Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 904
Filtrar
1.
Bio Protoc ; 14(14): e5034, 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39100594

RESUMEN

Overexpression of proteins in transiently transfected cells is a simple way to study basic transport mechanisms and the underlying protein-protein interactions. While expression systems have obvious drawbacks compared to in vivo experiments, they allow a quick assessment of more conserved functions, for instance, ER export or sorting of proteins in the Golgi. In a previous study, our group described the formation of ER-derived removal vesicles for the gap junction protein Cx36 in transfected HEK293T cells. These removal vesicles, termed "whorls" because of their concentric structure, were formed by Cx36 channels that failed to escape the ER. In this article, we describe an imaging protocol that can be used to determine these ER retention defects for Cx36 expressed in cultured cells. The protocol we provide here employs regular confocal microscopy, which allows for sufficient resolution to reveal the characteristic shape of ER whorls.

2.
Heliyon ; 10(14): e34480, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39130464

RESUMEN

Exposure to cadmium (Cd) results in bioaccumulation and irreversible damage; this encourages an investigation of alternatives to address Cd toxicity, using natural compounds. Lysiphyllum strychnifolium, a well-known Thai medicinal plant, was investigated for its phytochemical compounds and corresponding bioactivities, including antioxidant and anti-cytogenotoxic effects against Cd toxicity in HEK293 renal and HDF dermal cell models. The crude extract of L. strychnifolium (LsCrude) was partitioned into four fractions, using sequential polarity solvents (hexane, dichloromethane, ethyl acetate, and water, denoted as LsH, LsD, LsE, and LsW, respectively). The extraction yields were 1.79 %, 5.08 %, 8.53 %, and 70.25 % (w/w), respectively. Phytochemical screening revealed the presence of tannins, alkaloids, and flavonoids in LsCrude and its fractions, except for LsH. LsE exhibited the highest concentrations of phenolics (286.83 ± 6.83 mg GAE/g extract) and flavonoids (86.36 ± 1.29 mg QE/g extract). Subsequent 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical-scavenging and ferric-reducing ability of plasma (FRAP) reducing powder assays demonstrated the high antioxidant capacity of LsCrude and its fractions. The lowest IC50 value (9.11 ± 0.43 µg/mL) in the DPPH assay corresponded to LsW, whereas the highest total FRAP value (6.06 ± 0.70 mg QE Eq./g dry mass) corresponded to LsE. MTT and alkaline comet assays revealed the lack of toxicity of the extracts, which were considered safe. Upon exposure to Cd at the CC50 level, HEK293 cells treated with LsE suppressed Cd-induced damage. HDF cells treated with LsCrude, LsD, or LsE attenuated Cd-induced damage. In the pre-treatment, LsD protected the HDF cells against Cd-mediated cytogenotoxicity. These anti-cytogenotoxic potentials are likely due to the antioxidant properties of the phytochemicals. Our findings highlight the cyto-geno-protective properties of L. strychnifolium stem extracts against Cd toxicity in HEK293 and HDF cells, and provide a novel approach for combating oxidative stress and DNA damage caused by environmental pollutants.

3.
Biofabrication ; 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39173665

RESUMEN

Extracellular vesicles (EVs) show promise in drug loading and delivery for medical applications. However, the lack of scalable manufacturing processes hinders the generation of clinically suitable quantities, thereby impeding the translation of EV-based therapies. Current EV production relies heavily on non-physiological 2D cell culture or bioreactors, requiring significant resources. Additionally, EV-derived ribonucleic acid cargo in 3D and 2D culture environments remains largely unknown. In this study, we optimized the biofabrication of 3D auxetic scaffolds encapsulated with human embryonic kidney 293T (HEK293T) cells, focusing on enhancing the mechanical properties of the scaffolds to significantly boost EV production through tensile stimulation in bioreactors. The proposed platform increased EV yields approximately 115-fold compared to conventional 2D culture, possessing properties that inhibit tumor progression. Further mechanistic examinations revealed that this effect was mediated by the mechanosensitivity of YAP/TAZ. EVs derived from tensile-stimulated HEK293T cells on 3D auxetic scaffolds demonstrated superior capability for loading doxorubicin compared to their 2D counterparts for cancer therapy. Our results underscore the potential of this strategy for scaling up EV production and optimizing functional performance for clinical translation.

4.
J Biomol NMR ; 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39172315

RESUMEN

Side chain isotope labelling is a powerful tool to study protein structure and interactions by NMR spectroscopy. 1H,13C labelling of side-chain methyl groups in a deuterated background allows studying large molecules, while side-chain aromatic groups are highly sensitive to the interaction with ligands, drugs, and other proteins. In E. coli, side chain labelling is performed by substituting amino acids with isotope-labelled precursors. However, proteins that can only be produced in mammalian cells require expensive isotope-labelled amino acids. Here we provide a simple and cost-effective method to label side chains in mammalian cells, which exploits the reversible reaction catalyzed by endogenous transaminases to convert isotope-labelled α-ketoacid precursors. We show by in-cell and in-lysate NMR spectroscopy that replacing an amino acid in the medium with its cognate precursor is sufficient to achieve selective labelling without scrambling, and how this approach allows monitoring conformational changes such as those arising from ligand binding.

5.
Free Radic Biol Med ; 224: 1-8, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39147069

RESUMEN

We re-examined the reported increase in mitochondrial ROS production during acute hypoxia in cells. Using the Amplex Ultrared/horseradish peroxidase assay we found a decrease, not increase, in hydrogen peroxide release from HEK293 cells under acute hypoxia, at times ranging from 1 min to 3 h. The rates of superoxide/hydrogen peroxide production from each of the three major sites (site IQ in complex I and site IIIQo in complex III in mitochondria, and NADH oxidases (NOX) in the cytosol) were decreased to the same extent by acute hypoxia, with no change in the cells' ability to degrade added hydrogen peroxide. A similar decrease in ROS production under acute hypoxia was found using the diacetyldichlorofluorescein assay. Using a HIF1α reporter cell line we confirmed earlier observations that suppression of superoxide production by site IIIQo decreases HIF1α expression, and found similar effects of suppressing site IQ or NOX. We conclude that increased mitochondrial ROS do not drive the response of HIF1α to acute hypoxia, but suggest that cytosolic H2O2 derived from site IQ, site IIIQo and NOX in cells is necessary to permit HIF1α stabilization by other signals.

6.
J Proteome Res ; 23(8): 3393-3403, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-38967832

RESUMEN

Lysosomes constitute the main degradative compartment of most mammalian cells and are involved in various cellular functions. Most of them are catalyzed by lysosomal proteins, which typically are low abundant, complicating their analysis by mass spectrometry-based proteomics. To increase analytical performance and to enable profiling of lysosomal content, lysosomes are often enriched. Two approaches have gained popularity in recent years, namely, superparamagnetic iron oxide nanoparticles (SPIONs) and immunoprecipitation from cells overexpressing a 3xHA-tagged version of TMEM192 (TMEM-IP). The effect of these approaches on the lysosomal proteome has not been investigated to date. We addressed this topic through a combination of both techniques and proteomic analysis of lysosome-enriched fractions. For SPIONs treatment, we identified altered cellular iron homeostasis and moderate changes of the lysosomal proteome. For overexpression of TMEM192, we observed more pronounced effects in lysosomal protein expression, especially for lysosomal membrane proteins and those involved in protein trafficking. Furthermore, we established a combined strategy based on the sequential enrichment of lysosomes with SPIONs and TMEM-IP. This enabled increased purity of lysosome-enriched fractions and, through TMEM-IP-based lysosome enrichment from SPIONs flow-through and eluate fractions, additional insights into the properties of individual approaches. All data are available via ProteomeXchange with PXD048696.


Asunto(s)
Lisosomas , Proteómica , Lisosomas/metabolismo , Proteómica/métodos , Humanos , Inmunoprecipitación , Nanopartículas Magnéticas de Óxido de Hierro/química , Hierro/metabolismo , Proteoma/análisis , Proteoma/metabolismo , Proteínas de la Membrana/metabolismo , Células HEK293 , Proteínas
7.
Med Chem ; 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39041278

RESUMEN

BACKGROUND: In the search for anti-COVID-19 therapy, 1,2,3,4,6-pentakis-O-galloyl-ßD-glucopyranoside, a natural polyphenolic compound isolated from many traditional medicinal herbs, has been reported as an RBD-ACE2 binding inhibitor and as a broad-spectrum anticoronaviral inhibitor targeting the main protease and RNA-dependent RNA polymerase of SARSCoV-2. To facilitate the structure-activity relationship studies of 1,2,3,4,6-pentakis-O-galloyl-ß-Dglucopyranoside, we describe its chemical synthesis and characterization, as well as its activity towards the SARS-CoV-2 spike interaction with host ACE2 receptor. METHODS: 1,2,3,4,6-Pentakis-O-galloyl-ß-D-glucopyranoside was synthesized in two quantitative steps from 3,4,5-tribenzyloxybenzoic acid and ß-D-glucopyranoside: DCC-mediated esterification and palladium-catalyzed per-debenzylation. The synthesized molecule was evaluated using a SARS-CoV-2 spike trimer (S1 + S2) ACE2 inhibitor screening colorimetric assay kit, SARS-CoV2 spike S1 RBD ACE2 inhibitor screening colorimetric assay kit, and a cellular neutralization assay using the Spike (SARS-CoV-2) Pseudotyped Lentivirus, ACE2-HEK293 recombinant cell line. RESULTS: The chemically synthesized product blocked the binding of the spike trimer of SARSCoV-2 to the human ACE2 receptor with IC50=22±2 µM. It also blocked ACE2:spike RBD binding with IC50=27±3 µM. Importantly, it inhibited the infectivity of SARS2-CoV2-Spike pseudotyped lentivirus on the ACE2 HEK293 cell line with IC50=20±2 µM. CONCLUSION: Overall, the chemically synthesized 1,2,3,4,6-pentakis-O-galloyl-ß-D-glucopyranoside represents a lead molecule to develop anti-SARS-CoV-2 therapies that block the initial stage of the viral infection by blocking the virus entry to the host cell.

8.
Biomedicines ; 12(7)2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-39062123

RESUMEN

Human induced pluripotent stem cells (hiPSCs) represent a powerful tool to investigate neuropathological disorders in which the cells of interest are inaccessible, such as in the Charcot-Marie-Tooth disease (CMT), the most common inherited peripheral neuropathy. Developing appropriate cellular models becomes crucial in order to both study the disease's pathophysiology and test new therapeutic approaches. The generation of hiPS cellular models for disorders caused by a single nucleotide variation has been significantly improved following the development of CRISPR-based editing tools. In this study, we efficiently and quickly generated, by CRISPR editing, the two first hiPSCs cellular models carrying alterations involved in CMT4C, also called AR-CMTde-SH3TC2. This subtype of CMT is associated with alterations in the SH3TC2 gene and represents the most prevalent form of autosomal recessive demyelinating CMT. We aimed to develop models for two different SH3TC2 nonsense variants, c.211C>T, p.Gln71* and the most common AR-CMTde-SH3TC2 alteration, c.2860C>T, p.Arg954*. First, in order to determine the best CRISPR strategy to adopt on hiPSCs, we first tested a variety of sgRNAs combined with a selection of recent base editors using the conveniently cultivable and transfectable HEK-293T cell line. The chosen CRISPR base-editing strategy was then applied to hiPSCs derived from healthy individuals to generate isogenic CMT disease models with up to 93% editing efficiency. For point mutation generation, we first recommend to test your strategies on alternative cell line such as HEK-293T before hiPSCs to evaluate a variety of sgRNA-BE combinations, thus boosting the chance of achieving edited cellular clones with the hard-to-culture and to transfect hiPSCs.

9.
Arch Toxicol ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38953992

RESUMEN

Per- and polyfluoroalkyl substances (PFAS) are man-made chemicals used in many industrial applications. Exposure to PFAS is associated with several health risks, including a decrease in infant birth weight, hepatoxicity, disruption of lipid metabolism, and decreased immune response. We used the in vitro cell models to screen six less studied PFAS [perfluorooctane sulfonamide (PFOSA), perfluoropentanoic acid (PFPeA), perfluoropropionic acid (PFPrA), 6:2 fluorotelomer alcohol (6:2 FTOH), 6:2 fluorotelomer sulfonic acid (6:2 FTSA), and 8:2 fluorotelomer sulfonic acid (8:2 FTSA)] for their capacity to activate nuclear receptors and to cause differential expression of genes involved in lipid metabolism. Cytotoxicity assays were run in parallel to exclude that observed differential gene expression was due to cytotoxicity. Based on the cytotoxicity assays and gene expression studies, PFOSA was shown to be more potent than other tested PFAS. PFOSA decreased the gene expression of crucial genes involved in bile acid synthesis and detoxification, cholesterol synthesis, bile acid and cholesterol transport, and lipid metabolism regulation. Except for 6:2 FTOH and 8:2 FTSA, all tested PFAS downregulated PPARA gene expression. The reporter gene assay also showed that 8:2 FTSA transactivated the farnesoid X receptor (FXR). Based on this study, PFOSA, 6:2 FTSA, and 8:2 FTSA were prioritized for further studies to confirm and understand their possible effects on hepatic lipid metabolism.

10.
Mol Ther Methods Clin Dev ; 32(3): 101278, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39022743

RESUMEN

The gene therapy field seeks cost-effective, large-scale production of recombinant adeno-associated virus (rAAV) vectors for high-dosage therapeutic applications. Although strategies like suspension cell culture and transfection optimization have shown moderate success, challenges persist for large-scale applications. To unravel molecular and cellular mechanisms influencing rAAV production, we conducted an SWATH-MS proteomic analysis of HEK293T cells transfected using standard, sub-optimal, and optimal conditions. Gene Ontology and pathway analysis revealed significant protein expression variations, particularly in processes related to cellular homeostasis, metabolic regulation, vesicular transport, ribosomal biogenesis, and cellular proliferation under optimal transfection conditions. This resulted in a 50% increase in rAAV titer compared with the standard protocol. Additionally, we identified modifications in host cell proteins crucial for AAV mRNA stability and gene translation, particularly regarding AAV capsid transcripts under optimal transfection conditions. Our study identified 124 host proteins associated with AAV replication and assembly, each exhibiting distinct expression pattern throughout rAAV production stages in optimal transfection condition. This investigation sheds light on the cellular mechanisms involved in rAAV production in HEK293T cells and proposes promising avenues for further enhancing rAAV titer during production.

11.
Methods Mol Biol ; 2829: 329-339, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38951347

RESUMEN

Mammalian cell lines are one of the best options when it comes to the production of complex proteins requiring specific glycosylation patterns. Plasmid DNA transfection and stable cell lines are frequently used for recombinant protein production, but they are expensive at large scale or can become time-consuming, respectively. The BacMam baculovirus (BV) is a safe and cost-effective platform to produce recombinant proteins in mammalian cells. The process of generating BacMam BVs is straightforward and similar to the generation of "insect" BVs, with different commercially available platforms. Although there are several protocols that describe recombinant protein expression with the BacMam BV in adherent cell lines, limited information is available on suspension cells. Therefore, it is of relevance to define the conditions to produce recombinant proteins in suspension cell cultures with BacMam BVs that facilitate bioprocess transfer to larger volumes. Here, we describe a method to generate a high titer BacMam BV stock and produce recombinant proteins in suspension HEK293 cells.


Asunto(s)
Baculoviridae , Proteínas Recombinantes , Baculoviridae/genética , Humanos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/biosíntesis , Células HEK293 , Animales , Transfección/métodos , Vectores Genéticos/genética , Técnicas de Cultivo de Célula/métodos , Expresión Génica , Glicosilación
12.
Biotechnol J ; 19(6): e2300685, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38900035

RESUMEN

Recombinant adeno-associated virus (rAAV) is the leading vector for the delivery of gene therapies. However, low viral genome (VG) titers are common and the proportion of "full" capsids containing the therapeutic gene payload can be highly variable. The coordinated molecular design of plasmids encoding viral components and Helper functions remains a major challenge for rAAV manufacturing. Here we present the design of improved Rep/Cap and Helper plasmids for rAAV2/8 production, (i) a Rep/Cap expression vector harboring independently controllable rep and cap genes and (ii) an improved Helper plasmid harboring E4 gene deletion variants. First, an optimized Rep/Cap vector utilized a truncated p5 promoter, a p5 cis-regulatory element at the 3' end in combination with a heterologous promoter to drive Cap expression and an additional copy of the rep52/40 gene to overexpress short Rep proteins. We demonstrate that Rep78 is essential for efficient rAAV2/8 production in HEK293 cells, and a higher ratio of short Rep to long Rep proteins enhances genome packaging. Second, we identified regulators and open reading frames within the Helper plasmid that contribute to increased rAAV2/8 production. While L4-33k/22k is integral to optimal production, the use of E4orf6-6/7 subset significantly enhanced VG titer. Together, an optimal combination of engineered Rep/Cap and Helper plasmid variants increased VG titer by 3.1-fold. This study demonstrates that configuring and controlling the expression of the different AAV genetic elements contributes toward high rAAV production and product quality (full/empty capsid ratio).


Asunto(s)
Dependovirus , Vectores Genéticos , Dependovirus/genética , Células HEK293 , Humanos , Vectores Genéticos/genética , Plásmidos/genética , Regiones Promotoras Genéticas/genética , Genoma Viral/genética , Proteínas Virales/genética
13.
Vaccines (Basel) ; 12(6)2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38932290

RESUMEN

At times of pandemics, such as the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, the situation demands rapid development and production timelines of safe and effective vaccines for delivering life-saving medications quickly to patients. Typical biologics production relies on using the lengthy and arduous approach of stable single-cell clones. Here, we used an alternative approach, a stable cell pool that takes only weeks to generate compared to a stable single-cell clone that needs several months to complete. We employed the membrane, envelope, and highly immunogenic spike proteins of SARS-CoV-2 to produce virus-like particles (VLPs) using the HEK293-F cell line as a host system with an economical transfection reagent. The cell pool showed the stability of protein expression for more than one month. We demonstrated that the production of SARS-CoV-2 VLPs using this cell pool was scalable up to a stirred-tank 2 L bioreactor in fed-batch mode. The purified VLPs were properly assembled, and their size was consistent with the authentic virus. Our particles were functional as they specifically entered the cell that naturally expresses ACE-2. Notably, this work reports a practical and cost-effective manufacturing platform for scalable SARS-CoV-2 VLPs production and chromatographic purification.

14.
Biomedicines ; 12(6)2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38927481

RESUMEN

Hydra head formation depends on an organizing center in which Wnt/ß-catenin signaling, that plays an inductive role, positively regulates Sp5 and Zic4, with Sp5 limiting Wnt3/ß-catenin expression and Zic4 triggering tentacle formation. Using transgenic lines in which the HySp5 promoter drives eGFP expression in either the epidermis or gastrodermis, we show that Sp5 promoter activity is differentially regulated in each epithelial layer. In intact animals, epidermal HySp5:GFP activity is strong apically and weak along the body column, while in the gastrodermis, it is maximal in the tentacle ring region and maintained at a high level along the upper body column. During apical regeneration, HySp5:GFP is activated early in the gastrodermis and later in the epidermis. Alsterpaullone treatment induces a shift in apical HySp5:GFP expression towards the body column where it forms transient circular figures in the epidermis. Upon ß-catenin(RNAi), HySp5:GFP activity is down-regulated in the epidermis while bud-like structures expressing HySp5:GFP in the gastrodermis develop. Sp5(RNAi) reveals a negative Sp5 autoregulation in the epidermis, but not in the gastrodermis. These differential regulations in the epidermis and gastrodermis highlight the distinct architectures of the Wnt/ß-catenin/TCF/Sp5/Zic4 network in the hypostome, tentacle base and body column of intact animals, as well as in the buds and apical and basal regenerating tips.

15.
Int J Mol Sci ; 25(12)2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38928039

RESUMEN

Different developmental genes shape frequent dynamic inter-chromosomal contacts with rDNA units in human and Drosophila cells. In the course of differentiation, changes in these contacts occur, coupled with changes in the expression of hundreds of rDNA-contacting genes. The data suggest a possible role of nucleoli in the global regulation of gene expression. However, the mechanism behind the specificity of these inter-chromosomal contacts, which are rebuilt in every cell cycle, is not yet known. Here, we describe the strong association of rDNA-contacting genes with numerous long intergenic non-coding RNAs (lincRNAs) in HEK293T cells and in initial and differentiated K562 cells. We observed that up to 600 different lincRNAs were preferentially co-expressed with multiple overlapping sets of rDNA-contacting developmental genes, and there was a strong correlation between the genomic positions of rDNA-contacting genes and lincRNA mappings. These two findings suggest that lincRNAs might guide the corresponding developmental genes toward rDNA clusters. We conclude that the inter-chromosomal interactions of rDNA-contacting genes with nucleoli might be guided by lincRNAs, which might physically link particular genomic regions with rDNA clusters.


Asunto(s)
Nucléolo Celular , ADN Ribosómico , ARN Largo no Codificante , Humanos , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , ADN Ribosómico/genética , ADN Ribosómico/metabolismo , Nucléolo Celular/metabolismo , Nucléolo Celular/genética , Células HEK293 , Células K562
16.
Cell Calcium ; 121: 102910, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38823350

RESUMEN

In cardiac myocytes, the type 2a sarco/endoplasmic reticulum Ca-ATPase (SERCA2a) plays a key role in intracellular Ca regulation. Due to its critical role in heart function, SERCA2a activity is tightly regulated by different mechanisms, including micropeptides. While phospholamban (PLB) is a well-known SERCA2a inhibitor, dwarf open reading frame (DWORF) is a recently identified SERCA2a activator. Since PLB phosphorylation is the most recognized mechanism of SERCA2a activation during adrenergic stress, we studied whether PLB phosphorylation also affects SERCA2a regulation by DWORF. By using confocal Ca imaging in a HEK293 expressing cell system, we analyzed the effect of the co-expression of PLB and DWORF using a bicistronic construct on SERCA2a-mediated Ca uptake. Under these conditions of matched expression of PLB and DWORF, we found that SERCA2a inhibition by non-phosphorylated PLB prevails over DWORF activating effect. However, when PLB is phosphorylated at PKA and CaMKII sites, not only PLB's inhibitory effect was relieved, but SERCA2a was effectively activated by DWORF. Förster resonance energy transfer (FRET) analysis between SERCA2a and DWORF showed that DWORF has a higher relative affinity for SERCA2a when PLB is phosphorylated. Thus, SERCA2a regulation by DWORF responds to the PLB phosphorylation status, suggesting that DWORF might contribute to SERCA2a activation during conditions of adrenergic stress.


Asunto(s)
Proteínas de Unión al Calcio , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Proteínas de Unión al Calcio/metabolismo , Humanos , Fosforilación , Células HEK293 , Sistemas de Lectura Abierta/genética , Calcio/metabolismo , Activación Enzimática , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo
17.
Methods Mol Biol ; 2810: 85-98, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38926274

RESUMEN

Chinese hamster ovary (CHO) and human embryonic kidney 293 (HEK293) cells are the two most important mammalian hosts for the production of recombinant proteins. In this chapter, the suspension cultivation and transfection of these cells in small-scale, single-use orbitally shaken bioreactors, TubeSpin™ bioreactor 50 [orbitally shaken reactor 50 (OSR50)], and TubeSpin™ bioreactor 600 [orbitally shaken reactor 600 (OSR600)] are described. These are conical centrifuge tubes with nominal volumes of 50 mL and 600 mL, respectively, that have been redesigned with a ventilated cap for the cultivation of animal cells in suspension at working volumes up to 20 mL and 400 mL, respectively.


Asunto(s)
Reactores Biológicos , Cricetulus , Transfección , Humanos , Animales , Transfección/métodos , Células CHO , Células HEK293 , Técnicas de Cultivo de Célula/métodos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
18.
Methods Mol Biol ; 2810: 55-74, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38926272

RESUMEN

Here, we describe methods for the production of adeno-associated viral (AAV) vectors by transient transfection of HEK293 cells grown in serum-free medium using orbital shaken bioreactors and the subsequent purification of vector particles. The protocol for expression of AAV components is based on polyethyleneimine (PEI)-mediated transfection of a three-plasmid system and is specified for production in milliliter-to-liter scales. After PEI and plasmid DNA (pDNA) complex formation, the diluted cell culture is transfected without a prior concentration step or medium exchange. Following a 7-day batch process, cell cultures are further processed using a set of methods for cell lysis and vector recovery. Methods for the purification of viral particles are described, including immunoaffinity and anion-exchange chromatography, ultrafiltration, as well as digital PCR to quantify the concentration of vector particles.


Asunto(s)
Dependovirus , Vectores Genéticos , Transfección , Humanos , Dependovirus/genética , Dependovirus/aislamiento & purificación , Células HEK293 , Vectores Genéticos/genética , Vectores Genéticos/aislamiento & purificación , Transfección/métodos , Plásmidos/genética , Plásmidos/aislamiento & purificación , Polietileneimina/química , Reactores Biológicos , Cromatografía por Intercambio Iónico/métodos , Virión/genética , Virión/aislamiento & purificación
19.
Methods Mol Biol ; 2810: 317-327, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38926288

RESUMEN

With an increasing number of blockbuster drugs being recombinant mammalian proteins, protein production platforms that focus on mammalian proteins have had a profound impact in many areas of basic and applied research. Many groups, both academic and industrial, have been focusing on developing cost-effective methods to improve the production of mammalian proteins that would support potential therapeutic applications. As it stands, while a wide range of platforms have been successfully developed for laboratory use, the majority of biologicals are still produced in mammalian cell lines due to the requirement for posttranslational modification and the biosynthetic complexity of target proteins. An unbiased high-throughput RNAi screening approach can be an efficient tool to identify target genes involved in recombinant protein production. Here, we describe the process of optimizing the transfection conditions, performing the genome-wide siRNA screen, the activity and cell viability assays, and the validation transfection to identify genes involved with protein expression.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento , Interferencia de ARN , ARN Interferente Pequeño , Transfección , Ensayos Analíticos de Alto Rendimiento/métodos , Humanos , ARN Interferente Pequeño/genética , Transfección/métodos , Animales , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Supervivencia Celular/genética
20.
Biomed Pharmacother ; 176: 116893, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38850653

RESUMEN

Polymer-cationic mediated gene delivery is a well-stablished strategy of transient gene expression (TGE) in mammalian cell cultures. Nonetheless, its industrial implementation is hindered by the phenomenon known as cell density effect (CDE) that limits the cell density at which cultures can be efficiently transfected. The rise in personalized medicine and multiple cell and gene therapy approaches based on TGE, make more relevant to understand how to circumvent the CDE. A rational study upon DNA/PEI complex formation, stability and delivery during transfection of HEK293 cell cultures has been conducted, providing insights on the mechanisms for polyplexes uptake at low cell density and disruption at high cell density. DNA/PEI polyplexes were physiochemically characterized by coupling X-ray spectroscopy, confocal microscopy, cryo-transmission electron microscopy (TEM) and nuclear magnetic resonance (NMR). Our results showed that the ionic strength of polyplexes significantly increased upon their addition to exhausted media. This was reverted by depleting extracellular vesicles (EVs) from the media. The increase in ionic strength led to polyplex aggregation and prevented efficient cell transfection which could be counterbalanced by implementing a simple media replacement (MR) step before transfection. Inhibiting and labeling specific cell-surface proteoglycans (PGs) species revealed different roles of PGs in polyplexes uptake. Importantly, the polyplexes uptake process seemed to be triggered by a coalescence phenomenon of HSPG like glypican-4 around polyplex entry points. Ultimately, this study provides new insights into PEI-based cell transfection methodologies, enabling to enhance transient transfection and mitigate the cell density effect (CDE).


Asunto(s)
ADN , Glipicanos , Transfección , Humanos , Células HEK293 , Transfección/métodos , Glipicanos/metabolismo , Glipicanos/genética , ADN/metabolismo , ADN/genética , Polietileneimina/química , Proteoglicanos de Heparán Sulfato/metabolismo , Concentración Osmolar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA