Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 144
Filtrar
1.
Adv Protein Chem Struct Biol ; 141: 255-297, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38960477

RESUMEN

Glial cells provide physical and chemical support and protection for neurons and for the extracellular compartments of neural tissue through secretion of soluble factors, insoluble scaffolds, and vesicles. Additionally, glial cells have regenerative capacity by remodeling their physical microenvironment and changing physiological properties of diverse cell types in their proximity. Various types of aberrant glial and macrophage cells are associated with human diseases, disorders, and malignancy. We previously demonstrated that transmembrane protein, TMEM230 has tissue revascularization and regenerating capacity by its ability to secrete pro-angiogenic factors and metalloproteinases, inducing endothelial cell sprouting and channel formation. In healthy normal neural tissue, TMEM230 is predominantly expressed in glial and marcophate cells, suggesting a prominent role in neural tissue homeostasis. TMEM230 regulation of the endomembrane system was supported by co-expression with RNASET2 (lysosome, mitochondria, and vesicles) and STEAP family members (Golgi complex). Intracellular trafficking and extracellular secretion of glial cellular components are associated with endocytosis, exocytosis and phagocytosis mediated by motor proteins. Trafficked components include metalloproteins, metalloproteinases, glycans, and glycoconjugate processing and digesting enzymes that function in phagosomes and vesicles to regulate normal neural tissue microenvironment, homeostasis, stress response, and repair following neural tissue injury or degeneration. Aberrantly high sustained levels TMEM230 promotes metalloprotein expression, trafficking and secretion which contribute to tumor associated infiltration and hypervascularization of high tumor grade gliomas. Following injury of the central nervous or peripheral systems, transcient regulated upregulation of TMEM230 promotes tissue wound healing, remodeling and revascularization by activating glial and macrophage generated microchannels/microtubules (referred to as vascular mimicry) and blood vessel sprouting and branching. Our results support that TMEM230 may act as a master regulator of motor protein mediated trafficking and compartmentalization of a large class of metalloproteins in gliomas and gliosis.


Asunto(s)
Glioma , Gliosis , Proteínas de la Membrana , Humanos , Proteínas de la Membrana/metabolismo , Glioma/metabolismo , Glioma/patología , Gliosis/metabolismo , Gliosis/patología , Animales , Receptores de Péptidos
2.
Adv Protein Chem Struct Biol ; 141: 299-329, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38960478

RESUMEN

TMEM230 promotes antigen processing, trafficking, and presentation by regulating the endomembrane system of membrane bound organelles (lysosomes, proteosomes and mitochondria) and phagosomes. Activation of the immune system requires trafficking of various cargos between the endomembrane system and cell plasma membrane. The Golgi apparatus is the hub of the endomembrane system and essential for the generation, maintenance, recycling, and trafficking of the components of the endomembrane system itself and immune system. Intracellular trafficking and secretion of immune system components depend on mitochondrial metalloproteins for ATP synthesis that powers motor protein transport of endomembrane cargo. Glycan modifying enzyme genes and motor proteins are essential for the activation of the immune system and trafficking of antigens between the endomembrane system and the plasma membrane. Recently, TMEM230 was identified as co-regulated with RNASET2 in lysosomes and with metalloproteins in various cell types and organelles, including mitochondria in autoimmune diseases. Aberrant metalloproteinase secretion by motor proteins is a major contributor to tissue remodeling of synovial membrane and joint tissue destruction in rheumatoid arthritis (RA) by promoting infiltration of blood vessels, bone erosion, and loss of cartilage by phagocytes. In this study, we identified that specific glycan processing enzymes are upregulated in certain cell types (fibroblast or endothelial cells) that function in destructive tissue remodeling in rheumatoid arthritis compared to osteoarthritis (OA). TMEM230 was identified as a regulator in the secretion of metaloproteinases and heparanase necessary tissue remodeling in OA and RA. In dendritic (DC), natural killer and T cells, TMEM230 was expressed at low or no levels in RA compared to OA. TMEM230 expression in DC likely is necessary for regulatory or helper T cells to maintain tolerance to self-antigens and prevent susceptibility to autoimmune disease. To identify how TMEM230 and the endomembrane system contribute to autoimmunity we investigated, glycan modifying enzymes, metalloproteinases and motor protein genes co-regulated with or regulated by TMEM230 in synovial tissue by analyzing published single cell transcriptomic datasets from RA patient derived synovial tissue.


Asunto(s)
Metaloproteínas , Humanos , Metaloproteínas/metabolismo , Metaloproteínas/genética , Análisis de la Célula Individual , Autoinmunidad , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Animales , Perfilación de la Expresión Génica
3.
Adv Protein Chem Struct Biol ; 141: 331-360, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38960479

RESUMEN

We recently identified TMEM230 as a master regulator of the endomembrane system of cells. TMEM230 expression is necessary for promoting motor protein dependent intracellular trafficking of metalloproteins for cellular energy production in mitochondria. TMEM230 is also required for transport and secretion of metalloproteinases for autophagy and phagosome dependent clearance of misfolded proteins, defective RNAs and damaged cells, activities that decline with aging. This suggests that aberrant levels of TMEM230 may contribute to aging and regain of proper levels may have therapeutic applications. The components of the endomembrane system include the Golgi complex, other membrane bound organelles, and secreted vesicles and factors. Secreted cellular components modulate immune response and tissue regeneration in aging. Upregulation of intracellular packaging, trafficking and secretion of endosome components while necessary for tissue homeostasis and normal wound healing, also promote secretion of pro-inflammatory and pro-senescence factors. We recently determined that TMEM230 is co-regulated with trafficked cargo of the endomembrane system, including lysosome factors such as RNASET2. Normal tissue regeneration (in aging), repair (following injury) and aberrant destructive tissue remodeling (in cancer or autoimmunity) likely are regulated by TMEM230 activities of the endomembrane system, mitochondria and autophagosomes. The role of TMEM230 in aging is supported by its ability to regulate the pro-inflammatory secretome and senescence-associated secretory phenotype in tissue cells of patients with advanced age and chronic disease. Identifying secreted factors regulated by TMEM230 in young patients and patients of advanced age will facilitate identification of aging associated targets that aberrantly promote, inhibit or reverse aging. Ex situ culture of patient derived cells for identifying secreted factors in tissue regeneration and aging provides opportunities in developing therapeutic and personalized medicine strategies. Identification and validation of human secreted factors in tissue regeneration requires long-term stabile scaffold culture conditions that are different from those previously reported for cell lines used as cell models for aging. We describe a 3 dimensional (3D) platform utilizing non-biogenic and non-labile poly ε-caprolactone scaffolds that supports maintenance of long-term continuous cultures of human stem cells, in vitro generated 3D organoids and patient derived tissue. Combined with animal component free culture media, non-biogenic scaffolds are suitable for proteomic and glycobiological analyses to identify human factors in aging. Applications of electrospun nanofiber technologies in 3D cell culture allow for ex situ screening and the development of patient personalized therapeutic strategies and predicting their effectiveness in mitigating or promoting aging.


Asunto(s)
Envejecimiento , Organoides , Humanos , Organoides/metabolismo , Envejecimiento/metabolismo , Proteínas de la Membrana/metabolismo , Senescencia Celular , Femenino , Andamios del Tejido/química , Glándulas Mamarias Humanas/metabolismo , Glándulas Mamarias Humanas/citología
4.
Biochim Biophys Acta Proteins Proteom ; 1872(5): 141029, 2024 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-38917877

RESUMEN

The Golgi apparatus is a critical organelle in protein sorting and lipid metabolism. Characterized by its stacked, flattened cisternal structure, the Golgi exhibits distinct polarity with its cis- and trans-faces orchestrating various protein maturation and transport processes. At the heart of its structural integrity and organisation are the Golgi Matrix Proteins (GMPs), predominantly comprising Golgins and GRASPs. These proteins contribute to this organelle's unique stacked and polarized structure and ensure the precise localization of Golgi-resident enzymes, which is crucial for accurate protein processing. Despite over a century of research since its discovery, the Golgi architecture's intricate mechanisms still need to be fully understood. Here, we discuss that GMPs across different Eukaryotic lineages present a significant tendency to form biomolecular condensates. Moreover, we validated experimentally that members of the GRASP family also exhibit a strong tendency. Our findings offer a new perspective on the possible roles of protein disorder and condensation of GMPs in the Golgi organisation.

5.
Int J Mol Sci ; 25(7)2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38612777

RESUMEN

High-grade gliomas (HGGs) and glioblastoma multiforme (GBM) are characterized by a heterogeneous and aggressive population of tissue-infiltrating cells that promote both destructive tissue remodeling and aberrant vascularization of the brain. The formation of defective and permeable blood vessels and microchannels and destructive tissue remodeling prevent efficient vascular delivery of pharmacological agents to tumor cells and are the significant reason why therapeutic chemotherapy and immunotherapy intervention are primarily ineffective. Vessel-forming endothelial cells and microchannel-forming glial cells that recapitulate vascular mimicry have both infiltration and destructive remodeling tissue capacities. The transmembrane protein TMEM230 (C20orf30) is a master regulator of infiltration, sprouting of endothelial cells, and microchannel formation of glial and phagocytic cells. A high level of TMEM230 expression was identified in patients with HGG, GBM, and U87-MG cells. In this study, we identified candidate genes and molecular pathways that support that aberrantly elevated levels of TMEM230 play an important role in regulating genes associated with the initial stages of cell infiltration and blood vessel and microchannel (also referred to as tumor microtubule) formation in the progression from low-grade to high-grade gliomas. As TMEM230 regulates infiltration, vascularization, and tissue destruction capacities of diverse cell types in the brain, TMEM230 is a promising cancer target for heterogeneous HGG tumors.


Asunto(s)
Glioblastoma , Glioma , Enfermedad de Parkinson , Humanos , Glioblastoma/genética , Proteínas de la Membrana/genética , Células Endoteliales , Angiogénesis , Glioma/genética , Neuroglía , Neovascularización Patológica/genética
6.
EMBO J ; 43(10): 2035-2061, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38627600

RESUMEN

Phosphatidylinositol (PI) is the precursor lipid for the minor phosphoinositides (PPIns), which are critical for multiple functions in all eukaryotic cells. It is poorly understood how phosphatidylinositol, which is synthesized in the ER, reaches those membranes where PPIns are formed. Here, we used VT01454, a recently identified inhibitor of class I PI transfer proteins (PITPs), to unravel their roles in lipid metabolism, and solved the structure of inhibitor-bound PITPNA to gain insight into the mode of inhibition. We found that class I PITPs not only distribute PI for PPIns production in various organelles such as the plasma membrane (PM) and late endosomes/lysosomes, but that their inhibition also significantly reduced the levels of phosphatidylserine, di- and triacylglycerols, and other lipids, and caused prominent increases in phosphatidic acid. While VT01454 did not inhibit Golgi PI4P formation nor reduce resting PM PI(4,5)P2 levels, the recovery of the PM pool of PI(4,5)P2 after receptor-mediated hydrolysis required both class I and class II PITPs. Overall, these studies show that class I PITPs differentially regulate phosphoinositide pools and affect the overall cellular lipid landscape.


Asunto(s)
Fosfatidilinositoles , Proteínas de Transferencia de Fosfolípidos , Humanos , Fosfatidilinositoles/metabolismo , Proteínas de Transferencia de Fosfolípidos/metabolismo , Proteínas de Transferencia de Fosfolípidos/genética , Metabolismo de los Lípidos , Membrana Celular/metabolismo , Células HeLa , Orgánulos/metabolismo , Endosomas/metabolismo , Animales
7.
Plant Direct ; 8(3): e580, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38525472

RESUMEN

Plant genomes contain numerous genes encoding chitinase-like (CTL) proteins, which have a similar protein structure to chitinase belonging to the glycoside hydrolase (GH) family but lack the chitinolytic activity to cleave the ß-1,4-glycosidic bond in chitins, polymers of N-acetylglucosamine. CTL1 mutations found in rice and Arabidopsis have caused pleiotropic developmental defects, including altered cell wall composition and decreased abiotic stress tolerance, likely due to reduced cellulose content. In this study, we identified suppressor of hot2 1 (suh1) as a genetic suppressor of the ctl1 hot2-1 mutation in Arabidopsis. The mutation in SUH1 restored almost all examined ctl1 hot2-1 defects to nearly wild-type levels or at least partially. SUH1 encodes a Golgi-located type II membrane protein with glycosyltransferase (GT) activity, and its mutations lead to a reduction in cellulose content and hypersensitivity to cellulose biosynthesis inhibitors, although to a lesser extent than ctl1 hot2-1 mutation. The SUH1 promoter fused with the GUS reporter gene exhibited GUS activity in interfascicular fibers and xylem in stems; meanwhile, the ctl1 hot2-1 mutation significantly increased this activity. Our findings provide genetic and molecular evidence that the antagonistic activities of CTL1 and SUH1 play an essential role in assembling the cell wall in Arabidopsis.

8.
Mol Biol Rep ; 51(1): 214, 2024 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-38280063

RESUMEN

The Golgi complex is a highly dynamic and tightly regulated cellular organelle with essential roles in the processing as well as the sorting of proteins and lipids. Its structure undergoes rapid disassembly and reassembly during normal physiological processes, including cell division, migration, polarization, differentiation, and cell death. Golgi dispersal or fragmentation also occurs in pathological conditions, such as neurodegenerative diseases, infectious diseases, congenital disorders of glycosylation diseases, and cancer. In this review, current knowledge about both structural organization and morphological alterations in the Golgi in physiological and pathological conditions is summarized together with the methodologies that help to reveal its structure.


Asunto(s)
Aparato de Golgi , Enfermedades Neurodegenerativas , Humanos , Aparato de Golgi/metabolismo , Aparato de Golgi/patología , División Celular , Transporte de Proteínas , Enfermedades Neurodegenerativas/metabolismo
9.
Microsc Res Tech ; 87(2): 373-386, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37855309

RESUMEN

Since gastrointestinal disorders are early consequences of Parkinson's disease (PD), this disease is clearly not restricted to the central nervous system (CNS), but also significantly affects the enteric nervous system (ENS). Large aggregates of the protein α-synuclein forming Lewy bodies, the prototypical cytopathological marker of this disease, have been observed in enteric nervous plexuses. However, their value in early prognosis is controversial. The Golgi complex (GC) of nigral neurons appears fragmented in Parkinson's disease, a characteristic common in most neurodegenerative diseases. In addition, the distribution and levels of regulatory proteins such as Rabs and SNAREs are altered, suggesting that PD is a membrane traffic-related pathology. Whether the GC of enteric dopaminergic neurons is affected by the disease has not yet been analyzed. In the present study, dopaminergic neurons in colon nervous plexuses behave as nigral neurons in a hemiparkinsonian rat model based on the injection of the toxin 6-OHDA. Their GCs are fragmented, and some regulatory proteins' distribution and expression levels are altered. The putative mechanisms of the transmission of the neurotoxin to the ENS are discussed. Our results support the possibility that GC structure and the level of some proteins, especially syntaxin 5, could be helpful as early indicators of the disease. RESEARCH HIGHLIGHTS: The Golgi complexes of enteric dopaminergic neurons appear fragmented in a Parkinson's disease rat model. Our results support the hypothesis that the Golgi complex structure and levels of Rab1 and syntaxin 5 could be helpful as early indicators of the disease.


Asunto(s)
Sistema Nervioso Entérico , Enfermedad de Parkinson , Ratas , Animales , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Sistema Nervioso Entérico/metabolismo , Sistema Nervioso Entérico/patología , Aparato de Golgi/patología , Proteínas Qa-SNARE/metabolismo
10.
Int J Mol Sci ; 24(20)2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37894724

RESUMEN

The system of the four different human blood groups is based on the oligosaccharide antigens A or B, which are located on the surface of blood cells and other cells including endothelial cells, attached to the membrane proteins or lipids. After transfusion, the presence of these antigens on the apical surface of endothelial cells could induce an immunological reaction against the host. The final oligosaccharide sequence of AgA consists of Gal-GlcNAc-Gal (GalNAc)-Fuc. AgB contains Gal-GlcNAc-Gal (Gal)-Fuc. These antigens are synthesised in the Golgi complex (GC) using unique Golgi glycosylation enzymes (GGEs). People with AgA also synthesise antibodies against AgB (group A [II]). People with AgB synthesise antibodies against AgA (group B [III]). People expressing AgA together with AgB (group AB [IV]) do not have these antibodies, while people who do not express these antigens (group O [0; I]) synthesise antibodies against both antigens. Consequently, the antibodies are synthesised against antigens that apparently do not exist in the body. Here, we compared the prediction power of the main hypotheses explaining the formation of these antibodies, namely, the concept of natural antibodies, the gut bacteria-derived antibody hypothesis, and the antibodies formed as a result of glycosylation mistakes or de-sialylation of polysaccharide chains. We assume that when the GC is overloaded with lipids, other less specialised GGEs could make mistakes and synthesise the antigens of these blood groups. Alternatively, under these conditions, the chylomicrons formed in the enterocytes may, under this overload, linger in the post-Golgi compartment, which is temporarily connected to the endosomes. These compartments contain neuraminidases that can cleave off sialic acid, unmasking these blood antigens located below the acid and inducing the production of antibodies.


Asunto(s)
Células Endoteliales , Oligosacáridos , Humanos , Secuencia de Carbohidratos , Células Endoteliales/metabolismo , Oligosacáridos/metabolismo , Antígenos , Sistema del Grupo Sanguíneo ABO , Lípidos
11.
J Inherit Metab Dis ; 46(6): 1195-1205, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37711075

RESUMEN

Biallelic variants in genes for seven out of eight subunits of the conserved oligomeric Golgi complex (COG) are known to cause recessive congenital disorders of glycosylation (CDG) with variable clinical manifestations. COG3 encodes a constituent subunit of the COG complex that has not been associated with disease traits in humans. Herein, we report two COG3 homozygous missense variants in four individuals from two unrelated consanguineous families that co-segregated with COG3-CDG presentations. Clinical phenotypes of affected individuals include global developmental delay, severe intellectual disability, microcephaly, epilepsy, facial dysmorphism, and variable neurological findings. Biochemical analysis of serum transferrin from one family showed the loss of a single sialic acid. Western blotting on patient-derived fibroblasts revealed reduced COG3 and COG4. Further experiments showed delayed retrograde vesicular recycling in patient cells. This report adds to the knowledge of the COG-CDG network by providing collective evidence for a COG3-CDG rare disease trait and implicating a likely pathology of the disorder as the perturbation of Golgi trafficking.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular , Trastornos Congénitos de Glicosilación , Humanos , Glicosilación , Proteínas Adaptadoras del Transporte Vesicular/genética , Fibroblastos/metabolismo , Trastornos Congénitos de Glicosilación/genética , Fenotipo
12.
J Cell Sci ; 136(20)2023 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-37732478

RESUMEN

The Golgi complex comprises a connected ribbon of stacked cisternal membranes localized to the perinuclear region in most vertebrate cells. The position and morphology of this organelle depends upon interactions with microtubules and the actin cytoskeleton. In contrast, we know relatively little about the relationship of the Golgi complex with intermediate filaments (IFs). In this study, we show that the Golgi is in close physical proximity to vimentin IFs in cultured mouse and human cells. We also show that the trans-Golgi network coiled-coil protein GORAB can physically associate with vimentin IFs. Loss of vimentin and/or GORAB had a modest effect upon Golgi structure at the steady state. The Golgi underwent more rapid disassembly upon chemical disruption with brefeldin A or nocodazole, and slower reassembly upon drug washout, in vimentin knockout cells. Moreover, loss of vimentin caused reduced Golgi ribbon integrity when cells were cultured on high-stiffness hydrogels, which was exacerbated by loss of GORAB. These results indicate that vimentin IFs contribute to the structural stability of the Golgi complex and suggest a role for GORAB in this process.


Asunto(s)
Citoesqueleto , Filamentos Intermedios , Ratones , Humanos , Animales , Filamentos Intermedios/metabolismo , Vimentina/metabolismo , Citoesqueleto/metabolismo , Microtúbulos/metabolismo , Aparato de Golgi/metabolismo , Mamíferos/metabolismo
13.
Biochim Biophys Acta Mol Cell Res ; 1870(7): 119555, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37524262

RESUMEN

KIFC1, a member of kinesin-14 subfamily motors, is essential for meiotic cell division and acrosome formation during spermatogenesis. However, the functions of KIFC1 in the formation and maintenance of the acrosome in male germ cells remain to be elucidated. In this study, we report the structural deformities of acrosomes in the in vivo KIFC1 inhibition mouse models. The proacrosomal vesicles diffuse into the cytoplasm and form atypical acrosomal granules. This phenotype is consistent with globozoospermia patients and probably results from the failure of the Golgi-derived vesicle trafficking and actin filament organization. Moreover, the multinucleated and undifferentiated spermatogenic cells in the epidydimal lumen after KIFC1 inhibition reveal the specific roles of KIFC1 in regulating post-meiotic maturation. Overall, our results uncover KIFC1 as an essential regulator in the trafficking, fusion and maturation of acrosomal vesicles during spermiogenesis.

14.
Int J Mol Sci ; 24(11)2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37298509

RESUMEN

Transport models are extremely important to map thousands of proteins and their interactions inside a cell. The transport pathways of luminal and at least initially soluble secretory proteins synthesized in the endoplasmic reticulum can be divided into two groups: the so-called constitutive secretory pathway and regulated secretion (RS) pathway, in which the RS proteins pass through the Golgi complex and are accumulated into storage/secretion granules (SGs). Their contents are released when stimuli trigger the fusion of SGs with the plasma membrane (PM). In specialized exocrine, endocrine, and nerve cells, the RS proteins pass through the baso-lateral plasmalemma. In polarized cells, the RS proteins secrete through the apical PM. This exocytosis of the RS proteins increases in response to external stimuli. Here, we analyze RS in goblet cells to try to understand the transport model that can be used for the explanation of the literature data related to the intracellular transport of their mucins.


Asunto(s)
Células Caliciformes , Proteínas , Células Caliciformes/metabolismo , Transporte Biológico , Proteínas/metabolismo , Mucinas/metabolismo , Membrana Celular/metabolismo , Aparato de Golgi/metabolismo , Exocitosis/fisiología
15.
J Cell Commun Signal ; 17(3): 1009-1021, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37126117

RESUMEN

Ras GTPases are central to cellular signaling and oncogenesis. The three loci of the Ras gene encode for four protein isoforms namely Harvey-Ras (H-Ras), Kirsten-Ras (K-Ras 4A and 4B), and Neuroblastoma-Ras (N-Ras) which share ~ 80% sequence similarity and used to be considered functionally redundant. The small molecule inhibitors of Ras lack specificity for the isoforms leading to widespread toxicity in Ras-targeted therapeutics. Ras isoforms' tissue-specific expression and selective association with carcinogenesis, embryonic development, and infection suggested their non-redundancy. We show that CD40, an antigen-presenting cell (APC)-expressed immune receptor, induces selective relocation of H-Ras, K-Ras, and N-Ras to the Plasma membrane (PM) lipid rafts, mitochondria, endoplasmic reticulum (ER), but not to the Golgi complex (GC). The two palmitoylated Ras isoforms-H-Ras and N-Ras-have a similar pattern of colocalization into the lipid-rich raft microdomain of the PM at early time points when compared to non-palmitoylated K-Ras (4B) with polylysine residues. CD40-induced trafficking of H-Ras and K-Ras to mitochondria and ER was found to be similar but different from that of N-Ras. Trafficking of all the Ras isoforms to the GC was independent of CD40 stimulation. The receptor-driven trafficking and spatial segregation of H-Ras, K-Ras, and N-Ras imply isoform-specific subcellular signaling platforms for the functional non-redundancy of Ras isoforms. PDB structures have been modified to illustrate various signaling proteins.

16.
Int J Mol Sci ; 24(6)2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36982865

RESUMEN

The main component of blood and lymphatic vessels is the endothelium covering their luminal surface. It plays a significant role in many cardiovascular diseases. Tremendous progress has been made in deciphering of molecular mechanisms involved into intracellular transport. However, molecular machines are mostly characterized in vitro. It is important to adapt this knowledge to the situation existing in tissues and organs. Moreover, contradictions have accumulated within the field related to the function of endothelial cells (ECs) and their trans-endothelial pathways. This has induced necessity for the re-evaluation of several mechanisms related to the function of vascular ECs and intracellular transport and transcytosis there. Here, we analyze available data related to intracellular transport within ECs and re-examine several hypotheses about the role of different mechanisms in transcytosis across ECs. We propose a new classification of vascular endothelium and hypotheses related to the functional role of caveolae and mechanisms of lipid transport through ECs.


Asunto(s)
Células Endoteliales , Transcitosis , Células Endoteliales/metabolismo , Transporte Biológico/fisiología , Caveolas/metabolismo , Membranas Intracelulares/metabolismo , Endotelio Vascular/metabolismo
17.
Front Mol Biosci ; 10: 906606, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36968274

RESUMEN

Metabolic homeostasis balances the production and consumption of energetic molecules to maintain active, healthy cells. Cellular stress, which disrupts metabolism and leads to the loss of cellular homeostasis, is important in age-related diseases. We focus here on the role of organelle dysfunction in age-related diseases, including the roles of energy deficiencies, mitochondrial dysfunction, endoplasmic reticulum (ER) stress, changes in metabolic flux in aging (e.g., Ca2+ and nicotinamide adenine dinucleotide), and alterations in the endoplasmic reticulum-mitochondria contact sites that regulate the trafficking of metabolites. Tools for single-cell resolution of metabolite pools and metabolic flux in animal models of aging and age-related diseases are urgently needed. High-resolution mass spectrometry imaging (MSI) provides a revolutionary approach for capturing the metabolic states of individual cells and cellular interactions without the dissociation of tissues. mass spectrometry imaging can be a powerful tool to elucidate the role of stress-induced cellular dysfunction in aging.

18.
Int J Mol Sci ; 24(5)2023 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-36901955

RESUMEN

SARS-CoV-2 is responsible for the COVID-19 pandemic. The structure of SARS-CoV-2 and most of its proteins of have been deciphered. SARS-CoV-2 enters cells through the endocytic pathway and perforates the endosomes' membranes, and its (+) RNA appears in the cytosol. Then, SARS-CoV-2 starts to use the protein machines of host cells and their membranes for its biogenesis. SARS-CoV-2 generates a replication organelle in the reticulo-vesicular network of the zippered endoplasmic reticulum and double membrane vesicles. Then, viral proteins start to oligomerize and are subjected to budding within the ER exit sites, and its virions are passed through the Golgi complex, where the proteins are subjected to glycosylation and appear in post-Golgi carriers. After their fusion with the plasma membrane, glycosylated virions are secreted into the lumen of airways or (seemingly rarely) into the space between epithelial cells. This review focuses on the biology of SARS-CoV-2's interactions with cells and its transport within cells. Our analysis revealed a significant number of unclear points related to intracellular transport in SARS-CoV-2-infected cells.


Asunto(s)
COVID-19 , Humanos , COVID-19/metabolismo , SARS-CoV-2 , Pandemias , Transporte Biológico , Endosomas/metabolismo
19.
Int J Mol Sci ; 24(2)2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36674888

RESUMEN

The Golgi complex (GC) is the main station along the cell biosecretory pathway. Until now, mechanisms of intra-Golgi transport (IGT) have remained unclear. Herein, we confirm that the goodness-of-fit of the regression lines describing the exit of a cargo from the Golgi zone (GZ) corresponds to an exponential decay. When the GC was empty before the re-initiation of the intra-Golgi transport, this parameter of the curves describing the kinetics of different cargoes (which are deleted in Golgi vesicles) with different diffusional mobilities within the GZ as well as their exit from the GZ was maximal for the piecewise nonlinear regression, wherein the first segment was horizontal, while the second segment was similar to the exponential decay. The kinetic curve describing cargo exit from the GC per se resembled a linear decay. The Monte-Carlo simulation revealed that such curves reflect the role of microtubule growth in cells with a central GC or the random hovering of ministacks in cells lacking a microtubule. The synchronization of cargo exit from the GC already filled with a cargo using the wave synchronization protocol did not reveal the equilibration of cargo within a Golgi stack, which would be expected from the diffusion model (DM) of IGT. Moreover, not all cisternae are connected to each other in mini-stacks that are transporting membrane proteins. Finally, the kinetics of post-Golgi carriers and the important role of SNAREs for IGT at different level of IGT also argue against the DM of IGT.


Asunto(s)
Aparato de Golgi , Transporte Biológico , Difusión , Aparato de Golgi/metabolismo , Transporte de Proteínas
20.
Methods Mol Biol ; 2557: 113-125, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36512213

RESUMEN

The Golgi complex is essential for protein transport and posttranslational modification in mammalian cells. It is critical to know the cisternal distribution of Golgi proteins to understand Golgi functions. The cis-to-trans or axial localization of a Golgi protein can be obtained using our previously developed method, Golgi protein localization by imaging centers of mass (GLIM), in nocodazole-induced Golgi ministacks (hereafter referred to as ministacks). However, there is no effective light microscopic method to reveal the lateral localization of a Golgi protein, which is the distribution within the Golgi cisternae. The challenge is partially caused by the random orientations and the tight congregation of Golgi stacks at the perinuclear region. Here, we summarize our method to identify en face and side views of ministacks. It takes advantage of the characteristic ring and double-punctum staining patterns exhibited by cisternal rim-localized proteins. After averaging multiple en face views, the resulting image reveals the intrinsic organization of cisternae in a non-biased manner.


Asunto(s)
Aparato de Golgi , Microscopía , Animales , Aparato de Golgi/metabolismo , Nocodazol/farmacología , Transporte de Proteínas , Proteínas/metabolismo , Mamíferos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...