endocrinol ; 189(2): 271-280, 2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37619992

RESUMEN

OBJECTIVE: Congenital hypogonadotropic hypogonadism (CHH) is a rare, genetically heterogeneous reproductive disorder caused by gonadotropin-releasing hormone (GnRH) deficiency. Approximately half of CHH patients also have decreased or absent sense of smell, that is, Kallmann syndrome (KS). We describe a patient with White-Sutton syndrome (developmental delay and autism spectrum disorder) and KS due to a heterozygous de novo mutation in POGZ (c.2857C>T, p.(Gln953*)), a gene encoding pogo transposable element derived with zinc finger domain, which acts as a transcriptomic regulator of neuronal networks. DESIGN AND METHODS: We modeled the role of POGZ in CHH by generating 2 clonal human pluripotent stem cell lines with CRISPR/Cas9, carrying either the heterozygous patient mutation (H11 line) or a homozygous mutation (c.2803-2906del; p.E935Kfs*7 encoding a truncated POGZ protein; F6del line). RESULTS: During the differentiation to GnRH neurons, neural progenitors derived from F6del line displayed severe proliferation defect, delayed wound-healing capacity, downregulation of intermediate progenitor neuron genes TBR1 and TBR2, and immature neuron markers PAX6 and TUBB3 and gave rise to fewer neurons with shorter neurites and less neurite branch points compared to the WT and H11 lines (P < .005). Both lines, however, could be successfully differentiated to GnRH neurons. CONCLUSIONS: In conclusion, this is the first report on the overlap between White-Sutton syndrome and CHH. POGZ mutations do not hinder GnRH neuron formation but may cause CHH/KS by affecting the size and motility of the anterior neural progenitor pool and neurite outgrowth.


Asunto(s)
Trastorno del Espectro Autista , Síndrome de Kallmann , Humanos , Síndrome de Kallmann/genética , Neuronas , Hormona Liberadora de Gonadotropina , Mutación/genética
7.
Front Endocrinol (Lausanne) ; 14: 1147554, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36950690

RESUMEN

In vertebrates, gonadotropin-releasing hormone (GnRH)-secreting neurons control fertility by regulating gonadotrophs in the anterior pituitary. While it is known that acetylcholine (ACh) influences GnRH secretion, whether the effect is direct or indirect, and the specific ACh receptor (AChR) subtype(s) involved remain unclear. Here, we determined 1) whether ACh can modulate GnRH cellular activity and 2) a source of ACh afferents contacting GnRH neurons. Calcium imaging was used to assay GnRH neuronal activity. With GABAergic and glutamatergic transmission blocked, subtype-specific AChR agonists and antagonists were applied to identify direct regulation of GnRH neurons. ACh and nicotine caused a rise in calcium that declined gradually back to baseline after 5-6 min. This response was mimicked by an alpha3-specific agonist. In contrast, muscarine inhibited GnRH calcium oscillations, and blocking M2 and M4 together prevented this inhibition. Labeling for choline acetyltransferase (ChAT) and GnRH revealed ChAT fibers contacting GnRH neurons, primarily in the medial septum (MS), and in greater number in females than males. ChAT positive cells in the MS are known to express p75NGFRs. Labeling for p75NGFR, ChAT and GnRH indicated that ChAT fibers contacting GnRH cells originate from cholinergic cells within these same rostral areas. Together, these results indicate that cholinergic cells in septal areas can directly regulate GnRH neurons.


Asunto(s)
Acetilcolina , Hormona Liberadora de Gonadotropina , Animales , Femenino , Masculino , Acetilcolina/farmacología , Hormona Liberadora de Gonadotropina/farmacología , Calcio , Neuronas , Colinérgicos/farmacología
8.
Int J Mol Sci ; 24(3)2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36769048

RESUMEN

The development of the neuroendocrine system, including the hypothalamic-pituitary-gonadal (HPG) axis, is sensitive to environmental impacts during critical developmental periods. Maternal immune system activation by bacterial or viral infection may be one of the negative impacts. This study focused on the effect of systemic inflammation induced by lipopolysaccharides (LPS E. coli) on the HPG axis development in male rat offspring, corrected by the anti-inflammatory action of polyclonal IgG and monoclonal anti-interleukin (IL)-6 receptor antibodies (IL-6RmAbs). A single LPS exposure on the 12th embryonic day (ED) led to a decrease in the number of afferent synaptic inputs on gonadotropin-releasing, hormone-producing neurons in adult male offspring. LPS exposure on ED18 did not lead to such disruptions. Moreover, after the LPS injections on ED12, circulating follicle-stimulating hormone and sex steroid levels were reduced, and the gonadal structure was disrupted. A prenatal IL-6R blockade with IL-6RmAbs and polyclonal IgG reduced the negative effects of inflammation on fetal HPG axis development. Overall, the data obtained confirm the morphogenetic effect of inflammation on fetal HPG development and IL-6 involvement in these processes.


Asunto(s)
Eje Hipotálamico-Pituitario-Gonadal , Sistema Hipotálamo-Hipofisario , Embarazo , Femenino , Ratas , Animales , Masculino , Sistema Hipotálamo-Hipofisario/metabolismo , Lipopolisacáridos/toxicidad , Escherichia coli/metabolismo , Hormona Liberadora de Gonadotropina/metabolismo , Inflamación , Inmunoglobulina G/farmacología
9.
Dis Model Mech ; 16(3)2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36810932

RESUMEN

Gonadotropin-releasing hormone (GnRH) deficiency (GD) is a disorder characterized by absent or delayed puberty, with largely unknown genetic causes. The purpose of this study was to obtain and exploit gene expression profiles of GnRH neurons during development to unveil novel biological mechanisms and genetic determinants underlying GD. Here, we combined bioinformatic analyses of immortalized and primary embryonic GnRH neuron transcriptomes with exome sequencing from GD patients to identify candidate genes implicated in the pathogenesis of GD. Among differentially expressed and filtered transcripts, we found loss-of-function (LoF) variants of the autism-linked neuroligin 3 (NLGN3) gene in two unrelated patients co-presenting with GD and neurodevelopmental traits. We demonstrated that NLGN3 is upregulated in maturing GnRH neurons and that NLGN3 wild-type, but not mutant, protein promotes neuritogenesis when overexpressed in developing GnRH cells. Our data represent proof of principle that this complementary approach can identify new candidate GD genes and demonstrate that LoF NLGN3 variants can contribute to GD. This novel genotype-phenotype correlation implies common genetic mechanisms underlying neurodevelopmental disorders, such as GD and autistic spectrum disorder.


Asunto(s)
Trastorno Autístico , Humanos , Trastorno Autístico/genética , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Hormona Liberadora de Gonadotropina/metabolismo
10.
Environ Pollut ; 317: 120766, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36460192

RESUMEN

The neuroendocrine control of reproduction is strictly coordinated at the central level by the pulsatile release of gonadotropin-releasing hormone (GnRH) by the hypothalamic GnRH neurons. Alterations of the GnRH-network, especially during development, lead to long-term reproductive and systemic consequences, also causing infertility. Recent evidence shows that benzo[a]pyrene (BaP), a diffuse pollutant that can play a role as an endocrine disruptor, affects gonadal function and gamete maturation, whereas data demonstrating its impact at hypothalamic level are very scarce. This study investigated the effects of BaP (10 µM) in a primary cell culture isolated from the human fetal hypothalamus (hfHypo) and exhibiting a clear GnRH neuron phenotype. BaP significantly decreased gene and protein expression of both GnRH and kisspeptin receptor (KISS1R), the master regulator of GnRH neuron function. Moreover, BaP exposure increased phospho-ERK1/2 signaling, a well-known mechanism associated with KISS1R activation. Interestingly, BaP altered the electrophysiological membrane properties leading to a significant depolarizing effect and it also significantly increased GnRH release, with both effects being not affected by kisspeptin addition. In conclusion, our findings demonstrate that BaP may alter GnRH neuron phenotype and function, mainly interfering with KISS1R signaling and GnRH secretion and therefore with crucial mechanisms implicated in the central neuroendocrine control of reproduction.


Asunto(s)
Hormona Liberadora de Gonadotropina , Kisspeptinas , Humanos , Receptores de Kisspeptina-1/metabolismo , Kisspeptinas/genética , Kisspeptinas/metabolismo , Benzo(a)pireno/toxicidad , Benzo(a)pireno/metabolismo , Reproducción/fisiología , Neuronas
11.
Am J Med Genet A ; 191(3): 831-834, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36454653

RESUMEN

Kallmann syndrome (KS) is a rare genetic disease characterized by pubertal failure and olfactory defects. Although many genes associated with KS have been reported, most are rare. Recently, heterozygous inactivating mutations in the neuron-derived neurotrophic factor gene (NDNF) were reported to cause KS. Here, we present a 14-year-old Kurdish boy with KS who has a novel homozygous nonsense c.1251C>A (p.Tyr417Ter) variant in NDNF. The variant was not observed in reference population databases and was predicted to be deleterious. Segregation analysis performed with Sanger sequencing indicated the autosomal recessive inheritance of the clinical phenotype. His heterozygous parents have experienced timely pubertal development and normal reproductive features. This study reported the first homozygous truncating NDNF variant, enabling the direct observation of the clinical consequences of predictively absent NDNF function. These results support the contention that the inactivating mutations in NDNF cause KS, and provide additional evidence for the complex inheritance of KS.


Asunto(s)
Síndrome de Kallmann , Humanos , Síndrome de Kallmann/genética , Neuronas , Fenotipo , Reproducción , Heterocigoto , Mutación
12.
Ecotoxicol Environ Saf ; 249: 114413, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36516620

RESUMEN

Acrylamide (AA) is widely contaminated in environment and diet. However, the association of AA and sex hormones has rarely been investigated, especially in adolescents, a period of particular susceptibility to sex hormone disruption. In this study, survey-weighted multivariate linear regression models were conducted to determine the association between AA Hb biomarkers [HbAA and glycidamide (HbGA)] and sex hormones [total testosterone (TT) and estradiol (E2)] in a total of 3268 subjects from National Health and Nutrition Examination Survey (NHANES) 2013-2016 waves. Additionally, adult and pubertal mice were treated with AA to assess the effect of AA on sex hormones and to explore the potential mechanisms. Among all the subjects, significant negative patterns for HbGA and sex hormones were identified only in youths (6-19 years old), with the lowest ß being - 0.53 (95% CI: -0.80 to -0.26) for TT in males and - 0.58 (95% CI: -0.93 to -0.23) for E2 in females. Stratified analysis further revealed significant negative associations between HbGA and sex hormones in adolescents, with the lowest ß being - 0.58 (95% CI: -1.02 to -0.14) for TT in males and - 0.54 (95% CI: -1.03 to -0.04) for E2 in females, while there were no significant differences between children or late adolescents. In mice, the levels of TT and E2 were dramatically reduced in AA-treated pubertal mice but not in adult mice. AA disturbed the expression of genes in the hypothalamic-pituitary-gonadal (HPG) axis, induced apoptosis of hypothalamus-produced gonadotropin-releasing hormone (GnRH) neurons in the hypothalamus and reduced serum and hypothalamic GnRH levels in pubertal mice. Our study indicates AA could reduce TT and E2 levels by injuring GnRH neurons and disrupting the HPG axis in puberty, which manifested as severe endocrine disruption on adolescents. Our findings reinforce the idea that adolescence is a vulnerable stage in AA-induced sex hormone disruption.


Asunto(s)
Acrilamida , Disruptores Endocrinos , Contaminantes Ambientales , Hormonas Esteroides Gonadales , Pubertad , Maduración Sexual , Animales , Femenino , Humanos , Masculino , Ratones , Acrilamida/toxicidad , Disruptores Endocrinos/toxicidad , Contaminantes Ambientales/toxicidad , Estradiol/metabolismo , Hormonas Esteroides Gonadales/sangre , Hormonas Esteroides Gonadales/metabolismo , Hormona Liberadora de Gonadotropina/sangre , Hormona Liberadora de Gonadotropina/metabolismo , Encuestas Nutricionales , Pubertad/efectos de los fármacos , Pubertad/metabolismo , Maduración Sexual/efectos de los fármacos , Testosterona/sangre , Testosterona/metabolismo , Niño , Adolescente , Adulto Joven , Biomarcadores/sangre
13.
eNeuro ; 9(6)2022.
Artículo en Inglés | MEDLINE | ID: mdl-36446571

RESUMEN

Gonadotropin-releasing hormone (GnRH) neurons produce the final output from the brain to control pituitary gonadotropin secretion and thus regulate reproduction. Disruptions to gonadotropin secretion contribute to infertility, including polycystic ovary syndrome (PCOS) and idiopathic hypogonadotropic hypogonadism. PCOS is the leading cause of infertility in women and symptoms resembling PCOS are observed in girls at or near the time of pubertal onset, suggesting that alterations to the system likely occurred by that developmental period. Prenatally androgenized (PNA) female mice recapitulate many of the neuroendocrine phenotypes observed in PCOS, including altered time of puberty, disrupted reproductive cycles, increased circulating levels of testosterone, and altered gonadotropin secretion patterns. We tested the hypotheses that the intrinsic properties of GnRH neurons change with puberty and with PNA treatment. Whole-cell current-clamp recordings were made from GnRH neurons in brain slices from control and PNA females before puberty at three weeks of age and in adulthood to measure GnRH neuron excitability and action potential (AP) properties. GnRH neurons from adult females were more excitable and required less current to initiate action potential firing compared with three-week-old females. Further, the afterhyperpolarization (AHP) potential of the first spike was larger and its peak was delayed in adulthood. These results indicate development, not PNA, is a primary driver of changes to GnRH neuron intrinsic properties and suggest there may be developmentally-induced changes to voltage-gated ion channels in GnRH neurons that alter how these cells respond to synaptic input.


Asunto(s)
Andrógenos , Síndrome del Ovario Poliquístico , Embarazo , Humanos , Femenino , Ratones , Animales , Andrógenos/farmacología , Hormona Liberadora de Gonadotropina , Potenciales de Acción , Maduración Sexual/fisiología , Neuronas/fisiología , Síndrome del Ovario Poliquístico/etiología , Gonadotropinas
14.
J Comp Neurol ; 530(17): 2977-2993, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35844047

RESUMEN

The olfactory placode (OP) of vertebrates generates several classes of migrating cells, including hypothalamic gonadotropin-releasing hormone (GnRH)-producing neurons, which play essential roles in the reproduction system. Previous studies using OP cell labeling have demonstrated that OP-derived non-GnRH cells enter the developing forebrain; however, their final fates and phenotypes are less well understood. In chick embryos, a subpopulation of migratory cells from the OP that is distinct from GnRH neurons transiently expresses somatostatin (SS). We postulated that these cells are destined to develop into brain neurons. In this study, we examined the expression pattern of SS mRNA in the olfactory-forebrain region during development, as well as the destination of OP-derived migratory cells, including SS mRNA-expressing cells. Utilizing the Tol2 genomic integration system to induce long-term fluorescent protein expression in OP cells, we found that OP-derived migratory cells labeled at embryonic day (E) 3 resided in the olfactory nerve and medial forebrain at E17-19. A subpopulation of green fluorescent protein (GFP)-labeled GnRH neurons that remained in the olfactory nerve was considered to comprise terminal nerve neurons. In the forebrain, GFP-labeled cells showed a distribution pattern similar to that of GnRH neurons. A large proportion of GFP-labeled cells expressed the mature neuronal marker NeuN. Among the GFP-labeled cells, the percentage of GnRH neurons was low, while the remaining GnRH-negative neurons either expressed SS mRNA, neuropeptide Y, or calbindin D-28k or did not express any of them. These results indicate that a diverse population of OP-derived neuronal cells, other than GnRH neurons, integrates into the chick medial forebrain.


Asunto(s)
Hormona Liberadora de Gonadotropina , Neuropéptido Y , Animales , Calbindinas/metabolismo , Movimiento Celular/fisiología , Embrión de Pollo , Pollos/metabolismo , Hormona Liberadora de Gonadotropina/genética , Proteínas Fluorescentes Verdes/metabolismo , Neuronas/metabolismo , Neuropéptido Y/genética , Neuropéptido Y/metabolismo , Prosencéfalo/metabolismo , ARN Mensajero/metabolismo , Somatostatina/genética , Somatostatina/metabolismo
15.
Cells ; 11(7)2022 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-35406710

RESUMEN

Kisspeptin (KP) and kisspeptin receptor (KPR) are essential for the onset of puberty, development of gonads, and maintenance of gonadal function in both males and females. Hypothalamic KPs and KPR display a high degree of sexual dimorphism in expression and function. KPs act on KPR in gonadotropin releasing hormone (GnRH) neurons and induce distinct patterns of GnRH secretion in males and females. GnRH acts on the anterior pituitary to secrete gonadotropins, which are required for steroidogenesis and gametogenesis in testes and ovaries. Gonadal steroid hormones in turn regulate the KP neurons. Gonadal hormones inhibit the KP neurons within the arcuate nucleus and generate pulsatile GnRH mediated gonadotropin (GPN) secretion in both sexes. However, the numbers of KP neurons in the anteroventral periventricular nucleus and preoptic area are greater in females, which release a large amount of KPs in response to a high estrogen level and induce the preovulatory GPN surge. In addition to the hypothalamus, KPs and KPR are also expressed in various extrahypothalamic tissues including the liver, pancreas, fat, and gonads. There is a remarkable difference in circulating KP levels between males and females. An increased level of KPs in females can be linked to increased numbers of KP neurons in female hypothalamus and more KP production in the ovaries and adipose tissues. Although the sexually dimorphic features are well characterized for hypothalamic KPs, very little is known about the extrahypothalamic KPs. This review article summarizes current knowledge regarding the sexual dimorphism in hypothalamic as well as extrahypothalamic KP and KPR system in primates and rodents.


Asunto(s)
Kisspeptinas , Caracteres Sexuales , Animales , Núcleo Arqueado del Hipotálamo/metabolismo , Femenino , Hormona Liberadora de Gonadotropina , Kisspeptinas/metabolismo , Masculino , Maduración Sexual
16.
Int J Mol Sci ; 22(17)2021 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-34502334

RESUMEN

Gonadotropin releasing hormone (GnRH) neurons are hypothalamic neuroendocrine cells that control sexual reproduction. During embryonic development, GnRH neurons migrate from the nose to the hypothalamus, where they receive inputs from several afferent neurons, following the axonal scaffold patterned by nasal nerves. Each step of GnRH neuron development depends on the orchestrated action of several molecules exerting specific biological functions. Mutations in genes encoding for these essential molecules may cause Congenital Hypogonadotropic Hypogonadism (CHH), a rare disorder characterized by GnRH deficiency, delayed puberty and infertility. Depending on their action in the GnRH neuronal system, CHH causative genes can be divided into neurodevelopmental and neuroendocrine genes. The CHH genetic complexity, combined with multiple inheritance patterns, results in an extreme phenotypic variability of CHH patients. In this review, we aim at providing a comprehensive and updated description of the genes thus far associated with CHH, by dissecting their biological relevance in the GnRH system and their functional relevance underlying CHH pathogenesis.


Asunto(s)
Hormona Liberadora de Gonadotropina/deficiencia , Hormona Liberadora de Gonadotropina/genética , Hipogonadismo/patología , Mutación , Trastornos del Neurodesarrollo/genética , Células Neuroendocrinas/metabolismo , Neuronas/fisiología , Animales , Humanos , Hipogonadismo/etiología , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Células Neuroendocrinas/patología
17.
Drug Des Devel Ther ; 15: 3499-3508, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34408402

RESUMEN

OBJECTIVE: The present study aims to evaluate the effect of monosodium glutamate on testicular spermatogenesis in mice from the perspective of the hypothalamic-pituitary-testicular axis and whether this destructive effect is alleviated with time. METHODS: Neonatal mice were randomly divided into a monosodium glutamate (MSG) group and a control group, just below the interscapular region after birth with 10 µL MSG to deliver 4 mg/g (body mass), or with equivalent volumes of 0.9% saline. Samples which involved blood, brains and testicles of mice were collected and measured at puberty at 60 days and adulthood at 90 days. RESULTS: The results show that the fluorescence intensity of GnRH nerve fibers, the levels of follicle-stimulating hormone (FSH), luteinizing hormone (LH), and testosterone (T) hormones in the reproductive system, the number of spermatocytes and spermatozoa in testicular sections, the body length, body weight, testicular weight, and testicular index in the 60-day-old mice in monosodium glutamate group (MSG60 group) and the MSG90 group were lower than those in the 60-day-old mice in normal control group (NC60 group) (p < 0.05), but the number of apoptotic cells in the testicular section was higher than in the NC60 group (p < 0.05). When the 90-day-old mice in monosodium glutamate group (MSG90 group) was compared with the MSG60 group, except for body weight and testicular weight increase (p < 0.05), there is no significant difference in the other parameters mentioned above (p > 0.05). CONCLUSION: Monosodium glutamate can cause reproductive toxicity to male mice by damaging GnRH neurons, and this reproductive toxicity cannot be relieved spontaneously over time. These findings are supported by observed histological changes.


Asunto(s)
Hormona Liberadora de Gonadotropina/metabolismo , Neuronas/efectos de los fármacos , Reproducción/efectos de los fármacos , Glutamato de Sodio/toxicidad , Animales , Animales Recién Nacidos , Animales no Consanguíneos , Femenino , Hormona Folículo Estimulante/sangre , Hormona Luteinizante/sangre , Masculino , Ratones , Neuronas/patología , Espermatozoides/efectos de los fármacos , Testículo/efectos de los fármacos , Testosterona/sangre , Factores de Tiempo
18.
Handb Clin Neurol ; 182: 307-315, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34266601

RESUMEN

Idiopathic hypogonadotropic hypogonadism and Kallmann syndrome are rare genetic disorders characterized by isolated gonadotropin-releasing hormone (GnRH) deficiency (IGD) and delayed or absent puberty. Defective GnRH neuron migration during development or secretion of mature GnRH neurons secondary to molecular defects in several key developmental and neuroendocrine pathways are thought to be the primary causes of these disorders. Recent studies have highlighted the importance of semaphorins and their receptors in this system, by showing that these molecules play distinct roles during the development and plasticity of these neurons. Accordingly, mutations in the semaphoring-signaling pathway genes have been found in patients affected by IGD, underlying the importance of semaphorin-mediated signaling pathways in the neuroendocrine axis that control reproduction.


Asunto(s)
Síndrome de Kallmann , Semaforinas , Hormona Liberadora de Gonadotropina/genética , Humanos , Hipogonadismo , Síndrome de Kallmann/genética , Neuronas , Semaforinas/genética , Transducción de Señal
19.
Ecotoxicol Environ Saf ; 208: 111748, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33396074

RESUMEN

Microcystin-leucine arginine (MC-LR) is a kind of toxin produced by cyanobacterial, resulting in decrease of testosterone levels in serum and leading to impaired spermatogenesis. Gonadotropin-releasing hormone (GnRH) neurons play crucial roles in the regulation of testosterone release. Meanwhile, it has been demonstrated that MC-LR is capable of entering the GnRH neurons and inducing apoptosis. Nevertheless, the molecular mechanism of MC-LR induced apoptosis of GnRH neurons remains elusive. In present study, we found that MC-LR inhibited the cell viability of GT1-7 cells. In addition, we discovered apoptosis of GnRH neurons and GT1-7 cells treated with MC-LR. And increased intracellular ROS production and the release of intracellular Ca2+ were all observed following exposure to MC-LR. Furthermore, we also found the endoplasmic reticulum stress (ERs) and autophagy were activated by MC-LR. Additionally, pretreatment of the ERs inhibitor (4-Phenyl butyric acid) reduced the apoptotic rate of GT1-7 cells comparing with MC-LR exposure alone. Comparing with MC-LR treatment alone, apoptotic cell death was increased by pretreatment of GT1-7 cells with an autophagy inhibitor (3-methyladenine). Together, our data implicated that the treatment of MC-LR induced the apoptosis of GnRH neurons by activating the ERs resulting in a decrease of serum testosterone level in mice. Autophagy is a protective cellular process which was activated by ER stress and thus protected cells from apoptosis upon MC-LR exposure.


Asunto(s)
Estrés del Retículo Endoplásmico , Microcistinas/toxicidad , Testosterona/sangre , Animales , Apoptosis , Arginina/metabolismo , Bioensayo , Supervivencia Celular , Cianobacterias/metabolismo , Hormona Liberadora de Gonadotropina/metabolismo , Leucina/metabolismo , Masculino , Toxinas Marinas/metabolismo , Ratones , Microcistinas/metabolismo , Neuronas/metabolismo , Testosterona/metabolismo
20.
Neuroendocrinology ; 111(5): 421-441, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32365351

RESUMEN

INTRODUCTION: Gonadotropin-releasing hormone (GnRH) deficiency causes hypogonadotropic hypogonadism (HH), a rare genetic disorder that impairs sexual reproduction. HH can be due to defective GnRH-secreting neuron development or function and may be associated with other clinical signs in overlapping genetic syndromes. With most of the cases being idiopathic, genetics underlying HH is still largely unknown. OBJECTIVE: To assess the contribution of mutated Semaphorin 3G (SEMA3G) in the onset of a syndromic form of HH, characterized by intellectual disability and facial dysmorphic features. METHOD: By combining homozygosity mapping with exome sequencing, we identified a novel variant in the SEMA3G gene. We then applied mouse as a model organism to examine SEMA3Gexpression and its functional requirement in vivo. Further, we applied homology modelling in silico and cell culture assays in vitro to validate the pathogenicity of the identified gene variant. RESULTS: We found that (i) SEMA3G is expressed along the migratory route of GnRH neurons and in the developing pituitary, (ii) SEMA3G affects GnRH neuron development, but is redundant in the adult hypothalamic-pituitary-gonadal axis, and (iii) mutated SEMA3G alters binding properties in silico and in vitro to its PlexinA receptors and attenuates its effect on the migration of immortalized GnRH neurons. CONCLUSION: In silico, in vitro, and in vivo models revealed that SEMA3G regulates GnRH neuron migration and that its mutation affecting receptor selectivity may be responsible for the HH-related defects.


Asunto(s)
Hormona Liberadora de Gonadotropina/deficiencia , Hipogonadismo/genética , Sistema Hipotálamo-Hipofisario/crecimiento & desarrollo , Sistema Hipotálamo-Hipofisario/metabolismo , Semaforinas/fisiología , Animales , Células Cultivadas , Consanguinidad , Anomalías Craneofaciales/etiología , Discapacidades del Desarrollo/etiología , Homocigoto , Humanos , Hipogonadismo/complicaciones , Discapacidad Intelectual/etiología , Masculino , Ratones , Linaje , Hermanos , Síndrome
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA