Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
1.
J Mol Neurosci ; 74(3): 78, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39158627

RESUMEN

Constipation is a common symptom in patients with Parkinson's disease (PD) and is often associated with depression. Enteric glial cells (EGCs) are crucial for regulating intestinal inflammation and colon motility, and their activation can lead to the death of intestinal neurons. Glial cell line-derived neurotrophic factor (GDNF) has been recognized for its neuroprotective properties in various neurological disorders, including PD. This study explores the potential of GDNF in alleviating intestinal reactive gliosis and inflammation, thereby improving constipation and depressive behavior in a rat model of PD. A PD model was established via unilateral stereotaxic injection of 6-hydroxydopamine (6-OHDA). Five weeks post-injury, AAV5-GDNF (2 ~ 5 × 10^11) was intraperitoneally injected into experimental and control rats. Fecal moisture percentage (FMP) and colonic propulsion rate (CPPR) were used to evaluate colon motility. Colon-related inflammation and colonic epithelial morphology were assessed, and depressive behavior was analyzed one week before sampling. PD rats exhibited reduced colonic motility and GDNF expression, along with increased EGC reactivity and elevated levels of pro-inflammatory cytokines IL-1, IL-6, and TNF-α. Additionally, there was an up-regulation of CX43 and a decrease in PGP 9.5 expression. The intraperitoneal injection of AAV-GDNF significantly protected colonic neurons by inhibiting EGC activation and down-regulating CX43. This treatment also led to a notable reduction in depressive-like symptoms in PD rats with constipation. GDNF effectively reduces markers of reactive gliosis and inflammation, and promotes the survival of colonic neurons, and improves colonic motility in PD rats by regulating CX43 activity. Furthermore, GDNF treatment alleviates depressive behavior, suggesting that GDNF or its agonists could be promising therapeutic agents for managing gastrointestinal and neuropsychiatric symptoms associated with PD.


Asunto(s)
Estreñimiento , Depresión , Factor Neurotrófico Derivado de la Línea Celular Glial , Gliosis , Animales , Masculino , Ratas , Colon/metabolismo , Colon/patología , Estreñimiento/etiología , Estreñimiento/tratamiento farmacológico , Citocinas/metabolismo , Depresión/etiología , Depresión/tratamiento farmacológico , Motilidad Gastrointestinal/efectos de los fármacos , Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Factor Neurotrófico Derivado de la Línea Celular Glial/uso terapéutico , Gliosis/metabolismo , Inflamación/metabolismo , Oxidopamina/toxicidad , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/tratamiento farmacológico , Ratas Sprague-Dawley
2.
Adv Sci (Weinh) ; 11(20): e2306297, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38477534

RESUMEN

Disrupted gastrointestinal (GI) motility is highly prevalent in patients with inflammatory bowel disease (IBD), but its potential causative role remains unknown. Herein, the role and the mechanism of impaired GI motility in colitis pathogenesis are investigated. Increased colonic mucosal inflammation is found in patients with chronic constipation (CC). Mice with GI dysmotility induced by genetic mutation or chemical insult exhibit increased susceptibility to colitis, dependent on the gut microbiota. GI dysmotility markedly decreases the abundance of Lactobacillus animlalis and increases the abundance of Akkermansia muciniphila. The reduction in L. animlalis, leads to the accumulation of linoleic acid due to compromised conversion to conjugated linoleic acid. The accumulation of linoleic acid inhibits Treg cell differentiation and increases colitis susceptibility via inducing macrophage infiltration and proinflammatory cytokine expression in macrophage. Lactobacillus and A. muciniphila abnormalities are also observed in CC and IBD patients, and mice receiving fecal microbiota from CC patients displayed an increased susceptibility to colitis. These findings suggest that GI dysmotility predisposes host to colitis development by modulating the composition of microbiota and facilitating linoleic acid accumulation. Targeted modulation of microbiota and linoleic acid metabolism may be promising to protect patients with motility disorder from intestinal inflammation.


Asunto(s)
Colitis , Modelos Animales de Enfermedad , Microbioma Gastrointestinal , Motilidad Gastrointestinal , Ácido Linoleico , Animales , Microbioma Gastrointestinal/fisiología , Ratones , Ácido Linoleico/metabolismo , Colitis/metabolismo , Colitis/microbiología , Colitis/inducido químicamente , Humanos , Ratones Endogámicos C57BL , Masculino , Estreñimiento/metabolismo , Estreñimiento/microbiología , Femenino , Akkermansia , Lactobacillus/metabolismo
3.
Cell Rep ; 43(4): 113953, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38517896

RESUMEN

The gastrointestinal (GI) tract is innervated by intrinsic neurons of the enteric nervous system (ENS) and extrinsic neurons of the central nervous system and peripheral ganglia. The GI tract also harbors a diverse microbiome, but interactions between the ENS and the microbiome remain poorly understood. Here, we activate choline acetyltransferase (ChAT)-expressing or tyrosine hydroxylase (TH)-expressing gut-associated neurons in mice to determine effects on intestinal microbial communities and their metabolites as well as on host physiology. The resulting multi-omics datasets support broad roles for discrete peripheral neuronal subtypes in shaping microbiome structure, including modulating bile acid profiles and fungal colonization. Physiologically, activation of either ChAT+ or TH+ neurons increases fecal output, while only ChAT+ activation results in increased colonic contractility and diarrhea-like fluid secretion. These findings suggest that specific subsets of peripherally activated neurons differentially regulate the gut microbiome and GI physiology in mice without involvement of signals from the brain.


Asunto(s)
Microbioma Gastrointestinal , Neuronas , Animales , Microbioma Gastrointestinal/fisiología , Ratones , Neuronas/metabolismo , Colina O-Acetiltransferasa/metabolismo , Sistema Nervioso Entérico/fisiología , Ratones Endogámicos C57BL , Tirosina 3-Monooxigenasa/metabolismo , Masculino , Tracto Gastrointestinal/microbiología
4.
J Anim Sci ; 1022024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38483214

RESUMEN

The influence of systemic immune activation on whole-body calcium (Ca) trafficking and gastrointestinal tract (GIT) physiology is not clear. Thus, the study objectives were to characterize the effects of lipopolysaccharide (LPS) on Ca pools and GIT dynamics to increase understanding of immune-induced hypocalcemia, ileus, and stomach hemorrhaging. Twelve crossbred pigs [44 ±â€…3 kg body weight (BW)] were randomly assigned to 1 of 2 intramuscular treatments: (1) control (CON; 2 mL saline; n = 6) or (2) LPS (40 µg LPS/kg BW; n = 6). Pigs were housed in metabolism stalls to collect total urine and feces for 6 h after treatment administration, at which point they were euthanized, and various tissues, organs, fluids, and digesta were weighed, and analyzed for Ca content. Data were analyzed with the MIXED procedure in SAS 9.4. Rectal temperature and respiration rate increased in LPS relative to CON pigs (1.4 °C and 32%, respectively; P ≤ 0.05). Inflammatory biomarkers such as circulating alkaline phosphatase, aspartate aminotransferase, and total bilirubin increased in LPS compared with CON pigs whereas albumin decreased (P ≤ 0.02). Plasma glucose and urea nitrogen decreased and increased, respectively, after LPS (43% and 80%, respectively; P < 0.01). Pigs administered LPS had reduced circulating ionized calcium (iCa) compared to CON (15%; P < 0.01). Considering estimations of total blood volume, LPS caused an iCa deficit of 23 mg relative to CON (P < 0.01). Adipose tissue and urine from LPS pigs had reduced Ca compared to CON (39% and 77%, respectively; P ≤ 0.05). There did not appear to be increased Ca efflux into GIT contents and no detectable increases in other organ or tissue Ca concentrations were identified. Thus, while LPS caused hypocalcemia, we were unable to determine where circulating Ca was trafficked. LPS administration markedly altered GIT dynamics including stomach hemorrhaging, diarrhea (increased fecal output and moisture), and reduced small intestine and fecal pH (P ≤ 0.06). Taken together, changes in GIT physiology suggested dyshomeostasis and alimentary pathology. Future research is required to fully elucidate the etiology of immune activation-induced hypocalcemia and GIT pathophysiology.


Lipopolysaccharide (LPS) activates the immune system and this is accompanied with hypocalcemia and altered gastrointestinal tract (GIT) physiology. The study objectives were to characterize whole-body calcium (Ca) trafficking and evaluate GIT dynamics during LPS-induced immune activation. Ca concentrations were analyzed after intramuscular LPS injection. Administering LPS caused marked alterations in metabolic and inflammatory biomarkers and GIT dynamics, characterized by increased lower GIT motility and stomach hemorrhaging. Circulating Ca and adipose tissue and urine Ca output were decreased after LPS. Ca concentrations in other tissues and GIT contents were not detectably different. Thus, we were unable to account for about 110 mg Ca following LPS. Where and how circulating Ca is partitioned during immune activation remains unclear.


Asunto(s)
Calcio , Tracto Gastrointestinal , Lipopolisacáridos , Animales , Femenino , Masculino , Calcio/metabolismo , Tracto Gastrointestinal/efectos de los fármacos , Tracto Gastrointestinal/metabolismo , Lipopolisacáridos/farmacología , Distribución Aleatoria , Porcinos , Enfermedades de los Porcinos/inducido químicamente
5.
Int J Mol Sci ; 25(2)2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38255906

RESUMEN

Individuals with autism often experience gastrointestinal issues but the cause is unknown. Many gene mutations that modify neuronal synapse function are associated with autism and therefore may impact the enteric nervous system that regulates gastrointestinal function. A missense mutation in the Nlgn3 gene encoding the cell adhesion protein Neuroligin-3 was identified in two brothers with autism who both experienced severe gastrointestinal dysfunction. Mice expressing this mutation (Nlgn3R451C mice) are a well-studied preclinical model of autism and show autism-relevant characteristics, including impaired social interaction and communication, as well as repetitive behaviour. We previously showed colonic dysmotility in response to GABAergic inhibition and increased myenteric neuronal numbers in the small intestine in Nlgn3R451C mice bred on a mixed genetic background. Here, we show that gut dysfunction is a persistent phenotype of the Nlgn3 R451C mutation in mice backcrossed onto a C57BL/6 background. We report that Nlgn3R451C mice show a 30.9% faster gastrointestinal transit (p = 0.0004) in vivo and have 6% longer small intestines (p = 0.04) compared to wild-types due to a reduction in smooth muscle tone. In Nlgn3R451C mice, we observed a decrease in resting jejunal diameter (proximal jejunum: 10.6% decrease, p = 0.02; mid: 9.8%, p = 0.04; distal: 11.5%, p = 0.009) and neurally regulated dysmotility as well as shorter durations of contractile complexes (mid: 25.6% reduction in duration, p = 0.009; distal: 30.5%, p = 0.004) in the ileum. In Nlgn3R451C mouse colons, short contractions were inhibited to a greater extent (57.2% by the GABAA antagonist, gabazine, compared to 40.6% in wild-type mice (p = 0.007). The inhibition of nitric oxide synthesis decreased the frequency of contractile complexes in the jejunum (WT p = 0.0006, Nlgn3R451C p = 0.002), but not the ileum, in both wild-type and Nlgn3R451C mice. These findings demonstrate that changes in enteric nervous system function contribute to gastrointestinal dysmotility in mice expressing the autism-associated R451C missense mutation in the Neuroligin-3 protein.


Asunto(s)
Trastorno Autístico , Masculino , Animales , Ratones , Ratones Endogámicos C57BL , Trastorno Autístico/genética , Tránsito Gastrointestinal , Intestino Delgado , Yeyuno , Modelos Animales de Enfermedad , Cafeína , Antagonistas del GABA
6.
J Am Heart Assoc ; 13(3): e033279, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38258657

RESUMEN

BACKGROUND: Gut dysmotility is common after ischemic stroke, but the mechanism underlying this response is unknown. Under homeostasis, gut motility is regulated by the neurons of the enteric nervous system that control contractile/relaxation activity of muscle cells in the gut wall. More recently, studies of gut inflammation revealed interactions of macrophages with enteric neurons are also involved in modulating gut motility. However, whether poststroke gut dysmotility is mediated by direct signaling to the enteric nervous system or indirectly via inflammatory macrophages is unknown. METHODS AND RESULTS: We examined these hypotheses by using a clinically relevant permanent intraluminal midcerebral artery occlusion experimental model of stroke. At 24 hours after stroke, we performed in vivo and ex vivo gut motility assays, flow cytometry, immunofluorescence, and transcriptomic analysis. Stroke-induced gut dysmotility was associated with recruitment of muscularis macrophages into the gastrointestinal tract and redistribution of muscularis macrophages away from myenteric ganglia. The permanent intraluminal midcerebral artery occlusion model caused changes in gene expression in muscularis macrophages consistent with an altered phenotype. While the size of myenteric ganglia after stroke was not altered, myenteric neurons from post-permanent intraluminal midcerebral artery occlusion mice showed a reduction in neuronal nitric oxide synthase expression, and this response was associated with enhanced intestinal smooth muscle contraction ex vivo. Finally, chemical sympathectomy with 6-hydroxydopamine prevented the loss of myenteric neuronal nitric oxide synthase expression and stroke-induced slowed gut transit. CONCLUSIONS: Our findings demonstrate that activation of the sympathetic nervous system after stroke is associated with reduced neuronal nitric oxide synthase expression in myenteric neurons, resulting in impaired smooth muscle relaxation and dysregulation of gut transit.


Asunto(s)
Sistema Nervioso Entérico , Accidente Cerebrovascular , Ratones , Animales , Óxido Nítrico Sintasa de Tipo I/genética , Óxido Nítrico Sintasa de Tipo I/metabolismo , Sistema Nervioso Entérico/metabolismo , Neuronas/fisiología , Relajación Muscular , Accidente Cerebrovascular/metabolismo
7.
J Ethnopharmacol ; 319(Pt 3): 117379, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-37923252

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Paralleling the increasing incidence of gastrointestinal disorders world-wide, therapeutic investigations of nutraceuticals to promote gastrointestinal health are gaining popularity. Although anecdotally well-known for its gut health promoting potential, sparse scientific evidence supports this action of Aspalathus linearis (Burm.f.) R. Dahlgren - or rooibos - at the gastrointestinal epithelial level. AIM OF THE STUDY: Traditionally, rooibos is considered to exert antispasmodic, anti-inflammatory, and anti-nociceptive effects in the gut. However, the direct effect on intestinal epithelium is unknown. Thus, to assess the validity of anecdotal claims, two larval zebrafish models were utilized to evaluate effects of rooibos on intestinal health. MATERIALS AND METHODS: Firstly, a larval zebrafish model of gastrointestinal inflammation (2-day TNBS-exposure) was employed. Co-administration of 6α-methylprednisolone served as an internal treatment control. Assessments included live imaging techniques and post-mortem immunofluorescent staining of epithelial tight junction proteins. In addition, whole body H2O2 and prostaglandin E2 assays were performed. Secondly, a gastrointestinal motility assay was performed, with known pro- and anti-kinetic mediators to assess the effect of rooibos to alter functional outcome in vivo. RESULTS: Aqueous and ethanol extracts of green rooibos rescued TNBS-induced reductions in neutral red stained length of larval mid-intestines. Subsequent experiments confirmed the rescue capacity of the aqueous green rooibos extract regarding whole body oxidative and inflammatory status. Concerning tight junction proteins, only the aqueous green rooibos extract - and not prednisolone - normalized both zona occludens-1 and occludin expression levels when compared the TNBS group. In terms of gastrointestinal motility, the aqueous green rooibos extract significantly reduced the extent of gut motility dysregulation achieved by kinetic modulators. CONCLUSIONS: Data indicates the potential of a 2 mg/ml aqueous extract of green rooibos to improve gastrointestinal integrity and functionality in vivo, suggesting beneficial effects of rooibos may already occur at the level of the gut. This provides some evidence to support indigenous knowledge.


Asunto(s)
Aspalathus , Animales , Peróxido de Hidrógeno , Pez Cebra , Bioensayo , Larva , Ocludina
8.
Front Endocrinol (Lausanne) ; 14: 1193556, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38027192

RESUMEN

In the gastrointestinal tract, serotonin (5-hydroxytryptamine, 5-HT) is an important monoamine that regulates intestinal dynamics. QGP-1 cells are human-derived enterochromaffin cells that secrete 5-HT and functionally express Piezo ion channels associated with cellular mechanosensation. Piezo ion channels can be blocked by Grammostola spatulata mechanotoxin 4 (GsMTx4), a spider venom peptide that inhibits cationic mechanosensitive channels. The primary aim of this study was to explore the effects of GsMTx4 on 5-HT secretion in QGP-1 cells in vitro. We investigated the transcript and protein levels of the Piezo1/2 ion channel, tryptophan hydroxylase 1 (TPH1), and mitogen-activated protein kinase signaling pathways. In addition, we observed that GsMTx4 affected mouse intestinal motility in vivo. Furthermore, GsMTx4 blocked the response of QGP-1 cells to ultrasound, a mechanical stimulus.The prolonged presence of GsMTx4 increased the 5-HT levels in the QGP-1 cell culture system, whereas Piezo1/2 expression decreased, and TPH1 expression increased. This effect was accompanied by the increased phosphorylation of the p38 protein. GsMTx4 increased the entire intestinal passage time of carmine without altering intestinal inflammation. Taken together, inhibition of Piezo1/2 can mediate an increase in 5-HT, which is associated with TPH1, a key enzyme for 5-HT synthesis. It is also accompanied by the activation of the p38 signaling pathway. Inhibitors of Piezo1/2 can modulate 5-HT secretion and influence intestinal motility.


Asunto(s)
Células Enterocromafines , Canales Iónicos , Serotonina , Animales , Humanos , Ratones , Células Enterocromafines/metabolismo , Intestinos/metabolismo , Intestinos/fisiología , Canales Iónicos/genética , Canales Iónicos/metabolismo , Serotonina/farmacología , Serotonina/metabolismo , Transducción de Señal , Mucosa Intestinal/metabolismo , Mucosa Intestinal/fisiología
9.
Nutrients ; 15(19)2023 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-37836566

RESUMEN

Intestinal peristalsis is vital for gastrointestinal physiology and host homeostasis and is frequently dysregulated in intestinal disorders. Gut microbiota can regulate gut motility, especially through the tryptophan metabolism pathway. However, the role of indoles as microbial tryptophan metabolites in colonic function requires further exploration. Here, we show that the delivery of indole acetic acid (IAA) targeting the colon can improve gut motility by activating the aryl hydrocarbon receptor (AHR). To achieve colon-targeted delivery, Eudragit S-100 (ES) and chitosan (CS) were used as drug carriers. After optimisation, IAA-loaded ES-coated CS nanoparticles exhibited an encapsulation efficiency of 83% and a drug-loading capacity of 16%. These nanoparticles exhibited pH-dependent characteristics and remained stable in acidic conditions and the upper intestine. In simulated intestinal fluid (pH 7.4) and colonic lumen, considerable amounts of IAA were released after approximately 4 h. Compared with free IAA, the nanoparticles exerted enhanced therapeutic effects on gut movement disorders induced by loperamide. The efficacy of IAA treatment was attributable to the activation of the AHR signalling pathway and increased levels of AHR agonists. Furthermore, the oral administration of IAA-loaded nanoparticles promoted serotonin secretion and maintained the intestinal barrier function. The experimental outcomes demonstrate the efficiency of the proposed colon-specific delivery system and highlight the role of IAA, produced by gut microbiota metabolism, in regulating gut peristalsis through AHR activation.


Asunto(s)
Receptores de Hidrocarburo de Aril , Triptófano , Receptores de Hidrocarburo de Aril/metabolismo , Triptófano/metabolismo , Colon/metabolismo , Transducción de Señal
10.
Bio Protoc ; 13(19): e4831, 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37817909

RESUMEN

Different regions of the gastrointestinal tract have specific functions and thus distinct motility patterns. Motility is primarily regulated by the enteric nervous system (ENS), an intrinsic network of neurons located within the gut wall. Under physiological conditions, the ENS is influenced by the central nervous system (CNS). However, by using ex vivo organ bath experiments, ENS regulation of gut motility can also be studied in the absence of CNS influences. The current technique enables the characterisation of small intestinal, caecal, and colonic motility patterns using an ex vivo organ bath and video imaging protocol. This approach is combined with the novel edge detection script GutMap, available in MATLAB, that functions across Windows and Mac platforms. Dissected intestinal segments are cannulated in an organ bath containing physiological saline with a camera mounted overhead. Video recordings of gut contractions are then converted to spatiotemporal heatmaps and analysed using the GutMap software interface. Using data analysed from the heatmaps, parameters of contractile patterns (including contraction propagation frequency and velocity as well as gut diameter) at baseline and in the presence of drugs/treatments/genetic mutations can be compared. Here, we studied motility patterns of female mice at baseline and in the presence of a nitric oxide synthase inhibitor (Nω-Nitro-L-arginine; NOLA) (nitric oxide being the main inhibitory neurotransmitter of gut motility) to showcase the application of GutMap. This technique is suitable for application to a broad range of animal models of clinical disorders to understand underlying biological pathways contributing to gastrointestinal dysfunction. Key features • Enhanced video imaging analysis of gut contractility in rodents using a novel software interface. • New edge detection algorithm to accurately contour curvatures of the gastrointestinal tract. • Allows for output of high-resolution spatiotemporal heatmaps across Windows and Mac platforms. • Edge detection and analysis method makes motility measurements accessible in different gut regions including the caecum and stomach.

11.
Nutrients ; 15(18)2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37764775

RESUMEN

Irritable bowel syndrome (IBS) is a common gastrointestinal disorder marked by chronic abdominal pain, bloating, and irregular bowel habits. Effective treatments are still actively sought. Kappa-casein glycomacropeptide (GMP), a milk-derived peptide, holds promise because it can modulate the gut microbiome, immune responses, gut motility, and barrier functions, as well as binding toxins. These properties align with the recognized pathophysiological aspects of IBS, including gut microbiota imbalances, immune system dysregulation, and altered gut barrier functions. This review delves into GMP's role in regulating the gut microbiome, accentuating its influence on bacterial populations and its potential to promote beneficial bacteria while inhibiting pathogenic varieties. It further investigates the gut microbial shifts observed in IBS patients and contemplates GMP's potential for restoring microbial equilibrium and overall gut health. The anti-inflammatory attributes of GMP, especially its impact on vital inflammatory markers and capacity to temper the low-grade inflammation present in IBS are also discussed. In addition, this review delves into current research on GMP's effects on gut motility and barrier integrity and examines the changes in gut motility and barrier function observed in IBS sufferers. The overarching goal is to assess the potential clinical utility of GMP in IBS management.

12.
Neurogastroenterol Motil ; 35(12): e14675, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37743702

RESUMEN

BACKGROUND: Zebrafish larvae are translucent, allowing in vivo analysis of gut development and physiology, including gut motility. While recent progress has been made in measuring gut motility in larvae, challenges remain which can influence results, such as how data are interpreted, opportunities for technical user error, and inconsistencies in methods. METHODS: To overcome these challenges, we noninvasively introduced Nile Red fluorescent dye to fill the intraluminal gut space in zebrafish larvae and collected serial confocal microscopic images of gut fluorescence. We automated the detection of fluorescent-contrasted contraction events against the median-subtracted signal and compared it to manually annotated gut contraction events across anatomically defined gut regions. Supervised machine learning (multiple logistic regression) was then used to discriminate between true contraction events and noise. To demonstrate, we analyzed motility in larvae under control and reserpine-treated conditions. We also used automated event detection analysis to compare unfed and fed larvae. KEY RESULTS: Automated analysis retained event features for proximal midgut-originating retrograde and anterograde contractions and anorectal-originating retrograde contractions. While manual annotation showed reserpine disrupted gut motility, machine learning only achieved equivalent contraction discrimination in controls and failed to accurately identify contractions after reserpine due to insufficient intraluminal fluorescence. Automated analysis also showed feeding had no effect on the frequency of anorectal-originating contractions. CONCLUSIONS & INFERENCES: Automated event detection analysis rapidly and accurately annotated contraction events, including the previously neglected phenomenon of anorectal contractions. However, challenges remain to discriminate contraction events based on intraluminal fluorescence under treatment conditions that disrupt functional motility.


Asunto(s)
Reserpina , Pez Cebra , Animales , Pez Cebra/fisiología , Larva/fisiología , Algoritmos , Aprendizaje Automático Supervisado
13.
Front Neurosci ; 17: 1101071, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37694110

RESUMEN

Gastrointestinal (GI) disorders are common comorbidities in individuals with autism spectrum disorder (ASD), and abnormalities in these issues have been found to be closely related to the severity of core behavioral deficits in autism. The enteric nervous system (ENS) plays a crucial role in regulating various aspects of gut functions, including gastrointestinal motility. Dysfunctional wiring in the ENS not only results in various gastrointestinal issues, but also correlates with an increasing number of central nervous system (CNS) disorders, such as ASD. However, it remains unclear whether the gastrointestinal dysfunctions are a consequence of ASD or if they directly contribute to its pathogenesis. This review focuses on the deficits in the ENS associated with ASD, and highlights several high-risk genes for ASD, which are expressed widely in the gut and implicated in gastrointestinal dysfunction among both animal models and human patients with ASD. Furthermore, we provide a brief overview of environmental factors associated with gastrointestinal tract in individuals with autism. This could offer fresh perspectives on our understanding of ASD.

14.
Cell ; 186(16): 3386-3399.e15, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37541196

RESUMEN

The gastrointestinal tract is in a state of constant motion. These movements are tightly regulated by the presence of food and help digestion by mechanically breaking down and propelling gut content. Mechanical sensing in the gut is thought to be essential for regulating motility; however, the identity of the neuronal populations, the molecules involved, and the functional consequences of this sensation are unknown. Here, we show that humans lacking PIEZO2 exhibit impaired bowel sensation and motility. Piezo2 in mouse dorsal root, but not nodose ganglia is required to sense gut content, and this activity slows down food transit rates in the stomach, small intestine, and colon. Indeed, Piezo2 is directly required to detect colon distension in vivo. Our study unveils the mechanosensory mechanisms that regulate the transit of luminal contents throughout the gut, which is a critical process to ensure proper digestion, nutrient absorption, and waste removal.


Asunto(s)
Tránsito Gastrointestinal , Canales Iónicos , Mecanotransducción Celular , Animales , Humanos , Ratones , Digestión , Canales Iónicos/metabolismo , Neuronas/metabolismo
15.
Cell Genom ; 3(7): 100326, 2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37492107

RESUMEN

We conducted a genome-wide association study (GWAS) analysis of diverticular disease (DivD) of intestine within 724,372 individuals and identified 150 independent genome-wide significant DNA variants. Integration of the GWAS results with human gut single-cell RNA sequencing data implicated gut myocyte, mesothelial and stromal cells, and enteric neurons and glia in DivD development. Ninety-five genes were prioritized based on multiple lines of evidence, including SLC9A3, a drug target gene of tenapanor used for the treatment of the constipation subtype of irritable bowel syndrome. A DivD polygenic score (PGS) enables effective risk prediction (area under the curve [AUC], 0.688; 95% confidence interval [CI], 0.645-0.732) and the top 20% PGS was associated with ∼3.6-fold increased DivD risk relative to the remaining population. Our statistical and bioinformatic analyses suggest that the mechanism of DivD is through colon structure, gut motility, gastrointestinal mucus, and ionic homeostasis. Our analyses reinforce the link between gastrointestinal disorders and the enteric nervous system through genetics.

16.
Front Biosci (Schol Ed) ; 15(2): 5, 2023 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-37401506

RESUMEN

BACKGROUND: Diabetes mellitus (DM), a prevalent non-communicable disease, is a metabolic condition involving defective pancreatic ß-cells and/or insulin resistance. Researchers are presently exploring traditional medicinal plants to identify alternatives for treating diabetes due to the various disadvantage of current anti-diabetic medicines. OBJECTIVE: The present study evaluated the anti-hyperglycaemic effects of ethanol extracts of five medicinal plants (EEMPs) (Gynura nepalensis, Glochidion thomsonii, Clerodendrum splendens, Clerodendrum infortunatum and Xanthium strumarium) which are traditionally used as an ethnomedicine to treat diabetes and numerous other health problems. METHODS: High-fat fed (HFF) obese rats were used to perform acute in vivo tests, including oral glucose tolerance, feeding test, metabolic studies, and gastrointestinal motility using BaSO4 milk solution. Priliminary phytochemical screening were performed to discover the presence or absence of alkaloids, tannins, saponins, steroids, glycosides, flavonoids, and reducing sugars in extracts. RESULTS: Oral administration of ethanol extracts (250 mg/kg, body weight), along with glucose (18 mmoL/kg body weight), ameliorated glucose tolerance (p < 0.05-0.01). In addition, the extracts improved gut motility (250 mg/kg; p < 0.05-0.001), as well as reduced food intake during the feeding test (250 mg/kg; p < 0.05-0.001). Phytochemical screening of these medicinal plants depicted the presence of flavonoids, alkaloids, tannins, saponins, steroids and reducing sugars. CONCLUSIONS: Phytochemicals such as flavonoids, tannins and saponins may be responsible for the glucose-lowering properties for these plants. Additional research is warranted to fully identify the bioactive phytomolecules and mechanistic pathways that might lead to the development of a viable, cost-effective type 2 diabetes therapy.


Asunto(s)
Alcaloides , Diabetes Mellitus Tipo 2 , Plantas Medicinales , Saponinas , Ratas , Animales , Plantas Medicinales/química , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Dieta Alta en Grasa/efectos adversos , Taninos/farmacología , Taninos/uso terapéutico , Glucosa , Fitoquímicos , Flavonoides/farmacología , Flavonoides/uso terapéutico , Etanol , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Obesidad/tratamiento farmacológico , Saponinas/farmacología , Saponinas/uso terapéutico , Peso Corporal
17.
Front Neurol ; 14: 1200101, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37213895

RESUMEN

Intestinal motility disorders represent a frequent problem in children with neurological impairment. These conditions are characterized by abnormal movements of the gut, which can result in symptoms such as constipation, diarrhea, reflux, and vomiting. The underlying mechanisms leading to dysmotility are various, and the clinical manifestations are often nonspecific. Nutritional management is an important aspect of care for children with gut dysmotility, as it can help to improve their quality of life. Oral feeding, when safe and in the absence of risk of ingestion or severe dysphagia, should always be encouraged. When oral nutrition is insufficient or potentially harmful, it is necessary to switch to an enteral by tube or parenteral nutrition before the onset of malnutrition. In most cases, children with severe gut dysmotility may require feeding via a permanent gastrostomy tube to ensure adequate nutrition and hydration. Drugs may be necessary to help manage gut dysmotility, such as laxatives, anticholinergics and prokinetic agents. Nutritional management of patients with neurological impairment often requires an individualized care plan to optimize growth and nutrition and to improve overall health outcomes. This review tries to sum up most significant neurogenetic and neurometabolic disorders associated with gut dysmotility that may require a specific multidisciplinary care, identifying a proposal of nutritional and medical management.

18.
Elife ; 122023 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-37159507

RESUMEN

Peristaltic movement of the intestine propels food down the length of the gastrointestinal tract to promote nutrient absorption. Interactions between intestinal macrophages and the enteric nervous system regulate gastrointestinal motility, yet we have an incomplete understanding of the molecular mediators of this crosstalk. Here, we identify complement component 1q (C1q) as a macrophage product that regulates gut motility. Macrophages were the predominant source of C1q in the mouse intestine and most extraintestinal tissues. Although C1q mediates the complement-mediated killing of bacteria in the bloodstream, we found that C1q was not essential for the immune defense of the intestine. Instead, C1q-expressing macrophages were located in the intestinal submucosal and myenteric plexuses where they were closely associated with enteric neurons and expressed surface markers characteristic of nerve-adjacent macrophages in other tissues. Mice with a macrophage-specific deletion of C1qa showed changes in enteric neuronal gene expression, increased neurogenic activity of peristalsis, and accelerated intestinal transit. Our findings identify C1q as a key regulator of gastrointestinal motility and provide enhanced insight into the crosstalk between macrophages and the enteric nervous system.


Asunto(s)
Complemento C1q , Sistema Nervioso Entérico , Ratones , Animales , Complemento C1q/metabolismo , Motilidad Gastrointestinal/fisiología , Macrófagos/metabolismo , Tracto Gastrointestinal
19.
Biosci Rep ; 43(4)2023 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-36947541

RESUMEN

RXFP4 is a G protein-coupled receptor (GPCR) in the relaxin family. It has recently been recognised that this receptor and its cognate ligand INSL5 may have a role in the regulation of food intake, gut motility, and other functions relevant to metabolic health and disease. Recent data from reporter-mice showed co-location of Rxfp4 and serotonin (5-HT) in the lower gut. We used human single-cell RNA sequence data (scRNASeq) to show that RXFP4 is in a subset of gut enterochromaffin cells that produce 5-HT in humans. We also used RNAScope to show co-location of Rxfp4 mRNA and 5-HT in mouse colon, confirming prior findings. To understand whether RXFP4 might regulate serotonin production, we developed a cell model using Colo320, a human gut-derived immortalised cell line that produces and releases serotonin. Overexpression of RXFP4 in these cells resulted in a constitutive decrease in cAMP levels in both the basal state and in cells treated with forskolin. Treatment of cells with two RXFP4 agonists, INSL5 derived peptide INSL5-A13 and small molecule compound-4, further reduced cAMP levels. This was paralleled by a reduction in expression of mRNA for TPH1, the enzyme controlling the rate limiting step in the production of serotonin. Overexpression of RXFP4 also attenuated the cAMP-induced release of serotonin from Colo320 cells. Together this demonstrates that serotonin producing enterochromaffin cells are the major site of RXFP4 expression in the gut and that RXFP4 can have inhibitory functional impacts on cAMP production as well as TPH1 expression and serotonin release.


Asunto(s)
Células Enterocromafines , Receptores Acoplados a Proteínas G , Serotonina , Animales , Humanos , Ratones , Células Enterocromafines/metabolismo , Insulina/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Péptidos/química , Receptores de Péptidos/genética , Receptores de Péptidos/metabolismo , ARN Mensajero/genética , Serotonina/metabolismo
20.
Med Mol Morphol ; 56(3): 177-186, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36995439

RESUMEN

Adenomatous polyposis coli (APC) is recognized as an antioncogene related to familial adenomatous polyposis and colorectal cancers. However, APC is a large protein with multiple binding partners, indicating APC has diverse roles besides as a tumor suppressor. We have ever studied the roles of APC by using APC1638T/1638T (APC1638T) mice. Through those studies, we have noticed stools of APC1638T mice were smaller than those of APC+/+ mice and hypothesized there be a disturbance in fecal formation processes in APC1638T mice. The gut motility was morphologically analyzed by immunohistochemical staining of the Auerbach's plexus. Gut microbiota was analyzed by terminal restriction fragment length polymorphism (T-RFLP). IgA concentration in stools was determined by enzyme-linked immunosorbent assay (ELISA). As results, macroscopic findings suggestive of large intestinal dysmotility and microscopic findings of disorganization and inflammation of the plexus were obtained in APC1638T mice. An alteration of microbiota composition, especially increased Bacteroidetes population was observed. Increases in IgA positive cells and dendritic cells in the ileum with high fecal IgA concentration were also confirmed, suggesting over-activation of gut immunity. Our findings will contribute to our understanding of APC's functions in the gastrointestinal motility, and lead to a development of novel therapies for gut dysmotility-related diseases.


Asunto(s)
Proteína de la Poliposis Adenomatosa del Colon , Poliposis Adenomatosa del Colon , Ratones , Animales , Proteína de la Poliposis Adenomatosa del Colon/metabolismo , Inmunoglobulina A
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA