Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Trop Anim Health Prod ; 55(1): 53, 2023 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-36708502

RESUMEN

Japanese quails reared under high stocking density (SD) were evaluated for the effects of grape seed powder (GSP) and meal (GSM) supplementation on performance, blood biochemistry, thigh and breast muscle fatty acids, antioxidant status, and HSP70 gene expression. We randomly assigned 288 (15-day-old) quail chicks to six treatment groups in a factorial design (2 × 3) with four replicates, involving two density levels [160 cm2/bird (LD) and 80 cm2/bird (HD)] and three feed forms (FFs) [no supplementation, grape seed powder (3% GSP), grape seed meal (3% GSM)]. SD had a significant effect on live weight, but not on weekly feed intake, daily weight gain, and feed conversion ratio. Serum creatinine and aspartate aminotransferase levels were significantly affected by FF and SD × FF (p < 0.05). A high SD reduced the n-3/n-6 ratio of breast muscle and a significant interaction was found between FF (p < 0.001). The SD × FF interaction reduced the Σn-6 ratio in HDM's thigh muscle, whereas in LDM, the ratio increased (p < 0.01). At high SD, neither GSP nor GSM reduced biological markers of oxidative stress (p > 0.05). Compared to GSP, GSM had higher efficacy at reducing HSP70 levels related to high SD levels. Despite this, at high SD, a diet containing 3% of GSP and GSM was not effective in overcoming oxidative stress. Therefore, more studies using different doses of GSM and GSP in quail diets would be beneficial.


Asunto(s)
Antioxidantes , Vitis , Animales , Antioxidantes/metabolismo , Coturnix/metabolismo , Polvos , Dieta/veterinaria , Codorniz , Expresión Génica , Alimentación Animal/análisis , Suplementos Dietéticos
2.
Front Microbiol ; 13: 994033, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36299718

RESUMEN

The fermentation of grape seed meal, a non-conventional feed resource, improves its conventional nutritional composition, promotes the growth and development of livestock and fat metabolism by influencing the structure and diversity of intestinal bacteria. In this study, the nutritional components of Fermented grape seed meal (FGSM) and their effects on the growth performance, carcass quality, serum biochemistry, and intestinal bacteria of yellow feather broilers were investigated. A total of 240 male 14-day-old yellow-feathered broilers were randomly selected and divided into four groups, with three replicates of 20 chickens each. Animals were fed diets containing 0% (Group I), 2% (Group II), 4% (Group III), or 6% (Group IV) FGSM until they were 56 days old. The results showed that Acid soluble protein (ASP) and Crude protein (CP) contents increased, Acid detergent fiber (ADF) and Neutral detergent fiber (NDF) contents decreased, and free amino acid content increased in the FGSM group. The non-targeted metabolome identified 29 differential metabolites in FGSM, including organic acids, polyunsaturated fatty acids, and monosaccharides. During the entire trial period, Average daily gain (ADG) increased and Feed conversion ratio (FCR) decreased in response to dietary FGSM supplementation (p < 0.05). TP content in the serum increased and BUN content decreased in groups III and IV (p < 0.05). Simultaneously, the serum TG content in group III and the abdominal fat rate in group IV were significantly reduced (p < 0.05). The results of gut microbiota analysis showed that FGSM could significantly increase the Shannon and Simpson indices of broilers (35 days). Reducing the relative abundance of Bacteroidetes significantly altered cecal microbiota composition by increasing the relative abundance of Firmicutes (p < 0.05). By day 56, butyric acid content increased in the cecal samples from Group III (p < 0.05). In addition, Spearman's correlation analysis revealed a strong correlation between broiler growth performance, abdominal fat percentage, SCFAs, and gut microbes. In summary, the addition of appropriate levels of FGSM to rations improved broiler growth performance and reduced fat deposition by regulating gut microbes through differential metabolites and affecting the microbiota structure and SCFA content of the gut.

3.
Toxins (Basel) ; 12(12)2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33333857

RESUMEN

Aflatoxin B1 (AFB1) is a mycotoxin that frequently contaminates cereals and cereal byproducts. This study investigates the effect of AFB1 on the mesenteric lymph nodes (MLNs) of piglets and evaluates if a diet containing grape seed meal (GSM) can counteract the negative effect of AFB1 on inflammation and oxidative stress. Twenty-four weaned piglets were fed the following diets: Control, AFB1 group (320 µg AFB1/kg feed), GSM group (8% GSM), and AFB1 + GSM group (8% GSM + 320 µg AFB1/kg feed) for 30 days. AFB1 has an important antioxidative effect by decreasing the activity of catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx) and total antioxidant status. As a result of the exposure to AFB1, an increase of MAP kinases, metalloproteinases, and cytokines, as effectors of an inflammatory response, were observed in the MLNs of intoxicated piglets. GSM induced a reduction of AFB1-induced oxidative stress by increasing the activity of GPx and SOD and by decreasing lipid peroxidation. GSM decreased the inflammatory markers increased by AFB1. These results represent an important and promising way to valorize this waste, which is rich in bioactive compounds, for decreasing AFB1 toxic effects in mesenteric lymph nodes.


Asunto(s)
Aflatoxina B1/toxicidad , Alimentación Animal , Antioxidantes/administración & dosificación , Estrés Oxidativo/efectos de los fármacos , Semillas , Vitis , Animales , Animales Recién Nacidos , Antioxidantes/aislamiento & purificación , Estrés Oxidativo/fisiología , Porcinos
4.
Toxins (Basel) ; 13(1)2020 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-33374968

RESUMEN

In this study, eight food by-products were investigated as biosorbent approaches in removing mycotoxin load towards potential dietary inclusion in animal feed. Among these food-derived by-products, grape seed (GSM) and seabuckthorn (SBM) meals showed the most promising binding capacity for Aflatoxin B1 (AFB1) and Zearalenone (ZEA), measured as percent of adsorbed mycotoxin. Furthermore, we explored the mycotoxin sequestering potential by screening the effect of time, concentration, temperature and pH. Comparative binding efficacy was addressed by carrying out adsorption experiments in vitro. The highest mycotoxin adsorption was attained using 30 mg of by-product for both GSM (85.9% AFB1 and 83.7% ZEA) and SBM (68% AFB1 and 84.5% ZEA). Optimal settings for the experimental factors were predicted employing the response surface design. GSM was estimated to adsorb AFB1 optimally at a concentration of 29 mg/mL, pH 5.95 and 33.6 °C, and ZEA using 28 mg/mL at pH 5.76 and 31.7 °C. Favorable adsorption of AFB1 was estimated at 37.5 mg of SBM (pH 8.1; 35.6 °C), and of ZEA at 30.2 mg of SBM (pH 5.6; 29.3 °C). Overall, GSM revealed a higher binding capacity compared with SBM. In addition, the two by-products showed different specificity for the binary-mycotoxin system, with SBM having higher affinity towards ZEA than AFB1 (Kf = 0.418 and 1/n = 0.213 vs. Kf = 0.217 and 1/n = 0.341) and GSM for AFB1 in comparison with ZEA (Kf = 0.367 and 1/n = 0.248 vs. Kf = 0.343 and 1/n = 0.264). In conclusion, this study suggests that GSM and SBM represent viable alternatives to commercial biosorbent products.


Asunto(s)
Aflatoxina B1/química , Residuos Industriales/análisis , Zearalenona/química , Adsorción , Industria de Alimentos
5.
Ecotoxicol Environ Saf ; 203: 110899, 2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-32678747

RESUMEN

Liver is the earliest target for AFB1 toxicity in both human and animals. In the last decade, plant derived by-products have been used in animal feed to reduce AFB1 induced toxicity. In the present study we investigated whether the presence of 8% grape seed meal by-product is able to counteract the hepatotoxic effects produced by AFB1 in liver of pig after weaning exposed to the toxin through the contaminated feed for 28 days. Twenty four weaned cross-bred TOPIGS-40 piglets with an average body weight of 9.13±0.03 were allocated to the following experimentally treatments: control diet without AFB1 (normal compound feed for weaned pigs); contaminated diet with 320 mg kg-1 AFB1; GSM diet (compound feed plus 8% grape seed meal) and AFB1+GSM diet (320 mg kg-1 AFB1 contaminated feed plus 8% grape seed meal). Pigs fed AFB1 diet had altered performance, body weight decreasing with 25.1% (b.w.: 17.17 kg for AFB1 vs 22.92 kg for control). Exposure of piglets to AFB1 contaminated diet caused liver oxidative stress as well as liver histological damage, manly characterized by inflammatory infiltrate, fibrosis and parenchyma cells vacuolation when compared to control and GSM meal group. 94.12% of the total analysed genes (34) related to inflammation and immune response was up-regulated. The addition of GSM into the AFB1 diet diminished the gene overexpression and ameliorate histological liver injuries and oxidative stress. The protective effect of GSM diet in diminishing the AFB1 harmful effect was mediated through the decreasing of gene and protein expression of MAPKs and NF-κB signalling overexpressed by AFB1 diet. The inclusion of grape seed by-products in the diet of pigs after weaning might be used as a novel nutritional intervention to reduce aflatoxin toxicity.


Asunto(s)
Aflatoxina B1/toxicidad , Alimentación Animal/análisis , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Hígado/efectos de los fármacos , Semillas/química , Vitis/química , Animales , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Dieta , Hígado/metabolismo , Estrés Oxidativo/efectos de los fármacos , Porcinos , Destete
6.
Front Vet Sci ; 7: 31, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32161762

RESUMEN

Microbiota affects host health and plays an important role in dysbiosis. The study examined the effect of diet including grape seed meal (GSM) with its mixture of bioactive compounds on the large intestine microbiota and short-chain fatty acid synthesis in weaned piglets treated with dextran sodium sulfate (DSS) as a model for inflammatory bowel diseases. Twenty-two piglets were included in four experimental groups based on their diet: control, DSS (1 g/kg/b.w.+control diet), GSM (8% grape seed meal inclusion in control diet), and DSS+GSM (1 g/kg/b.w., 8% grape seed meal in control diet). After 30 days, the colon content was isolated and used for microbiota sequencing on an Illumina MiSeq platform. QIIME 1.9.1 pipeline was used to process the raw sequences. Both GSM and DSS alone and in combination affected the diversity indices and Firmicutes:Bacteroidetes ratio, with significantly higher values in the DSS-afflicted piglets for Proteobacteria phylum, Roseburia, Megasphera and CF231 genus, and lower values for Lactobacillus. GSM with high-fiber, polyphenol and polyunsaturated fatty acid (PUFA) content increased the production of butyrate and isobutyrate, stimulated the growth of beneficial genera like Prevotella and Megasphaera, while countering the relative abundance of Roseburia, reducing it to half of the DSS value and contributing to the management of the DSS effects.

7.
J Dairy Sci ; 98(4): 2611-26, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25648805

RESUMEN

The role of dried distillers grains plus solubles (DDGS) and associative effects of different levels of grape seed meal (GSM) fortified in DDGS, used as both protein and energy sources in the diet, on ruminal fermentation and microbiota were investigated using rumen-simulation technique. All diets consisted of hay and concentrate mixture with a ratio of 48:52 [dry matter (DM) basis], but were different in the concentrate composition. The control diet contained soybean meal (13.5% of diet DM) and barley grain (37%), whereas DDGS treatments, unfortified DDGS (19.5% of diet DM), or DDGS fortified with GSM, either at 1, 5, 10, or 20% were used entirely in place of soybean meal and part of barley grain at a 19.5 to 25% inclusion level. All diets had similar DM, organic matter, and crude protein contents, but consisted of increasing neutral detergent fiber and decreasing nonfiber carbohydrates levels with DDGS-GSM inclusion. Compared with the soy-based control diet, the unfortified DDGS treatment elevated ammonia concentration (19.1%) of rumen fluid associated with greater crude protein degradation (~19.5%). Methane formation decreased with increasing GSM fortification levels (≥ 5%) in DDGS by which the methane concentration significantly decreased by 18.9 to 23.4 and 12.8 to 17.6% compared with control and unfortified DDGS, respectively. Compared with control, unfortified DDGS decreased butyrate proportion, and GSM fortification in the diet further decreased this variable. The proportions of genus Prevotella and Clostridium cluster XIVa were enhanced by the presence of DDGS without any associative effect of GSM fortification. The abundance of methanogenic archaea was similar, but their composition differed among treatments; whereas Methanosphaera spp. remained unchanged, proportion of Methanobrevibacter spp. decreased in DDGS-based diets, being the lowest with 20% GSM inclusion. The abundance of Ruminococcus flavefaciens, anaerobic fungi, and protozoa were decreased by the GSM inclusion. As revealed by principal component analysis, these variables were the microorganisms associated with the methane formation. Grape seed meal fortification level in the diet decreased DM and organic matter degradation, but this effect was more related to a depression of nonfiber carbohydrates degradation. It can be concluded that DDGS fortified with GSM can favorably modulate ruminal fermentation.


Asunto(s)
Bovinos , Dieta/veterinaria , Suplementos Dietéticos , Extracto de Semillas de Uva/metabolismo , Metano/metabolismo , Microbiota/fisiología , Rumen , Alimentación Animal/análisis , Animales , Bovinos/metabolismo , Bovinos/microbiología , Suplementos Dietéticos/análisis , Grano Comestible/química , Femenino , Rumen/metabolismo , Rumen/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA