Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
1.
Anal Chim Acta ; 1316: 342820, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-38969422

RESUMEN

This research presents an innovative reflective fiber optic probe structure, mutinously designed to detect H7N9 avian influenza virus gene precisely. This innovative structure skillfully combines multimode fiber (MMF) with a thin-diameter seven-core photonic crystal fiber (SCF-PCF), forming a semi-open Fabry-Pérot (FPI) cavity. This structure has demonstrated exceptional sensitivity in light intensity-refractive index (RI) response through rigorous theoretical and experimental validation. The development of a quasi-distributed parallel sensor array, which provides temperature compensation during measurements, has achieved a remarkable RI response sensitivity of up to 532.7 dB/RIU. The probe-type fiber optic sensitive unit, expertly functionalized with streptavidin, offers high specificity in detecting H7N9 avian influenza virus gene, with an impressively low detection limit of 10-2 pM. The development of this biosensor marks a significant development in biological detection, offering a practical engineering solution for achieving high sensitivity and specificity in light-intensity-modulated biosensing. Its potential for wide-ranging applications in various fields is now well-established.


Asunto(s)
Técnicas Biosensibles , Subtipo H7N9 del Virus de la Influenza A , Temperatura , Técnicas Biosensibles/métodos , Subtipo H7N9 del Virus de la Influenza A/genética , Subtipo H7N9 del Virus de la Influenza A/aislamiento & purificación , Fibras Ópticas , Límite de Detección , Tecnología de Fibra Óptica/métodos , Animales , Genes Virales
2.
Virol J ; 20(1): 219, 2023 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-37773164

RESUMEN

Influenza H7N9 virus causes human infections with about 40% case fatality rate. The severe cases usually present with pneumonia; however, some present with central nervous system complications. Pneumonia syndrome is attributed to the cytokine storm after infection with H7N9, but the pathogenic mechanism of central nervous system complications has not been clarified. This study used immortalized human brain microvascular endothelial cells hCMEC/D3 to simulate the blood-brain barrier. It demonstrated that H7N9 virus could infect brain microvascular endothelial cells and compromise the blood-brain barrier integrity and permeability by down-regulating the expression of cell junction-related proteins, including claudin-5, occludin, and vascular endothelial (VE)-cadherin. These results suggested that H7N9 could infect the blood-brain barrier in vitro and affect its functions, which could be a potential mechanism for the pathogenesis of H7N9 viral encephalopathy.


Asunto(s)
Subtipo H7N9 del Virus de la Influenza A , Gripe Humana , Neumonía , Humanos , Células Endoteliales/metabolismo , Encéfalo
3.
Virus Genes ; 59(5): 716-722, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37395889

RESUMEN

This study aims to screen and identify specific cluster miRNAs of H7N9 virus-infected N2a cells and explore the possible pathogenesis of these miRNAs. The N2a cells are infected with H7N9 and H1N1 influenza viruses, and the cells are collected at 12, 24 and 48 h to extract total RNA. To sequence miRNAs and identify different virus-specific miRNAs, high-throughput sequencing technology is used. Fifteen H7N9 virus-specific cluster miRNAs are screened, and eight of them are included in the miRBase database. These cluster-specific miRNAs regulate many signaling pathways, such as the PI3K-Akt signaling pathway, the RAS signaling pathway, the cAMP signaling pathway, actin cytoskeleton regulation and cancer-related genes. The study provides a scientific basis for the pathogenesis of H7N9 avian influenza, which is regulated by miRNAs.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Subtipo H7N9 del Virus de la Influenza A , Gripe Aviar , Gripe Humana , MicroARNs , Animales , Humanos , Subtipo H7N9 del Virus de la Influenza A/genética , MicroARNs/genética , Subtipo H1N1 del Virus de la Influenza A/genética , Fosfatidilinositol 3-Quinasas , Gripe Humana/genética
4.
Vaccine ; 40(47): 6767-6775, 2022 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-36243592

RESUMEN

Avian influenza H7N9 virus has first emerged in 2013 and since then has spread in China in five seasonal waves. In humans, influenza H7N9 virus infection is associated with a high fatality rate; thus, an effective vaccine for this virus is needed. In the present study, we evaluated the usefulness of dissolving microneedles (MNs) loaded with influenza H7N9 vaccine in terms of the dissolution time, insertion capacity, insertion depth, and structural integrity of H7N9 virus in vitro. Our in vitro results showed MNs dissolved within 6 mins. The depth of skin penetration was 270 µm. After coating with a matrix material solution, the H7N9 proteins were agglomerated. We detected the H7N9 delivery time and humoral immune response in vivo. In a mouse model, the antigen retention time was longer for MNs than for intramuscular (IM) injection. The humoral response showed that similar to IM administration, MN administration increased the levels of functional and systematic antibodies and protection against the live influenza A/Anhui/01/2013 virus (Ah01/H7N9). The protection level was determined by the analysis of pathological sections of infected lungs. MN and IM administration yielded results superior to those in the control group. Taken together, these findings demonstrate that the use of dissolving MNs to deliver influenza H7N9 vaccines is a promising immunization approach.


Asunto(s)
Subtipo H7N9 del Virus de la Influenza A , Vacunas contra la Influenza , Gripe Humana , Infecciones por Orthomyxoviridae , Humanos , Ratones , Animales , Ratones Endogámicos BALB C , Inmunización/métodos , Anticuerpos Antivirales
5.
Cells ; 11(5)2022 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-35269402

RESUMEN

Avian influenza A (H7N9) virus infections frequently lead to acute respiratory distress syndrome and death in humans. The emergence of H7N9 virus infections is a serious public health threat. To identify virus-host interaction differences between the highly virulent H7N9 and pandemic influenza H1N1 (pdmH1N1), RNA sequencing was performed of normal human bronchial epithelial (NHBE) cells infected with either virus. The transcriptomic analysis of host cellular responses to viral infection enables the identification of potential cellular factors related to infection. Significantly different gene expression patterns were found between pdmH1N1- and H7N9-infected NHBE cells. In addition, the H7N9 virus infection induced strong immune responses, while cellular repair mechanisms were inhibited. The differential expression of specific factors observed between avian H7N9 and pdmH1N1 influenza virus strains can account for variations in disease pathogenicity. These findings provide a framework for future studies examining the molecular mechanisms underlying the pathogenicity of avian H7N9 virus.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Subtipo H5N1 del Virus de la Influenza A , Subtipo H7N9 del Virus de la Influenza A , Gripe Humana , Animales , Células Epiteliales , Humanos , Subtipo H5N1 del Virus de la Influenza A/genética , Subtipo H7N9 del Virus de la Influenza A/genética , Transcriptoma/genética
6.
Vaccines (Basel) ; 10(1)2022 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-35062791

RESUMEN

BACKGROUND: Short peptide hydrogel was reported as a possible adjuvant for vaccines. In order to evaluate whether the Tetra-Peptide Hydrogel can be a promising adjuvant for an H7N9 vaccine against the highly pathogenic H7N9 virus, we conducted this study. METHODS: Tetra-Peptide Hydrogels (D and L conformations) were prepared by a self-assembly system using a Naproxen acid modified tetra peptide of GFFY (Npx-GFFY). Mice received two immunizations with the D-Tetra-Peptide Hydrogel adjuvant vaccine, the L-Tetra-Peptide Hydrogel adjuvant vaccine, or the split vaccine. Fourteen days following the second dose, the mice were challenged with the highly pathogenic A/Guangdong/GZ8H002/2017(H7N9) virus. The mice were observed for signs of illness, weight loss, pathological alterations of the lung tissues and immune responses in the following 2 weeks. RESULTS: The D/L-Tetra-Peptide Hydrogels resembled long bars with hinges on each other, with a diameter of ~10 nm. The H7N9 vaccine was observed to adhere to the hydrogel. All the unvaccinated mice were dead by 8 days post infection with H7N9. The mice immunized by the split H7N9 vaccine were protected against infection with H7N9. Mice immunized by D/L-Tetra-Peptide Hydrogel adjuvant vaccines experienced shorter symptomatic periods and their micro-neutralization titers were higher than in the split H7N9 vaccine at 2 weeks post infection. The hemagglutinating inhibition (HI) titer in the L-Tetra-Peptide Hydrogel adjuvant vaccine group was higher than that in the split H7N9 vaccine 1 week and 2 weeks post infection. The HI titer in the D-Tetra-Peptide Hydrogel adjuvant vaccine group was higher than that in the split H7N9 vaccine at 2 weeks post infection. CONCLUSION: The D/L Tetra-Peptide Hydrogels increased the protection of the H7N9 vaccine and could be promising adjuvants for H7N9 vaccines against highly pathogenic H7N9 virus.

7.
Natl Sci Rev ; 9(1): nwab137, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35087672

RESUMEN

The H7N9 influenza virus emerged in China in 2013, causing more than 1560 human infections, 39% of which were fatal. A 'cytokine storm' in the lungs of H7N9 patients has been linked to a poor prognosis and death; however, the underlying mechanism that triggers the cytokine storm is unknown. Here, we found that efficient replication of the H7N9 virus in mouse lungs activates gasdermin E (GSDME)-mediated pyroptosis in alveolar epithelial cells, and that the released cytosolic contents then trigger a cytokine storm. Knockout of Gsdme switched the manner of death of A549 and human primary alveolar epithelial cells from pyroptosis to apoptosis upon H7N9 virus infection, and Gsdme knockout mice survived H7N9 virus lethal infection. Our findings reveal that GSDME activation is a key and unique mechanism for the pulmonary cytokine storm and lethal outcome of H7N9 virus infection and thus opens a new door for the development of antivirals against the H7N9 virus.

8.
Artículo en Inglés | WPRIM (Pacífico Occidental) | ID: wpr-1032009

RESUMEN

@#Avian influenza subtype A(HxNy) viruses are zoonotic and may occasionally infect humans through direct or indirect contact, resulting in mild to severe illness and death. Member States in the Western Pacific Region (WPR) communicate and notify the World Health Organization of any human cases of A(HxNy) through the International Health Regulations (IHR 2005) mechanism. This report includes all notifications in the WPR with illness onset dates from 1 November 2003 to 31 July 2022. During this period, there were 1972 human infections with nine different A(HxNy) subtypes notified in the WPR. Since the last report, an additional 134 human avian influenza infections were notified from 1 October 2017 to 31 July 2022. In recent years there has been a change in the primary subtypes and frequency of reports of human A(HxNy) in the region, with a reduction of A(H7N9) and A(H5N1), and conversely an increase of A(H5N6) and A(H9N2). Furthermore, three new subtypes A(H7N4), A(H10N3) and A(H3N8) notified from the People’s Republic of China were the first ever recorded globally. The public health risk from known A(HxNy) viruses remains low as there is no evidence of person-to-person transmission. However, the observed changes in A(HxNy) trends reinforce the need for effective and rapid identification to mitigate the threat of a pandemic from avian influenza if person-to-person transmission were to occur.

9.
Front Cell Infect Microbiol ; 11: 688007, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34164347

RESUMEN

Environmental transmission of viruses to humans has become an early warning for potential epidemic outbreaks, such as SARS-CoV-2 and influenza virus outbreaks. Recently, an H7N9 virus, A/environment/Hebei/621/2019 (H7N9), was isolated by environmental swabs from a live poultry market in Hebei, China. We found that this isolate could be transmitted by direct contact and aerosol in mammals. More importantly, after 5 passages in mice, the virus acquired two adaptive mutations, PB1-H115Q and B2-E627K, exhibiting increased virulence and aerosol transmissibility. These results suggest that this H7N9 virus might potentially be transmitted between humans through environmental or airborne routes.


Asunto(s)
Exposición a Riesgos Ambientales , Subtipo H7N9 del Virus de la Influenza A , Gripe Aviar , Gripe Humana , Animales , China/epidemiología , Humanos , Gripe Aviar/epidemiología , Gripe Humana/epidemiología , Ratones , Aves de Corral/virología
10.
Appl Microbiol Biotechnol ; 105(8): 3235-3248, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33770244

RESUMEN

Many cases of avian influenza A(H7N9) virus infection in humans have been reported since its first emergence in 2013. The disease is of concern because most patients have become severely ill with roughly 30% mortality rate. Because the threat in public health caused by H7N9 virus remains high, advance preparedness is essentially needed. In this study, the recombinant H7N9 hemagglutinin (HA) was expressed in insect cells and purified for generation of two monoclonal antibodies, named F3-2 and 1C6B. F3-2 can only recognize the H7N9 HA without having cross-reactivity with HA proteins of H1N1, H3N2, H5N1, and H7N7. 1C6B has the similar specificity with F3-2, but 1C6B can also bind to H7N7 HA. The binding epitope of F3-2 is mainly located in the region of H7N9 HA(299-307). The binding epitope of 1C6B is located in the region of H7N9 HA(489-506). F3-2 and 1C6B could not effectively inhibit the hemagglutination activity of H7N9 HA. However, F3-2 can prevent H7N9 HA from trypsin cleavage and can bind to H7N9 HA which has undergone pH-induced conformational change. F3-2 also has the ability of binding to H7N9 viral particles and inhibiting H7N9 virus infection to MDCK cells with the IC50 value of 22.18 µg/mL. In addition, F3-2 and 1C6B were utilized for comprising a lateral flow immunochromatographic test strip for specific detection of H7N9 HA. KEY POINTS: • Two mouse monoclonal antibodies, F3-2 and 1C6B, were generated for recognizing the novel binding epitopes in H7N9 HA. • F3-2 can prevent H7N9 HA from trypsin cleavage and inhibit H7N9 virus infection to MDCK cells. • F3-2 and 1C6B were developed as a lateral flow immunochromatographic test for specific detection of H7N9 HA.


Asunto(s)
Subtipo H7N9 del Virus de la Influenza A , Gripe Humana , Animales , Anticuerpos Monoclonales , Anticuerpos Antivirales , Glicoproteínas Hemaglutininas del Virus de la Influenza , Hemaglutininas , Humanos , Subtipo H1N1 del Virus de la Influenza A , Subtipo H3N2 del Virus de la Influenza A , Subtipo H5N1 del Virus de la Influenza A , Subtipo H7N7 del Virus de la Influenza A , Gripe Humana/prevención & control , Ratones
11.
Virus Genes ; 57(2): 164-171, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33606171

RESUMEN

Influenza vaccines represent the most effective preventive strategy to control influenza virus infections; however, adaptive mutations frequently occur in the hemagglutinin (HA) glycoprotein during the preparation of candidate vaccine virus and production of vaccine in embryonated eggs. In our previous study, we constructed candidate vaccine virus (HA-R) to match the highly pathogenic avian influenza H7N9 viruses A/Guangdong/17SF003/2016 as part of a pandemic preparedness program. However, mixed amino acids (R, G, and I) were presented at position 220 (H3 numbering) in HA during passage in embryonated eggs. The residue at position 220 is located close to the receptor-binding site and the biological characteristics of this site remain to be elucidated. Therefore, in this study, using reverse genetics, we constructed two viruses carrying the single substitution in position 220 of HA (HA-G and HA-I) and evaluated the biological effects of substitution (R with G/I) on receptor binding, neuraminidase (NA) activity, growth characteristics, genetic stability, and antigenicity. The results revealed both mutant viruses exhibited lower HA binding affinities to two receptor types (sialic acid in alpha2,3- and alpha2,6-linkage to galactose, P < 0.001) and significant better growth characteristics compared to HA-R in two cells. Moreover, under similar NA enzymatic activity, the two mutant viruses eluted more easily from agglutinated erythrocytes than HA-R. Collectively, these results implied the balance of HA and NA in mutant viruses was a stronger determinant of viral growth than the individual amino acid in the HA position 220 in HA-R without strong binding between HA and sialylated receptors. Importantly, both the substitutions conferred altered antigenicity to the mutant viruses. In conclusion, amino acid substitutions at position 220 can substantially influence viral biological properties.


Asunto(s)
Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Subtipo H7N9 del Virus de la Influenza A/genética , Vacunas contra la Influenza/genética , Sustitución de Aminoácidos , Animales , Perros , Glicoproteínas Hemaglutininas del Virus de la Influenza/química , Subtipo H7N9 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/química , Vacunas contra la Influenza/inmunología , Células de Riñón Canino Madin Darby , Mutagénesis , Ácido N-Acetilneuramínico/metabolismo , Neuraminidasa/metabolismo , Virus Reordenados/genética , Virus Reordenados/inmunología , Genética Inversa
12.
Disaster Med Public Health Prep ; 15(2): 164-169, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32216856

RESUMEN

OBJECTIVE: Human infections with avian influenza A (H7N9) virus are associated with exposure to poultry and live poultry markets, but the evidence of person-to-person transmission remains limited. This study reports a suspected person-to-person transmission of H7N9 virus, and explores what factors influenced this transmission. METHODS: We interviewed 2 patients with H7N9 infection and their family members as well as health-care workers. Samples from the patients and environments were tested by real-time reverse transcription-polymerase chain reaction. RESULTS: The index patient became ill 5 to 6 days after his last exposure to the poultry bought in the market of Weimiao town. The second patient, the sister of the index patient, who had sustained intensive and unprotected close contact with the index patient, had no exposure to poultry. This study documents that the H7N9 virus was transmitted directly from the index patient to his sister. CONCLUSIONS: Our findings suggest that person-to-person transmission may be associated with sustained close contact with the patient during his onset of early stage, when the H7N9 viral shedding increases sharply.

13.
J Virol ; 95(3)2021 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-33177192

RESUMEN

The recent highly pathogenic avian influenza (HPAI) H5N1 and H7N9 viruses have caused hundreds of human infections with high mortality rates. Although H5N1 and H7N9 viruses have been limited mainly to avian species, there is high potential for these viruses to acquire human-to-human transmission and initiate a pandemic. A highly safe and effective vaccine is needed to protect against a potential H5N1 or H7N9 influenza pandemic. Here, we report the generation and evaluation of two reassortant influenza viruses, PR8-H5-H7NA and PR8-H7-H5NA These viruses contain six internal segments from A/Puerto Rico/8/1934 (PR8), the HA segment from either A/Alberta/01/2014 (H5N1) [AB14 (H5N1)] or A/British Columbia/01/2015 (H7N9) [BC15 (H7N9)], and a chimeric NA segment with either the BC15 (H7N9) HA gene or the AB14 (H5N1) HA gene flanked by the NA packaging signals of PR8. These viruses expressed both H5 and H7 HAs in infected cells, replicated to high titers when exogenous NA was added to the culture medium in vitro, and were replication defective and nonvirulent when administered intranasally in mice. Moreover, intranasal vaccination with PR8-H5-H7NA elicited robust immune responses to both H5 and H7 viruses, conferring complete protection against both AB14 (H5N1) and BC15 (H7N9) challenges in mice. Conversely, vaccination with PR8-H7-H5NA only elicited robust immune responses toward the H7 virus, which conferred complete protection against BC15 (H7N9) but not against AB14 (H5N1) in mice. Therefore, PR8-H5-H7NA has strong potential to serve as a vaccine candidate against both H5 and H7 subtypes of influenza viruses.IMPORTANCE Avian influenza H5N1 and H7N9 viruses infected humans with high mortality rates. A highly safe and effective vaccine is needed to protect against a potential pandemic. We generated and evaluated two reassortant influenza viruses, PR8-H5-H7NA and PR8-H7-H5NA, as vaccine candidates. Each virus contains one type of HA in segment 4 and the other subtype of HA in segment 6, thereby expressing both H5 and H7 subtypes of the HA molecule. The replication of viruses is dependent on the addition of exogenous NA in cell culture and is replication defective in vivo Vaccination of PR8-H5-H7NA virus confers protection to both H5N1 and H7N9 virus challenge; conversely, vaccination of PR8-H7-H5NA provides protection only to H7N9 virus challenge. Our data revealed that when engineering such a virus, the H5 or H7 HA in segment 6 affects the immunogenicity. PR8-H5-H7NA has strong potential to serve as a vaccine candidate against both H5 and H7 subtypes of influenza viruses.


Asunto(s)
Glicoproteínas Hemaglutininas del Virus de la Influenza/metabolismo , Subtipo H5N1 del Virus de la Influenza A/inmunología , Subtipo H7N9 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/administración & dosificación , Infecciones por Orthomyxoviridae/prevención & control , Vacunas de Productos Inactivados/administración & dosificación , Replicación Viral , Animales , Perros , Femenino , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Células de Riñón Canino Madin Darby , Masculino , Ratones , Ratones Endogámicos BALB C , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/metabolismo , Infecciones por Orthomyxoviridae/virología , Vacunación
14.
Proc Natl Acad Sci U S A ; 117(38): 23807-23814, 2020 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-32873642

RESUMEN

Avian-origin influenza viruses overcome the bottleneck of the interspecies barrier and infect humans through the evolution of variants toward more efficient replication in mammals. The dynamic adaptation of the genetic substitutions and the correlation with the virulence of avian-origin influenza virus in patients remain largely elusive. Here, based on the one-health approach, we retrieved the original virus-positive samples from patients with H7N9 and their surrounding poultry/environment. The specimens were directly deep sequenced, and the subsequent big data were integrated with the clinical manifestations. Unlike poultry/environment-derived samples with the consistent dominance of avian signature 627E of H7N9 polymerase basic protein 2 (PB2), patient specimens had diverse ratios of mammalian signature 627K, indicating the rapid dynamics of H7N9 adaptation in patients during the infection process. In contrast, both human- and poultry/environment-related viruses had constant dominance of avian signature PB2-701D. The intrahost dynamic adaptation was confirmed by the gradual replacement of 627E by 627K in H7N9 in the longitudinally collected specimens from one patient. These results suggest that host adaptation for better virus replication to new hosts, termed "genetic tuning," actually occurred in H7N9-infected patients in vivo. Notably, our findings also demonstrate the correlation between rapid host adaptation of H7N9 PB2-E627K and the fatal outcome and disease severity in humans. The feature of H7N9 genetic tuning in vivo and its correlation with the disease severity emphasize the importance of testing for the evolution of this avian-origin virus during the course of infection.


Asunto(s)
Adaptación Biológica/genética , Sustitución de Aminoácidos/genética , Subtipo H7N9 del Virus de la Influenza A/genética , Subtipo H7N9 del Virus de la Influenza A/patogenicidad , Gripe Humana/virología , ARN Polimerasa Dependiente del ARN/genética , Proteínas Virales/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Interacciones Huésped-Patógeno , Humanos , ARN Viral/genética , Análisis de Secuencia de ARN , Replicación Viral/genética
15.
J Leukoc Biol ; 108(5): 1655-1663, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32386456

RESUMEN

Infection with seasonal as well as highly pathogenic avian influenza A virus (IAV) causes significant morbidity and mortality worldwide. As a major virulence factor, PB1-F2 protein of IAV affects the severity of disease through multiple mechanisms including perturbation of host innate immune response. Macrophages are known to phagocytose extracellular PB1-F2 protein aggregate, leading to hyperactivation of NLRP3 inflammasome and excessive production of IL-1ß and IL-18. On the other hand, when expressed intracellularly PB1-F2 suppresses NLRP3 inflammasome maturation. How extracellular and intracellular PB1-F2 orchestrates to drive viral pathogenesis remains unclear. In this study, we demonstrated the suppression of NLRP3 inflammasome activation and IL-1ß secretion by PB1-F2 of highly pathogenic influenza A (H7N9) virus in infected human monocyte-derived macrophages. Mechanistically, H7N9 PB1-F2 selectively mitigated RNA-induced NLRP3 inflammasome activation by inhibiting the interaction between NLRP3 and MAVS. Intracellular PB1-F2 of H7N9 virus did not affect extracellular PB1-F2-induced NLRP3 inflammasome maturation. In contrast, PB1-F2 of WSN laboratory strain of human IAV effectively suppressed IL-1ß processing and secretion induced by various stimuli including NLRP3, AIM2, and pro-IL-1ß. This subtype-specific effect of PB1-F2 on inflammasome activation correlates with the induction of a proinflammatory cytokine storm by H7N9 but not WSN virus. Our findings on selective suppression of MAVS-dependent activation of NLRP3 inflammasome by H7N9 PB1-F2 have implications in viral pathogenesis and antiviral development.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/inmunología , Inflamasomas/inmunología , Subtipo H7N9 del Virus de la Influenza A/inmunología , Gripe Humana/inmunología , Proteína con Dominio Pirina 3 de la Familia NLR/inmunología , ARN Viral/inmunología , Proteínas Virales/inmunología , Proteínas Adaptadoras Transductoras de Señales/genética , Células HEK293 , Humanos , Inflamasomas/genética , Subtipo H7N9 del Virus de la Influenza A/genética , Gripe Humana/genética , Gripe Humana/patología , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteínas Virales/genética
16.
BMC Infect Dis ; 20(1): 154, 2020 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-32075579

RESUMEN

BACKGROUND: The emergence of human infection with avian influenza A(H7N9) virus was reported in Wenshan City, southwestern China in 2017. The study describes the epidemiological and virological features of the outbreak and discusses the origin of the infection. METHODS: Poultry exposure and timelines of key events for each patient were collected. Samples derived from the patients, their close contacts, and environments were tested for influenza A(H7N9) virus by real-time reverse transcription polymerase chain reaction. Genetic sequencing and phylogenetic analysis were also conducted. RESULTS: Five patients were reported in the outbreak. An epidemiological investigation showed that all patients had been exposed at live poultry markets. The A(H7N9) isolates from these patients had low pathogenicity in avian species. Both epidemiological investigations of chicken sources and phylogenetic analysis of viral gene sequences indicated that the source of infection was from Guangxi Province, which lies 100 km to the east of Wenshan City. CONCLUSIONS: In the study, a sudden emergence of human cases of H7N9 was documented in urban area of Wenshan City. Chickens were an important carrier in the H7N9 virus spreading from Guangxi to Wenshan. Hygienic management of live poultry markets and virological screening of chickens transported across regions should be reinforced to limit the spread of H7N9 virus.


Asunto(s)
Subtipo H7N9 del Virus de la Influenza A/genética , Gripe Aviar/virología , Gripe Humana/epidemiología , Filogenia , Adulto , Sustitución de Aminoácidos , Animales , Preescolar , China/epidemiología , Brotes de Enfermedades , Femenino , Humanos , Subtipo H7N9 del Virus de la Influenza A/aislamiento & purificación , Subtipo H7N9 del Virus de la Influenza A/patogenicidad , Gripe Humana/tratamiento farmacológico , Gripe Humana/virología , Masculino , Aves de Corral/virología , Reacción en Cadena en Tiempo Real de la Polimerasa
17.
J Virol ; 94(4)2020 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-31748388

RESUMEN

The majority of antibodies induced by influenza neuraminidase (NA), like those against hemagglutinin (HA), are relatively specific to viruses isolated within a limited time window, as seen in serological studies and the analysis of many murine monoclonal antibodies (MAbs). We report three broadly reactive human MAbs targeting N1 NA. Two were isolated from a young adult vaccinated with trivalent influenza vaccine (TIV), which inhibited N1 NA from viruses isolated from humans over a period of a hundred years. The third antibody, isolated from a child with acute mild H7N9 infection, inhibited both group 1 N1 and group 2 N9 NAs. In addition, the antibodies cross-inhibited the N1 NAs of highly pathogenic avian H5N1 influenza viruses. These antibodies are protective in prophylaxis against seasonal H1N1 viruses in mice. This study demonstrates that human antibodies to N1 NA with exceptional cross-reactivity can be recalled by vaccination and highlights the importance of standardizing the NA antigen in seasonal vaccines to offer optimal protection.IMPORTANCE Antibodies to the influenza virus NA can provide protection against influenza disease. Analysis of human antibodies to NA lags behind that of antibodies to HA. We show that human monoclonal antibodies against NA induced by vaccination and infection can be very broadly reactive, with the ability to inhibit a wide spectrum of N1 NAs on viruses isolated between 1918 and 2018. This suggests that antibodies to NA may be a useful therapy and that the efficacy of influenza vaccines could be enhanced by ensuring the appropriate content of NA antigen.


Asunto(s)
Protección Cruzada/inmunología , Vacunas contra la Influenza/inmunología , Gripe Humana/inmunología , Neuraminidasa/inmunología , Animales , Anticuerpos Monoclonales/inmunología , Niño , Reacciones Cruzadas/inmunología , Perros , Femenino , Células HEK293 , Hemaglutininas/inmunología , Humanos , Inmunización Pasiva , Subtipo H1N1 del Virus de la Influenza A/inmunología , Subtipo H5N1 del Virus de la Influenza A/inmunología , Subtipo H7N9 del Virus de la Influenza A/inmunología , Células de Riñón Canino Madin Darby , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos DBA , Neuraminidasa/metabolismo , Infecciones por Orthomyxoviridae/virología , Vacunación , Adulto Joven
18.
Math Biosci Eng ; 16(5): 3393-3410, 2019 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-31499620

RESUMEN

In 2017, the low pathogenic avian influenza H7N9 virus in China had mutated into high pathogenicity to domestic poultry, and led to a large number of poultry death and human cases. To evaluate the effect of virus mutation on the transmission of avian influenza H7N9 virus, this paper takes Guangdong province for the research area, takes domestic poultry, virus in the domestic poultry survival environment and human beings for the research objects, and establishes a non-autonomous dynamical model. By fitting model with the newly confirmed human cases in Guangdong province, the model we established is confirmed and applied to explain the dynamics of historical human cases. By carrying on parameter estimation, it is deduced that at least 5279376 human beings in Guangdong province had been infected with avian influenza H7N9 virus from March 2013 to September 2017, but most of them were not confirmed, since they had no obvious symptoms or had been cured as common influenza. And comparing with the low pathogenic avian influenza H7N9 virus (H7N9 LPAIV), the transmission rate of the highly pathogenic avian influenza H7N9 virus (H7N9 HPAIV) to human is almost unchanged, but to domestic poultry is about 3.87 times higher. Also, we calculate the basic reproduction number ℜ0 = 1.3042, which indicates that the virus will persist in Guangdong province with time. Besides, we also perform some sensitivity analysis of the newly confirmed human cases and ℜ0 in terms of model parameters and conclude that reducing the birth population of domestic poultry, speeding up the circulation of domestic poultry in the market and raising the rate of disease-related death of domestic poultry are benefit to control the transmission of the avian influenza H7N9 virus.


Asunto(s)
Subtipo H7N9 del Virus de la Influenza A/genética , Gripe Aviar/transmisión , Gripe Aviar/virología , Gripe Humana/transmisión , Gripe Humana/virología , Mutación , Algoritmos , Migración Animal , Animales , Número Básico de Reproducción , China/epidemiología , Brotes de Enfermedades , Epidemias , Humanos , Gripe Aviar/epidemiología , Gripe Humana/epidemiología , Modelos Teóricos , Aves de Corral , Temperatura
19.
Talanta ; 205: 120137, 2019 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-31450475

RESUMEN

The avian influenza A H7N9 virus is known as one of the newly discovered highly pathogenic avian influenzas with serious threat to public health and the poultry industry. In this work, an ultrasensitive surface-enhanced Raman scattering (SERS) determination of H7N9 virus via exonuclease III-assisted cycling amplification was proposed to meet the needs of rapid, sensitive and accurate detection of H7N9-related genes. The SERS strategy aims to simultaneously determine the characteristic gene fragments of H7 and N9 by specially designing Capture, Replace, and Probe single-strand DNAs to realize exonuclease III-assisted cycling amplifications, and then integrating the cyclic amplification with SERS-active Ag nanorods array substrate to achieve an ultrasensitive SERS determination of H7N9. After characterizing the effectiveness of the sensing mechanism and further investigating the surface blocking and the dosage of exonuclease III, the optimal surface blocking was achieved by using 10 µM and 100 µM mercaptohexanol for H7 and N9 detection respectively, and the optimal Exo III concentrations for sensing H7 and N9 were 0.10 U µL-1 and 0.30 U µL-1 respectively. Under the optimal conditions, dual and specific detections of H7 and N9 gene fragments were obtained with detection linear interval from 1 fM to 100 pM and limit of detections low to 31 aM of H7 and 44 aM of N9, as well as recovery in the range of 93.8-106.2% with relative standard deviation less than 6.12%. The proposed ultrasensitive SERS strategy can provide a powerful tool for determining H7N9 virus and other avian influenza viruses.


Asunto(s)
Exodesoxirribonucleasas/metabolismo , Subtipo H7N9 del Virus de la Influenza A/genética , Subtipo H7N9 del Virus de la Influenza A/aislamiento & purificación , Límite de Detección , Técnicas de Amplificación de Ácido Nucleico , Espectrometría Raman , Biocatálisis , Calibración , Hexanoles/química
20.
J Virol ; 93(19)2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31270231

RESUMEN

The potential avian influenza pandemic remains a threat to public health, as the avian-origin influenza A(H7N9) virus has caused more than 1,560 laboratory-confirmed human infections since 2013, with nearly 40% mortality. Development of low-pathogenic candidate vaccine viruses (CVVs) for vaccine production is essential for pandemic preparedness. However, the suboptimal growth of CVVs in mammalian cells and chicken eggs is often a challenge. By introducing a single adaptive substitution, G218E, into the hemagglutinin (HA), we generated reassortant A(H7N9)-G218E CVVs that were characterized by significantly enhanced growth in both cells and eggs. These G218E CVVs retained the original antigenicity, as determined by a hemagglutination inhibition assay, and effectively protected ferrets from lethal challenge with the highly pathogenic parental virus. We found that the suboptimal replication of the parental H7 CVVs was associated with impeded progeny virus release as a result of strong HA receptor binding relative to weak neuraminidase (NA) cleavage of receptors. In contrast, the G218E-mediated growth improvement was attributed to relatively balanced HA and NA functions, resulted from reduced HA binding to both human- and avian-type receptors, and thus facilitated NA-mediated virus release. Our findings revealed that a single amino acid mutation at residue 218 of the HA improved the growth of A(H7N9) influenza virus by balancing HA and NA functions, shedding light on an alternative approach for optimizing certain influenza CVVs.IMPORTANCE The circulating avian influenza A(H7N9) has caused recurrent epidemic waves with high mortality in China since 2013, in which the alarming fifth wave crossing 2016 and 2017 was highlighted by a large number of human infections and the emergence of highly pathogenic avian influenza (HPAI) A(H7N9) strains in human cases. We generated low-pathogenic reassortant CVVs derived from the emerging A(H7N9) with improved virus replication and protein yield in both MDCK cells and eggs by introducing a single substitution, G218E, into HA, which was associated with reducing HA receptor binding and subsequently balancing HA-NA functions. The in vitro and in vivo experiments demonstrated comparable antigenicity of the G218E CVVs with that of their wild-type (WT) counterparts, and both the WT and the G218E CVVs fully protected ferrets from parental HPAI virus challenge. With high yield traits and the anticipated antigenicity, the G218E CVVs should benefit preparedness against the threat of an A(H7N9) influenza pandemic.


Asunto(s)
Sustitución de Aminoácidos , Glicoproteínas Hemaglutininas del Virus de la Influenza/metabolismo , Subtipo H7N9 del Virus de la Influenza A/crecimiento & desarrollo , Vacunas contra la Influenza/genética , Proteínas Mutantes/metabolismo , Virus Reordenados/crecimiento & desarrollo , Adaptación Biológica , Animales , Embrión de Pollo , Modelos Animales de Enfermedad , Perros , Hurones , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Subtipo H7N9 del Virus de la Influenza A/genética , Subtipo H7N9 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/administración & dosificación , Vacunas contra la Influenza/inmunología , Células de Riñón Canino Madin Darby , Proteínas Mutantes/genética , Infecciones por Orthomyxoviridae/prevención & control , Virus Reordenados/genética , Análisis de Supervivencia , Vacunas Atenuadas/administración & dosificación , Vacunas Atenuadas/genética , Vacunas Atenuadas/inmunología , Acoplamiento Viral , Replicación Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA