Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 214
Filtrar
1.
Cell Genom ; : 100605, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38981476

RESUMEN

Crosstalk between N6-methyladenosine (m6A) and epigenomes is crucial for gene regulation, but its regulatory directionality and disease significance remain unclear. Here, we utilize quantitative trait loci (QTLs) as genetic instruments to delineate directional maps of crosstalk between m6A and two epigenomic traits, DNA methylation (DNAme) and H3K27ac. We identify 47 m6A-to-H3K27ac and 4,733 m6A-to-DNAme and, in the reverse direction, 106 H3K27ac-to-m6A and 61,775 DNAme-to-m6A regulatory loci, with differential genomic location preference observed for different regulatory directions. Integrating these maps with complex diseases, we prioritize 20 genome-wide association study (GWAS) loci for neuroticism, depression, and narcolepsy in brain; 1,767 variants for asthma and expiratory flow traits in lung; and 249 for coronary artery disease, blood pressure, and pulse rate in muscle. This study establishes disease regulatory paths, such as rs3768410-DNAme-m6A-asthma and rs56104944-m6A-DNAme-hypertension, uncovering locus-specific crosstalk between m6A and epigenomic layers and offering insights into regulatory circuits underlying human diseases.

2.
Am J Cancer Res ; 14(6): 2805-2822, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39005660

RESUMEN

Dysregulation of polyamine metabolism has been associated with the development of many cancers. However, little information has been reported about the associations between elevated extracellular putrescine and epithelial-mesenchymal transition (EMT) of gastric cancer (GC) cells. In this study, the influence of extracellular putrescine on the malignant behavior and EMT of the AGS and MKN-28 cells was investigated, followed by RNA sequencing profiling of transcriptomic alterations and CUT&Tag sequencing capturing H3K27ac variations across the global genome using extracellular putrescine. Our results demonstrated that the administration of extracellular putrescine significantly promoted the proliferation, migration, invasion, and expression of N-cadherin in GC cells. We also observed elevated H3K27ac in MKN-28 cells but not in AGS cells when extracellular putrescine was used. A combination of transcriptomic alterations and genome-wide variations of H3K27ac highlighted the upregulated MAL2 and H3K27ac in its promoter region. Knockdown and overexpression of MAL2 were found to inhibit and promote EMT, respectively, in AGS and MKN-28 cells. We demonstrated that extracellular putrescine could upregulate MAL2 expression by elevating H3K27ac in its promoter region, thus triggering augmented EMT in GC cells.

3.
J Genet Genomics ; 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38969257

RESUMEN

Cold stress in low-temperature environments can trigger changes in gene expression, but epigenomics regulation of temperature stability in vital tissues, including the fat and diencephalon, is still unclear. Here, we explore the cold-induced changes in epigenomic features in the diencephalon and fat tissues of two cold-resistant Chinese pig breeds, Min and Enshi black (ES) pigs, utilizing H3K27ac CUT&Tag, RNA-seq, and selective signature analysis. Our results show significant alterations in H3K27ac modifications in the diencephalon of Min pigs and the fat of ES pigs after cold exposure. Dramatic changes in H3K27ac modifications in Min pigs are primarily associated with genes involved in energy metabolism and hormone regulation, whereas those in ES pigs are primarily associated with immunity-related genes. Moreover, transcription factors PRDM1 and HSF1, which show evidence of selection, are enriched in genomic regions presenting cold-responsive alterations in H3K27ac modification in the Min pig diencephalon and ES pig fat, respectively. Our results indicate the diversity of epigenomic response mechanisms to cold exposure between Min and ES pigs, providing unique epigenetic resources for studies of low-temperature adaptation in large mammals.

4.
Clin Epigenetics ; 16(1): 91, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39014511

RESUMEN

BACKGROUND: Doxorubicin (Dox) is an effective chemotherapeutic drug for various cancers, but its clinical application is limited by severe cardiotoxicity. Dox treatment can transcriptionally activate multiple cardiotoxicity-associated genes in cardiomyocytes, the mechanisms underlying this global gene activation remain poorly understood. METHODS AND RESULTS: Herein, we integrated data from animal models, CUT&Tag and RNA-seq after Dox treatment, and discovered that the level of H3K27ac (a histone modification associated with gene activation) significantly increased in cardiomyocytes following Dox treatment. C646, an inhibitor of histone acetyltransferase, reversed Dox-induced H3K27ac accumulation in cardiomyocytes, which subsequently prevented the increase of Dox-induced DNA damage and apoptosis. Furthermore, C646 alleviated cardiac dysfunction in Dox-treated mice by restoring ejection fraction and reversing fractional shortening percentages. Additionally, Dox treatment increased H3K27ac deposition at the promoters of multiple cardiotoxic genes including Bax, Fas and Bnip3, resulting in their up-regulation. Moreover, the deposition of H3K27ac at cardiotoxicity-related genes exhibited a broad feature across the genome. Based on the deposition of H3K27ac and mRNA expression levels, several potential genes that might contribute to Dox-induced cardiotoxicity were predicted. Finally, the up-regulation of H3K27ac-regulated cardiotoxic genes upon Dox treatment is conservative across species. CONCLUSIONS: Taken together, Dox-induced epigenetic modification, specifically H3K27ac, acts as a molecular switch for the activation of robust cardiotoxicity-related genes, leading to cardiomyocyte death and cardiac dysfunction. These findings provide new insights into the relationship between Dox-induced cardiotoxicity and epigenetic regulation, and identify H3K27ac as a potential target for the prevention and treatment of Dox-induced cardiotoxicity.


Asunto(s)
Cardiotoxicidad , Doxorrubicina , Histonas , Miocitos Cardíacos , Doxorrubicina/efectos adversos , Animales , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Histonas/metabolismo , Histonas/genética , Ratones , Cardiotoxicidad/genética , Cardiotoxicidad/etiología , Apoptosis/efectos de los fármacos , Apoptosis/genética , Epigénesis Genética/efectos de los fármacos , Daño del ADN/efectos de los fármacos , Antibióticos Antineoplásicos/efectos adversos , Masculino , Humanos
5.
Biomedicines ; 12(6)2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38927552

RESUMEN

T cell activation is critical for an effective immune response against pathogens. However, dysregulation contributes to the pathogenesis of autoimmune diseases, including Juvenile Idiopathic Arthritis (JIA). The molecular mechanisms underlying T cell activation are still incompletely understood. T cell activation promotes the acetylation of histone 3 at Lysine 27 (H3K27ac) at enhancer and promoter regions of proinflammatory cytokines, thereby increasing the expression of these genes which is essential for T cell function. Co-activators E1A binding protein P300 (P300) and CREB binding protein (CBP), collectively known as P300/CBP, are essential to facilitate H3K27 acetylation. Presently, the role of P300/CBP in human CD4+ T cells activation remains incompletely understood. To assess the function of P300/CBP in T cell activation and autoimmune disease, we utilized iCBP112, a selective inhibitor of P300/CBP, in T cells obtained from healthy controls and JIA patients. Treatment with iCBP112 suppressed T cell activation and cytokine signaling pathways, leading to reduced expression of many proinflammatory cytokines, including IL-2, IFN-γ, IL-4, and IL-17A. Moreover, P300/CBP inhibition in T cells derived from the inflamed synovium of JIA patients resulted in decreased expression of similar pathways and preferentially suppressed the expression of disease-associated genes. This study underscores the regulatory role of P300/CBP in regulating gene expression during T cell activation while offering potential insights into the pathogenesis of autoimmune diseases. Our findings indicate that P300/CBP inhibition could potentially be leveraged for the treatment of autoimmune diseases such as JIA in the future.

7.
Mol Carcinog ; 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38888205

RESUMEN

The search for novel tumor biomarkers and targets is of significant importance for the early clinical diagnosis and treatment of Hepatocellular Carcinoma (HCC). The mechanisms by which ATP citrate lyase (ACLY) promotes HCC progression remain unclear, and the connection between ACLY and REGγ has not been reported in the literature. In vitro, we will perform overexpression/knockdown of ACLY or overexpression/knockdown of REGγ to investigate the impact of ACLY on HCC cells and its underlying mechanisms. In vivo, we will establish mouse tumor models with overexpression/knockdown of ACLY or overexpression/knockdown of REGγ to study the effect of ACLY on mouse tumors and its mechanisms. Firstly, ACLY overexpression upregulated REGγ expression and activated the REGγ-proteasome pathway, leading to changes in the expression of downstream signaling pathway proteins. This promoted HCC cell proliferation, invasion, and migration in vitro, as well as tumor growth and metastasis in vivo. Secondly, ACLY overexpression increased acetyl-CoA production, upregulated the acetylation level of the REGγ promoter region histone H3K27ac, and subsequently induced REGγ expression. Lastly, enhanced acetylation of the REGγ promoter region histone H3K27ac resulted in upregulated REGγ expression, activation of the REGγ-proteasome pathway, changes in downstream signaling pathway protein expression, and promotion of HCC cell proliferation, invasion, and migration in vitro, as well as tumor growth and metastasis in vivo. Conversely, REGγ knockdown reversed these effects. ACLY and REGγ may serve as potential biomarkers and clinical therapeutic targets for HCC.

8.
Comput Struct Biotechnol J ; 23: 2190-2199, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38817966

RESUMEN

Spatiotemporal regulation of gene expression is controlled by transcription factor (TF) binding to regulatory elements, resulting in a plethora of cell types and cell states from the same genetic information. Due to the importance of regulatory elements, various sequencing methods have been developed to localise them in genomes, for example using ChIP-seq profiling of the histone mark H3K27ac that marks active regulatory regions. Moreover, multiple tools have been developed to predict TF binding to these regulatory elements based on DNA sequence. As altered gene expression is a hallmark of disease phenotypes, identifying TFs driving such gene expression programs is critical for the identification of novel drug targets. In this study, we curated 84 chromatin profiling experiments (H3K27ac ChIP-seq) where TFs were perturbed through e.g., genetic knockout or overexpression. We ran nine published tools to prioritize TFs using these real-world datasets and evaluated the performance of the methods in identifying the perturbed TFs. This allowed the nomination of three frontrunner tools, namely RcisTarget, MEIRLOP and monaLisa. Our analyses revealed opportunities and commonalities of tools that will help to guide further improvements and developments in the field.

9.
Endocrinology ; 165(6)2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38717933

RESUMEN

CYP19A1 encodes aromatase, which converts testosterone to estrogen, and is induced during placental maturation. To elucidate the molecular mechanism underlying this function, histone methylation was analyzed using the placental cytotrophoblast cell line, JEG3. Treatment of JEG3 cells with 3-deazaneplanocin A, an inhibitor of several methyltransferases, resulted in increased CYP19A1 expression, accompanied by removal of the repressive mark H3K27me3 from the CYP19A1 promoter. However, this increase was not observed in cells treated with GSK126, another specific inhibitor for H3K27me3 methylation. Expression of TFAP2C, which encodes AP-2γ, a transcription factor that regulates CYP19A1, was also elevated on 3-deazaneplanocin A treatment. Interestingly, TFAP2C messenger RNA (mRNA) was readily degraded in JEG3 cells but protected from degradation in the presence of 3-deazaneplanocin A. TFAP2C mRNA contained N6-methyladenosines, which were reduced on drug treatment. These observations indicate that the TFAP2C mRNA undergoes adenosine methylation and rapid degradation, whereas 3-deazaneplanocin A suppresses methylation, resulting in an increase in AP-2γ levels. We conclude that the increase in AP-2γ expression via stabilization of the TFAP2C mRNA is likely to underlie the increased CYP19A1 expression.


Asunto(s)
Aromatasa , Placenta , Estabilidad del ARN , Factor de Transcripción AP-2 , Humanos , Factor de Transcripción AP-2/metabolismo , Factor de Transcripción AP-2/genética , Aromatasa/genética , Aromatasa/metabolismo , Femenino , Placenta/metabolismo , Placenta/efectos de los fármacos , Embarazo , Estabilidad del ARN/efectos de los fármacos , Adenosina/análogos & derivados , Adenosina/farmacología , ARN Mensajero/metabolismo , ARN Mensajero/genética , Línea Celular Tumoral , Histonas/metabolismo
10.
Clin Transl Med ; 14(6): e1692, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38804602

RESUMEN

BACKGROUND: Although numerous studies have indicated that activated pyroptosis can enhance the efficacy of antitumour therapy in several tumours, the precise mechanism of pyroptosis in colorectal cancer (CRC) remains unclear. METHODS: Pyroptosis in CRC cells treated with antitumour agents was assessed using various techniques, including Western blotting, lactate dehydrogenase release assay and microscopy analysis. To uncover the epigenetic mechanisms that regulate NLRP3, chromatin changes and NLRP3 promoter histone modifications were assessed using Assay for Transposase-Accessible Chromatin using sequencing and RNA sequencing. Chromatin immunoprecipitation‒quantitative polymerase chain reaction was used to investigate the NLRP3 transcriptional regulatory mechanism. Additionally, xenograft and patient-derived xenograft models were constructed to validate the effects of the drug combinations. RESULTS: As the core molecule of the inflammasome, NLRP3 expression was silenced in CRC, thereby limiting gasdermin D (GSDMD)-mediated pyroptosis. Supplementation with NLRP3 can rescue pyroptosis induced by antitumour therapy. Overexpression of HDAC2 in CRC silences NLRP3 via epigenetic regulation. Mechanistically, HDAC2 suppressed chromatin accessibility by eliminating H3K27 acetylation. HDAC2 knockout promotes H3K27ac-mediated recruitment of the BRD4-p-P65 complex to enhance NLRP3 transcription. Inhibiting HDAC2 by Santacruzamate A in combination with classic antitumour agents (5-fluorouracil or regorafenib) in CRC xenograft-bearing animals markedly activated pyroptosis and achieved a significant therapeutic effect. Clinically, HDAC2 is inversely correlated with H3K27ac/p-P65/NLRP3 and is a prognostic factor for CRC patients. CONCLUSION: Collectively, our data revealed a crucial role for HDAC2 in inhibiting NLRP3/GSDMD-mediated pyroptosis in CRC cells and highlighted HDAC2 as a potential therapeutic target for antitumour therapy. HIGHLIGHTS: Silencing of NLRP3 limits the GSDMD-dependent pyroptosis in colorectal cancer. HDAC2-mediated histone deacetylation leads to epigenetic silencing of NLRP3. HDAC2 suppresses the NLRP3 transcription by inhibiting the formation of H3K27ac/BRD4/p-P65 complex. Targeting HDAC2 activates pyroptosis and enhances therapeutic effect.


Asunto(s)
Neoplasias Colorrectales , Histona Desacetilasa 2 , Proteína con Dominio Pirina 3 de la Familia NLR , Piroptosis , Piroptosis/efectos de los fármacos , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Humanos , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Histona Desacetilasa 2/metabolismo , Histona Desacetilasa 2/genética , Ratones , Animales , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Gasderminas , Proteínas de Unión a Fosfato
11.
Int J Mol Sci ; 25(10)2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38791299

RESUMEN

Type 1 diabetes (T1D) affects gastrointestinal (GI) motility, favoring gastroparesis, constipation, and fecal incontinence, which are more prevalent in women. The mechanisms are unknown. Given the G-protein-coupled estrogen receptor's (GPER) role in GI motility, we investigated sex-related diabetes-induced epigenetic changes in GPER. We assessed GPER mRNA and protein expression levels using qPCR and Western blot analyses, and quantified the changes in nuclear DNA methyltransferases and histone modifications (H3K4me3, H3Ac, and H3K27Ac) by ELISA kits. Targeted bisulfite and chromatin immunoprecipitation assays were used to evaluate DNA methylation and histone modifications around the GPER promoter by chromatin immunoprecipitation assays in gastric and colonic smooth muscle tissues of male and female control (CTR) and non-obese diabetic (NOD) mice. GPER expression was downregulated in NOD, with sex-dependent variations. In the gastric smooth muscle, not in colonic smooth muscle, downregulation coincided with differences in methylation ratios between regions 1 and 2 of the GPER promoter of NOD. DNA methylation was higher in NOD male colonic smooth muscle than in NOD females. H3K4me3 and H3ac enrichment decreased in NOD gastric smooth muscle. H3K4me3 levels diminished in the colonic smooth muscle of NOD. H3K27ac levels were unaffected, but enrichment decreased in NOD male gastric smooth muscle; however, it increased in the NOD male colonic smooth muscle and decreased in the female NOD colonic smooth muscle. Male NOD colonic smooth muscle exhibited decreased H3K27ac levels, not female, whereas female NOD colonic smooth muscle demonstrated diminished enrichment of H3ac at the GPER promoter, contrary to male NOD. Sex-specific epigenetic mechanisms contribute to T1D-mediated suppression of GPER expression in the GI tract. These insights advance our understanding of T1D complications and suggest promising avenues for targeted therapeutic interventions.


Asunto(s)
Colon , Metilación de ADN , Epigénesis Genética , Histonas , Músculo Liso , Regiones Promotoras Genéticas , Receptores Acoplados a Proteínas G , Animales , Femenino , Masculino , Ratones , Colon/metabolismo , Colon/patología , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/genética , Histonas/metabolismo , Ratones Endogámicos NOD , Músculo Liso/metabolismo , Receptores de Estrógenos/metabolismo , Receptores de Estrógenos/genética , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Estómago/patología
12.
ACS Nano ; 18(17): 11103-11119, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38623806

RESUMEN

In recent years, carbon nanotubes have emerged as a widely used nanomaterial, but their human exposure has become a significant concern. In our former study, we reported that pulmonary exposure of multiwalled carbon nanotubes (MWCNTs) promoted tumor metastasis of breast cancer; macrophages were key effectors of MWCNTs and contributed to the metastasis-promoting procedure in breast cancer, but the underlying molecular mechanisms remain to be explored. As a follow-up study, we herein demonstrated that MWCNT exposure in breast cancer cells and macrophage coculture systems promoted metastasis of breast cancer cells both in vitro and in vivo; macrophages were skewed into M2 polarization by MWCNT exposure. LncRNA NBR2 was screened out to be significantly decreased in MWCNTs-stimulated macrophages through RNA-seq; depletion of NBR2 led to the acquisition of M2 phenotypes in macrophages by activating multiple M2-related pathways. Specifically, NBR2 was found to positively regulate the downstream gene TBX1 through H3k27ac activation. TBX1 silence rescued NBR2-induced impairment of M2 polarization in IL-4 & IL-13-stimulated macrophages. Moreover, NBR2 overexpression mitigated the enhancing effects of MWCNT-exposed macrophages on breast cancer metastasis. This study uncovered the molecular mechanisms underlying breast cancer metastasis induced by MWCNT exposure.


Asunto(s)
Neoplasias de la Mama , Macrófagos , Nanotubos de Carbono , Nanotubos de Carbono/química , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Humanos , Femenino , Ratones , Animales , Proteínas de Dominio T Box/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Metástasis de la Neoplasia , Ratones Endogámicos BALB C , Línea Celular Tumoral
13.
Res Sq ; 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38645262

RESUMEN

Enhancers are fundamental to gene regulation. Post-translational modifications by the small ubiquitin-like modifiers (SUMO) modify chromatin regulation enzymes, including histone acetylases and deacetylases. However, it remains unclear whether SUMOylation regulates enhancer marks, acetylation at the 27th lysine residue of the histone H3 protein (H3K27Ac). To investigate whether SUMOylation regulates H3K27Ac, we performed genome-wide ChIP-seq analyses and discovered that knockdown (KD) of the SUMO activating enzyme catalytic subunit UBA2 reduced H3K27Ac at most enhancers. Bioinformatic analysis revealed that TFAP2C-binding sites are enriched in enhancers whose H3K27Ac was reduced by UBA2 KD. ChIP-seq analysis in combination with molecular biological methods showed that TFAP2C binding to enhancers increased upon UBA2 KD or inhibition of SUMOylation by a small molecule SUMOylation inhibitor. However, this is not due to the SUMOylation of TFAP2C itself. Proteomics analysis of TFAP2C interactome on the chromatin identified histone deacetylation (HDAC) and RNA splicing machineries that contain many SUMOylation targets. TFAP2C KD reduced HDAC1 binding to chromatin and increased H3K27Ac marks at enhancer regions, suggesting that TFAP2C is important in recruiting HDAC machinery. Taken together, our findings provide insights into the regulation of enhancer marks by SUMOylation and TFAP2C and suggest that SUMOylation of proteins in the HDAC machinery regulates their recruitments to enhancers.

14.
Anim Biosci ; 37(8): 1317-1332, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38665091

RESUMEN

OBJECTIVE: Rare study of the non-coding and regulatory regions of the genome limits our ability to decode the mechanisms of fatty liver hemorrhage syndrome (FLHS) in chickens. METHODS: Herein, we constructed the high-fat diet-induced FLHS chicken model to investigate the genome-wide active enhancers and transcriptome by H3K27ac target chromatin immunoprecipitation sequencing (ChIP-seq) and RNA sequencing (RNA-Seq) profiles of normal and FLHS liver tissues. Concurrently, an integrative analysis combining ChIP-seq with RNA-Seq and a comparative analysis with chicken FLHS, rat non-alcoholic fatty liver disease (NAFLD) and human NAFLD at the transcriptome level revealed the enhancer and super enhancer target genes and conservative genes involved in metabolic processes. RESULTS: In total, 56 and 199 peak-genes were identified in upregulated peak-genes positively regulated by H3K27ac (Cor (peak-gene correlation) ≥0.5 and log2(FoldChange) ≥1) (PP) and downregulated peak-genes positively regulated by H3K27ac (Cor (peak-gene correlation) ≥0.5 and log2(FoldChange)≤-1) (PN), respectively; then we screened key regulatory targets mainly distributing in lipid metabolism (PCK1, APOA4, APOA1, INHBE) and apoptosis (KIT, NTRK2) together with MAPK and PPAR signaling pathway in FLHS. Intriguingly, PCK1 was also significantly covered in up-regulated super-enhancers (SEs), which further implied the vital role of PCK1 during the development of FLHS. CONCLUSION: Together, our studies have identified potential therapeutic biomarkers of PCK1 and elucidated novel insights into the pathogenesis of FLHS, especially for the epigenetic perspective.

15.
J Anim Sci Biotechnol ; 15(1): 40, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38448979

RESUMEN

BACKGROUND: Fatty liver disease causes huge economic losses in the poultry industry due to its high occurrence and lethality rate. Three-dimensional (3D) chromatin architecture takes part in disease processing by regulating transcriptional reprogramming. The study is carried out to investigate the alterations of hepatic 3D genome and H3K27ac profiling in early fatty liver (FLS) and reveal their effect on hepatic transcriptional reprogramming in laying hens. RESULTS: Results show that FLS model is constructed with obvious phenotypes including hepatic visible lipid deposition as well as higher total triglyceride and cholesterol in serum. A/B compartment switching, topologically associating domain (TAD) and chromatin loop changes are identified by high-throughput/resolution chromosome conformation capture (HiC) technology. Targeted genes of these alternations in hepatic 3D genome organization significantly enrich pathways related to lipid metabolism and hepatic damage. H3K27ac differential peaks and differential expression genes (DEGs) identified through RNA-seq analysis are also enriched in these pathways. Notably, certain DEGs are found to correspond with changes in 3D chromatin structure and H3K27ac binding in their promoters. DNA motif analysis reveals that candidate transcription factors are implicated in regulating transcriptional reprogramming. Furthermore, disturbed folate metabolism is observed, as evidenced by lower folate levels and altered enzyme expression. CONCLUSION: Our findings establish a link between transcriptional reprogramming changes and 3D chromatin structure variations during early FLS formation, which provides candidate transcription factors and folate as targets for FLS prevention or treatment.

16.
Heliyon ; 10(4): e25725, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38390098

RESUMEN

Background: A super-enhancer (SE) is a huge cluster of multiple enhancers that control the key genes for cell identity and function. The rise of advanced chromatin immunoprecipitation sequencing (ChIP-seq) technology such as Cleavage Under Targets and Tagmentation (CUT&Tag) allows more SEs to be discovered. However, SE studies in Luchuan and Duroc pigs are very rare in animal husbandry. Results: We used the CUT&Tag technique to identify 145 and 378 SEs from the adipose tissues of Luchuan and Duroc pigs, respectively. There were significant differences in the peak coverage ratio of SE peaks in the gene promoter region between the two breeds. Not only that, peak signals at the start and end point of the SE peak profile showed obvious spikes. The proximal target genes of SE were highly expressed compared with the background genes and the typical enhancer target genes. Subsequently, in conjoint analysis with high-throughput chromosome conformation capture sequencing (Hi-C seq) data, we predicted the remote regulatory genes of SE and found that their expression level was related to the distance of SE extended to the loop's anchor, but not the length of loops. According to our prediction model, SEs can maintain promoter accessibility of partial remote target genes through loop domains. Finally, a batch of SEs closely related to fat metabolism traits were obtained by performing a coalition analysis of quantitative trait loci and SE data. Conclusions: This work enabled us to obtain hundreds of SEs from Luchuan and Duroc pigs. Our model provides a new method for predicting the SE remote target genes based on loop domains, and to further explore the potential role of super-enhancer in the regulation of fat metabolism.

17.
Cancer Cell Int ; 24(1): 81, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38383388

RESUMEN

BACKGROUND: Acute myeloid leukemia (AML) is a malignancy of the hematopoietic system, and childhood AML accounts for about 20% of pediatric leukemia. ANP32B, an important nuclear protein associated with proliferation, has been found to regulate hematopoiesis and CML leukemogenesis by inhibiting p53 activity. However, recent study suggests that ANP32B exerts a suppressive effect on B-cell acute lymphoblastic leukemia (ALL) in mice by activating PU.1. Nevertheless, the precise underlying mechanism of ANP32B in AML remains elusive. RESULTS: Super enhancer related gene ANP32B was significantly upregulated in AML patients. The expression of ANP32B exhibited a negative correlation with overall survival. Knocking down ANP32B suppressed the proliferation of AML cell lines MV4-11 and Kasumi-1, along with downregulation of C-MYC expression. Additionally, it led to a significant decrease in H3K27ac levels in AML cell lines. In vivo experiments further demonstrated that ANP32B knockdown effectively inhibited tumor growth. CONCLUSIONS: ANP32B plays a significant role in promoting tumor proliferation in AML. The downregulation of ANP32B induces cell cycle arrest and promotes apoptosis in AML cell lines. Mechanistic analysis suggests that ANP32B may epigenetically regulate the expression of MYC through histone H3K27 acetylation. ANP32B could serve as a prognostic biomarker and potential therapeutic target for AML patients.

18.
Artículo en Inglés | MEDLINE | ID: mdl-38347779

RESUMEN

OBJECTIVE: Long non-coding RNAs (lncRNAs) are of great importance in the process of colorectal cancer (CRC) tumorigenesis and progression. However, the functions and underlying molecular mechanisms of the majority of lncRNAs in CRC still lack clarity. METHODS: A Quantitative real-time polymerase chain reaction (qRT-PCR) was employed to detect lncRNA NUTM2A-AS1 expression in CRC cell lines. Cell counting kit 8 (CCK-8) assay and flow cytometry were used to examine the biological functions of lncRNA NUTM2A-AS1 in the proliferation and apoptosis of CRC cells. RT-qPCR and western blot were implemented for the detection of cell proliferation-, apoptosis-related proteins, and FAM3C. Bioinformatics analysis and dual- luciferase reporter assays were utilized to identify the mutual regulatory mechanism of ceRNAs. RESULTS: lncRNA NUTM2A-AS1 notably elevated in CRC cell lines and the silencing of NUTM2A- AS1 declined proliferation and facilitated apoptosis. Mechanistically, NUTM2A-AS1 was transcriptionally activated by histone H3 on lysine 27 acetylation (H3K27ac) enriched at its promoter region, and NUTM2A-AS1 acted as a sponge for miR-126-5p, leading to the upregulation of FAM3C expression in CRC cell lines. CONCLUSION: Our research proposed NUTM2A-AS1 as an oncogenic lncRNA that facilitates CRC malignancy by upregulating FAM3C expression, which might provide new insight and a promising therapeutic target for the diagnosis and treatment of CRC.

19.
Cell Signal ; 116: 111044, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38211842

RESUMEN

High-grade serous ovarian cancer (HGSOC) is the most lethal histotype of ovarian cancer due to its unspecific symptoms in part. ALDH1A3 (aldehyde dehydrogenase 1 family member A3) is a key enzyme for acetyl-CoA production involving aggressive behaviors of cancers. However, ALDH1A3's effects and molecular mechanisms in HGSOC remain to be clarified. Using RNA-seq and publicly available datasets, ALDH1A3 was found to be highly expressed in HGSOC, and associated with poor survival. Knockdown of ALDH1A3 prevented HGSOC tumorigenesis and enhanced cell sensitivity to paclitaxel or cisplatin. ALDH1A3 expression in HGSOC cells was found to be increased by hypoxia, but decreased by HIF-1α inhibitor KC7F2. The dual-luciferase reporter assay showed that the increased transcriptional activity of ALDH1A3 induced by HIF-1α overexpression was reduced by KC7F2. In addition, PITX1 (paired like homeodomain 1) was identified to be inhibited by ALDH1A3 knockdown, and PITX1 depletion inhibited cell proliferation. The mechanistic studies showed that ALDH1A3 knockdown reduced the acetylation of histone 3 lysine 27 (H3K27ac). Treatment of exogenous acetate with NaOAc or inhibition of histone deacetylase with Pracinostat increased H3K27ac and PITX1 levels. CHIP assay demonstrated a significant enrichment of H3K27ac at the PITX1 promoter, and ALDH1A3 knockdown reduced the binding between H3K27ac and PITX1. Taken together, our data suggest that ALDH1A3, transcriptional activated by HIF-1α, promotes tumorigenesis and decreases chemosensitivity by increasing H3K27ac of PITX1 promoter in HGSOC.


Asunto(s)
Carcinogénesis , Neoplasias Ováricas , Femenino , Humanos , Carcinogénesis/genética , Transformación Celular Neoplásica , Neoplasias Ováricas/genética , Epigénesis Genética , Acetilación
20.
Int J Biol Sci ; 20(3): 968-986, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38250161

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is characterized by fibrotic matrix deposition and irreversible aberrant tissue remodeling. Their mechanisms of action are associated with the activation of macrophages and a disturbed immune environment. We aim to determine how these activated macrophages influenced the pathogenesis of pulmonary fibrosis. We found the fibrotic areas of IPF patients contained more serum and glucocorticoid-induced kinase 1 (SGK1)-positive and M2-type macrophages. Similarly, bleomycin (BLM)+LPS significantly triggered high expression of SGK1 in the IPF mice, accompanied by destroyed lung structure and function, increased fibrosis markers and disturbed immune microenvironment. Mechanistically, SGK1 markedly promoted the reprogramming of M2-type macrophages in fibrotic lungs by triggering glycogen synthase kinase 3beta (GSK3ß)-tat-interacting protein 60 (TIP60)- histone-3 lysine-27 acetylation (H3K27ac) signalings, which further released chemokine (C-C motif) ligand 9 (CCL9) to attract Th17 cells and delivered TGF-ß to fibroblasts for synergistically destroying immune microenvironment, which was largely reversed by macrophage depletion in mice. We took macrophages as the entry point to deeply analyze IPF pathogenesis and further provided insights for the development of novel drugs represented by SGK1.


Asunto(s)
Glucocorticoides , Fibrosis Pulmonar Idiopática , Proteínas Serina-Treonina Quinasas , Animales , Humanos , Ratones , Acetilación , Homeostasis , Macrófagos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA