Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Molecules ; 29(3)2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38338302

RESUMEN

This study examined the sensitivity of single-walled (5,5) aluminium nitride nanotubes ((5,5) AlNNTs) to carbon monoxide (CO) and carbon dioxide (CO2) gas molecules by performing DFT calculations using a hybrid functional, specifically, B3LYP (Becke's three-parameter, Lee-Yang-Parr) exchange-correlation functional at a 6-31G* basis set. This research investigates the adsorption behavior of CO2 and CO molecules on pristine and silicon-doped aluminum nitride nanotubes (AlNNTs) and examines their implications for sensor applications. The study assesses each system's adsorption energy, sensing potential, and recovery time to gain insights into their binding strength and practical viability. For CO2 adsorption on (5,5) AlNNT, significant adsorption energy of -24.36 kcal/mol was observed, indicating a strong binding to the nanotube surface, with a sensing potential of 8.95%. However, the slow recovery time of approximately 4.964 days may limit its real-time application. Si-(5,5) AlNNT exhibited a CO2 adsorption energy of -19.69 kcal/mol, a sensing potential of 5.40%, and a relatively short recovery time of approximately 2.978 min, making it a promising candidate for CO2 sensing. CO adsorption on (5,5) AlNNT showed an adsorption energy of -25.20 kcal/mol, a sensing potential of 9.095%, but a longer recovery time of approximately 20.130 days. Si-(5,5) AlNNT displayed a high CO adsorption energy of -20.78 kcal/mol, a sensing potential of 4.29%, and a recovery time of approximately 18.320 min. These findings provide insights into the adsorption characteristics of carbon molecules on AlNNTs, highlighting their potential for CO2 and CO sensing applications.

2.
J Fluoresc ; 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37938476

RESUMEN

Controlled intake of complex metal cations and anions in the human body and other biological systems is essential for the health and well-being of the environment. Anthracene and anthracene derivatives are the most widely used sensors for this purpose. Because of their convenience, better detection and results are preferred over colorimetric sensors, which offer better color detection by the naked eye. This review article will present different designs of chemosensors using fluorescence and UV-visible spectroscopy to determine different ions. Density functional theory and Austin model 1 are widely used for theoretical and computational studies of the energy levels of molecules. The Indo/Cis method is used to calculate the geometries of anthracene oligomers. A novel anthracene-based fluorescent probe containing the benzothiazole group BFA was highly sensitive and selective toward trivalent cations (Cr3+ and Fe3+). This sensor is not sensitive to other ions, including Aluminum trivalent ions. (N- ((anthracen-9-yl) methyl)-N-(pyridin-2-yl) pyridin-2-amine) has been designed to detect zinc and copper. Click chemistry using photodimerization can be used to form cellulose nanoparticles. TEMPO-mediated hypohalite oxidation converts hydroxyl groups to carboxylic groups. Amide linkage formation between amine and carboxylic acid was followed by the installation of an alkyne group. Copper (I)-catalyzed Azide-Alkyne Cycloaddition (CuAAC) was used to produce highly photoresponsive and fluorescent cellulose nanoparticles by using coumarin, anthracene, and generated nanomaterials. The effects of naphthalene and phenanthrene on the spectra of anthracene were determined in a dilute solution. Temperature and solvent effects introduce different changes in fluorescence, emission, and absorption bands, leading to some changes in the configuration of anthracene. The solvent and temperature effects on variations of emission maxima of exciplex anthracene-diethylaniline (DEA) are also discussed.

3.
Molecules ; 27(12)2022 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-35744802

RESUMEN

Intramolecular charge transfer (ICT) effects are responsible for the photoluminescent properties of coumarins. Hence, optical properties with different applications can be obtained by ICT modulation. Herein, four 3-acetyl-2H-chromen-2-ones (1a-d) and their corresponding fluorescent hybrids 3- (phenylhydrazone)-chromen-2-ones (2a-d) were synthesized in 74-65% yields. The UV-Vis data were in the 295-428 nm range. The emission depends on the substituent in position C-7 bearing electron-donating groups. Compounds 1b-d showed good optical properties due to the D-π-A structural arrangement. In compounds 2a-d, there is a quenching effect of fluorescence in solution. However, in the solid, an increase is shown due to an aggregation-induced emission (AIE) effect given by the rotational restraints and stacking in the crystal. Computational calculations of the HOMO-LUMO orbitals indicate high absorbance and emission values of the molecules, and gap values represent the bathochromic effect and the electronic efficiency of the compounds. Compounds 1a-d and 2a-d are good candidates for optical applications, such as OLEDs, organic solar cells, or fluorescence markers.


Asunto(s)
Cumarinas , Electrones , Cumarinas/química , Teoría Funcional de la Densidad , Espectrometría de Fluorescencia
4.
J Comput Chem ; 40(27): 2354-2363, 2019 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-31246313

RESUMEN

The gas-phase-optimized geometry of newly synthesized and characterized diorganotin(IV) 2-chloridophenylacetohydroxamate complexes of composition [Me2 Sn(HL)2 ] (I) and [n-Bu2 Sn(HL)2 ] (II) (where KHL = potassium 2-chloridophenylacetohydroxamate (2-ClPhAHK); [Me2 Sn(2-ClC6 H4 CH2 CONHO)2 ] (I) and [n-Bu2 Sn(2-ClC6 H4 CH2 CONHO)2 ] (II) computed by B3LYP/6-311++G(d,p) method has shown these to be distorted octahedral. Bonding through carbonyl and hydroxamic oxygen atoms (O, O coordination) has been inferred from a comparison of computed important bond lengths (CO, CN, and NO) of complexes with that of free ligand. The SnO bond lengths in complexes are suggestive of weak coordinate (through carbonyl CO) and strong covalent (through hydroxamic NO) bonding of the ligand. The magnitude of CSnC bond angles involving two methyl/n-butyl groups is suggestive of cis-conformation at tin metal. The thermodynamic parameters (G, H, S, E, Cv, and U) of complexes have been computed. From the energies of frontier molecular orbitals (HOMO-LUMO), the reactivity descriptors, namely, ionization potential, electron affinity, chemical potential (µ), hardness (η), softness (S), electronegativity (χ), and electrophilicity index (ω) have been calculated. The computed vibrational frequencies and 1 H NMR chemical shifts have substantiated the molecular structure of complexes. © 2019 Wiley Periodicals, Inc.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA