Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.394
Filtrar
1.
DNA Res ; 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39101533

RESUMEN

With glossy, wax-coated leaves, Rubus leucanthus is one of the few heat-tolerant wild raspberry trees. To ascertain the underlying mechanism of heat tolerance, we generated a high-quality genome assembly with a genome size of 230.9 Mb and 24,918 protein-coding genes. Significantly expanded gene families were enriched in the flavonoid biosynthesis pathway and the circadian rhythm-plant pathway, enabling survival in subtropical areas by accumulating protective flavonoids and modifying photoperiodic responses. In contrast, plant-pathogen interaction and MAPK signaling involved in response to pathogens were significantly contracted. The well-known heat response elements (HSP70, HSP90 and HSFs) were reduced in R. leucanthus compared to two other heat-intolerant species, R. chingii and R. occidentalis, with transcriptome profiles further demonstrating their dispensable roles in heat stress response. At the same time, three significantly positively selected genes in the pathway of cuticular wax biosynthesis were identified, and may contribute to the glossy, wax-coated leaves of R. leucanthus. The thick, leathery, waxy leaves protect R. leucanthus against pathogens and herbivores, supported by the reduced R gene repertoire in R. leucanthus (355) compared to R. chingii (376) and R. occidentalis (449). Our study provides some insights into adaptive divergence between R. leucanthus and other raspberry species on heat tolerance.

2.
Bull Exp Biol Med ; 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39134811

RESUMEN

The association of clinical, pathological, and immunohistochemical characteristics of papillary thyroid cancer with cause-specific mortality was analyzed in a case-control study within a cohort of patients from the Altai Regional Oncology Center. According to multivariate analysis, the independent predictors of fatal outcome within 10 years after surgery in patients living in Altai region are nuclear pattern of Hsp70 expression, thyroid capsular invasion, Ki-67 expression index >7%, and patient's age >45 years for men and >50 years for women. The prognostic model based on these features contributes to a significant improvement in the individual prognostic performance for papillary thyroid cancer in the modeling sample. The model has high statistical significance (χ2=64.73; p<0.001) and discriminative power (AUC=0.950, prediction accuracy 88.5%).

3.
Mol Immunol ; 174: 1-10, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39126837

RESUMEN

BACKGROUND: Cannabidiol (CBD), the major non-psychoactive component of cannabis, exhibits anti-inflammatory properties, but less is known about the immunomodulatory potential of CBD on activated natural killer (NK) cells and/or their targets. Many tumor cells present heat shock protein 70 (Hsp70) on their cell surface in a tumor-specific manner and although a membrane Hsp70 (mHsp70) positive phenotype serves as a target for Hsp70-activated NK cells, a high mHsp70 expression is associated with tumor aggressiveness. This study investigated the immuno-modulatory potential of CBD on NK cells stimulated with TKD Hsp70 peptide and IL-2 (TKD+IL-2) and also on HCT116 p53wt and HCT116 p53-/- colorectal cancer cells exhibiting high and low basal levels of mHsp70 expression. RESULTS: Apart from an increase in the density of NTB-A and a reduced expression of LAMP-1, the expression of all other activatory NK cell receptors including NKp30, NKG2D and CD69 which are significantly up-regulated after stimulation with TKD+IL-2 remained unaffected after a co-treatment with CBD. However, the release of major pro-inflammatory cytokines by NK cells such as interferon-γ (IFN-γ) and the effector molecule granzyme B (GrzB) was significantly reduced upon CBD treatment. With respect to the tumor target cells, CBD significantly reduced the elevated expression of mHsp70 but had no effect on the low basal mHsp70 expression. Expression of other NK cell ligands such as MICA and MICB remained unaffected, and the NK cell ligands ULBP and B7-H6 were not expressed on these target cells. Consistent with the reduced mHsp70 expression, treatment of both effector and target cells with CBD reduced the killing of high mHsp70 expressing tumor cells by TKD+IL-2+CBD pre-treated NK cells but had no effect on the killing of low mHsp70 expressing tumor cells. Concomitantly, CBD treatment reduced the TKD+IL-2 induced increased release of IFN-γ, IL-4, TNF-α and GrzB, but CBD had no effect on the release of IFN-α when NK cells were co-incubated with tumor target cells. CONCLUSION: Cannabidiol (CBD) may potentially diminish the anti-tumor effectiveness of TKD+IL-2 activated natural killer (NK) cells.

4.
J Adv Res ; 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39127098

RESUMEN

INTRODUCTION: Angiogenesis plays a significant role in the development of tumor progression and inflammatory diseases. The role of IL-28A in angiogenesis and its precise regulatory mechanisms remain rarely elucidated. OBJECTIVES: We report the novel regulatory role of IL-28A in physiological angiogenesis. The study aimed to elucidate the regulatory mechanisms involved in IL-28A-mediated angiogenesis and identify key genes associated with IL-28A-induced angiogenic responses. METHODS: To know the effect of IL-28A on angiogenesis, HUVECs were applied to perform proliferation, migration, invasion, tube formation, immunoblot, and EMSA. Gene expression changes in HUVECs following IL-28A treatment were analyzed by NGS. The functional role of HSP70-1 and IL-10Rß in IL-28A-induced angiogenic responses was evaluated using PCR and siRNA knockdown. Animal studies were conducted by aortic ring ex vivo assays, Matrigel plug in vivo assays, and immunochemistry using HSP70-1 knockout and transgenic mice models. The efficacy of IL-28A in angiogenesis was confirmed in a hind-limb ischemia model. RESULTS: Autocrine/paracrine actions in HUVECs regulated IL-28A protein expression. Exogenous IL-28A increased the proliferation of HUVECs via eNOS/AKT and ERK1/2 signaling. IL-28A treatment promoted migration, invasion, and capillary tube formation of HUVECs through induction of the AP-1/NF-κB/MMP-2 network, which was associated with eNOS/AKT and ERK1/2 signaling. The efficacy of IL-28A-induced angiogenic potential was confirmed by aortic ring and Matrigel plug assay. HSP70-1 was identified as an IL-28A-mediated angiogenic effector gene using bioinformatics. Knockdown of HSP70-1 abolished angiogenic responses and eNOS/AKT signaling in IL-28A-treated HUVECs. IL-28A-induced microvessel sprouting formation was testified in HSP70-1-deficient and HSP70-1 transgenic mice. Flow recovery in hind-limb ischemia mice was accelerated by IL-28A injection. Finally, ablation of the IL-10Rß gene impeded the angiogenic responses and eNOS/AKT signaling stimulated by IL-28A in HUVECs. CONCLUSION: HSP70-1 drives the progression of angiogenesis by the IL-28A/IL-10Rß axis via eNOS/AKT signaling and the AP-1/NF-κB/MMP-2 network.

5.
Front Immunol ; 15: 1454018, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39136018

RESUMEN

Cells exposed to stressors of various origin activate protective mechanisms that include the expression of heat shock proteins (Hsps)/molecular chaperones belonging to several families. Well-characterized inducible Hsp70 is present in all human cell-types and biological fluids, including blood, urine, and saliva. The presence of anti-Hsp70 autoantibodies in the serum of healthy individuals has already been confirmed, and their elevated titers positively correlated with the severity of several pathological conditions, including coeliac disease and dermatitis herpetiformis - a cutaneous manifestation of coeliac disease. Here, using an indirect enzyme-linked immunosorbent assay, we demonstrate, for the first time, that anti-Hsp70 autoantibodies are present in the saliva and urine of healthy individuals. Although the occurrence of anti-Hsp70 autoantibodies in the biological fluids of healthy individuals is intriguing, their physiological role is currently unknown. It is believed that antibodies reacting with self-molecules present in the serum of healthy individuals are part of natural autoantibody pool with multiple regulatory functions. On the other hand, some autoantibodies (e.g., typical of autoimmune bullous skin diseases or systemic lupus erythematosus) may be present before the onset of the disease and serve as specific predictive biomarkers. Therefore, we would like to initiate a discussion or future research direction on the use of anti-Hsp70 autoantibodies as a potential "biomarker" in the diagnosis or prediction of autoimmune diseases. Our findings can be considered in biomedical research to develop noninvasive, inexpensive and easy-to-use tests. Nevertheless, large-scale comparative studies should be initiated, involving the collection and analysis of biological samples such as saliva or urine from patients suffering from autoimmune diseases or other inflammatory or neoplastic diseases, to determine whether the levels of anti-Hsp70 autoantibodies are indeed elevated and whether they correlate with the clinical picture of any disease or established biomarkers.


Asunto(s)
Autoanticuerpos , Proteínas HSP70 de Choque Térmico , Saliva , Humanos , Saliva/inmunología , Saliva/metabolismo , Proteínas HSP70 de Choque Térmico/inmunología , Autoanticuerpos/inmunología , Autoanticuerpos/sangre , Femenino , Adulto , Masculino , Biomarcadores/orina , Persona de Mediana Edad , Ensayo de Inmunoadsorción Enzimática , Voluntarios Sanos
6.
J Maxillofac Oral Surg ; 23(4): 831-836, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39118904

RESUMEN

Introduction: Understanding of molecular model of oral carcinogenesis has carried cancer chemotherapy far forward from conventional drug therapies. Small molecule inhibitors have gained acceptance as it has fewer adverse effects and also provide targeted drug therapy. The association of HSP 70 (Heat Shock Protein 70) and BCL 2 (B-cell lymphoma 2) proteins with oral precancer and cancer is already established. However, the complex interaction between these two proteins and how they affect each other's expression is still not understood completely. In our study, we aimed to correlate the expression of HSP 70 and BCL 2 with different histopathological grades of oral precancer and cancer tissue samples using tissue immunohistochemistry. Materials and Methods: Tissue samples were taken from a total of 250 patients (100 OPMDs and 150 OSCCs) and subjected to immunohistochemistry using anti-human mouse monoclonal antibodies to HSP70 and BCL2. Immunostaining was done, and the immunostaining intensity distribution (IID) index was calculated. Results and Discussion: Immunoreactivity scores for both HSP 70 and BCL 2 correlated with different grades of dysplasia. However, only HSP 70 had a statistically significant association (p = 0.066). We also found that HSP 70 showed an inverse correlation, with higher expression majorly seen in well-differentiated OSCCs. Conclusion: Our study unveiled the HSP 70-BCL 2 interaction and provides insights about how this might affect drug designing and help overcome therapeutic lags. However, further studies are needed to provide a comprehensive review of such interactions among various small molecules.

7.
Environ Pollut ; 360: 124712, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39134169

RESUMEN

The indiscriminate use of pesticides is one of the factors directly impacting bee populations. However, limited information is available on the pesticide effects on solitary bees, especially in Neotropical countries. In this scenario, this study evaluated the survival and histopathological effects caused by the neonicotinoid insecticide acetamiprid (7 ng/µL) and the fungicide azoxystrobin (10 ng/µL) in the midgut and parietal fat body of the solitary bee Centris analis. Female and male newly-emerged bees were orally exposed for 48 h to the pesticides, or alone or in combination, under laboratory conditions. The exposure to the insecticide reduced the survival of males, while the mixture reduced survival in both sexes. Acetamiprid promoted a reduction in the number of regenerative nests in the midgut, alterations of fat body cells by increasing carbohydrates in trophocytes, and reduction of oenocyte size, and increased the frequency of pericardial cells in the advanced activity stage. Both pesticides caused changes in HSP70 immunolabelling of midgut from males at the end of pesticide exposure. Comparatively, the effects on males were stronger than in females exposed to the same pesticides. Therefore, acetamiprid alone and in mixture with fungicide azoxystrobin can be harmful to males and females of Neotropical solitary bee C. analis showing lethal and sublethal effects at a concentration likely to be found in the environment.

8.
Genes Cells ; 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38987995

RESUMEN

Heat stress strongly triggers the nuclear localization of the molecular chaperone HSP70. Hikeshi functions as a unique nuclear import carrier of HSP70. However, how the nuclear import of HSP70 is activated in response to heat stress remains unclear. Here, we investigated the effects of heat on the nuclear import of HSP70. In vitro transport assays revealed that pretreatment of the test samples with heat facilitated the nuclear import of HSP70. Furthermore, binding of Hikeshi to HSP70 increased when temperatures rose. These results indicated that heat is one of the factors that activates the nuclear import of HSP70. Previous studies showed that the F97A mutation in Hikeshi in an extended loop induced an opening in the hydrophobic pocket and facilitated the translocation of Hikeshi through the nuclear pore complex. We found that nuclear accumulation of HSP70 occurred at a lower temperature in cells expressing the Hikeshi-F97A mutant than in cells expressing wild-type Hikeshi. Collectively, our results show that the movement of the extended loop may play an important role in the interaction of Hikeshi with both FG (phenylalanine-glycine)-nucleoporins and HSP70 in a temperature-dependent manner, resulting in the activation of nuclear import of HSP70 in response to heat stress.

9.
Front Vet Sci ; 11: 1408861, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38988984

RESUMEN

Mycoplasma bovis (M. bovis) is the etiologic agent of high mortality epizootics of chronic respiratory disease in American bison (Bison bison). Despite the severity of the disease, no efficacious commercial vaccines have been licensed for the prevention of M. bovis infection in bison. Elongation factor thermal unstable (EFTu) and Heat Shock Protein 70 (Hsp70, DnaK) are highly conserved, constitutively expressed proteins that have previously been shown to provide protection against M. bovis infection in cattle. To assess the suitability of EFTu and Hsp70 as vaccine antigens in bison, the immune response to and protection conferred by an injectable, adjuvanted subunit vaccine comprised of recombinantly expressed EFTu and Hsp70 was evaluated. Vaccinates developed robust antibody and cellular immune responses against both EFTu and Hsp70 antigens. To assess vaccine efficacy, unvaccinated control and vaccinated bison were experimentally challenged with bovine herpes virus-1 (BHV-1) 4 days prior to intranasal infection with M. bovis. Vaccinated bison displayed reductions in joint infection, lung bacterial loads, and lung lesions compared to unvaccinated controls. Together, these results showed that this subunit vaccine reduced clinical disease and bacterial dissemination from the lungs in M. bovis challenged bison and support the further development of protein subunit vaccines against M. bovis for use in bison.

10.
Plant Cell Environ ; 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39007522

RESUMEN

Living organisms have the capacity to respond to environmental stimuli, including warm conditions. Upon sensing mild temperature, plants launch a transcriptional response that promotes morphological changes, globally known as thermomorphogenesis. This response is orchestrated by different hormonal networks and by the activity of different transcription factors, including the heat shock factor A1 (HSFA1) family. Members of this family interact with heat shock protein 70 (HSP70) and heat shock protein 90 (HSP90); however, the effect of this binding on the regulation of HSFA1 activity or of the role of cochaperones, such as the HSP70-HSP90 organizing protein (HOP) on HSFA1 regulation, remains unknown. Here, we show that AtHOPs are involved in the folding and stabilization of the HSFA1a and are required for the onset of the transcriptional response associated to thermomorphogenesis. Our results demonstrate that the three members of the AtHOP family bind in vivo to the HSFA1a and that the expression of multiple HSFA1a-responsive-responsive genes is altered in the hop1 hop2 hop3 mutant under warm temperature. Interestingly, HSFA1a is accumulated at lower levels in the hop1 hop2 hop3 mutant, while control levels are recovered in the presence of the proteasome inhibitor MG132 or the synthetic chaperone tauroursodeoxycholic acid (TUDCA). This uncovers the HSFA1a as a client of HOP complexes in plants and reveals the participation of HOPs in HSFA1a stability.

11.
Int J Mol Sci ; 25(13)2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38999938

RESUMEN

The purpose of this study was to evaluate the spatiotemporal immunoexpression pattern of microtubule-associated protein 1 light chain 3 beta (LC3B), glucose-regulated protein 78 (GRP78), heat shock protein 70 (HSP70), and lysosomal-associated membrane protein 2A (LAMP2A) in normal human fetal kidney development (CTRL) and kidneys affected with congenital anomalies of the kidney and urinary tract (CAKUT). Human fetal kidneys (control, horseshoe, dysplastic, duplex, and hypoplastic) from the 18th to the 38th developmental week underwent epifluorescence microscopy analysis after being stained with antibodies. Immunoreactivity was quantified in various kidney structures, and expression dynamics were examined using linear and nonlinear regression modeling. The punctate expression of LC3B was observed mainly in tubules and glomerular cells, with dysplastic kidneys displaying distinct staining patterns. In the control group's glomeruli, LAMP2A showed a sporadic, punctate signal; in contrast to other phenotypes, duplex kidneys showed significantly stronger expression in convoluted tubules. GRP78 had a weaker expression in CAKUT kidneys, especially hypoplastic ones, while normal kidneys exhibited punctate staining of convoluted tubules and glomeruli. HSP70 staining varied among phenotypes, with dysplastic and hypoplastic kidneys exhibiting stronger staining compared to controls. Expression dynamics varied among observed autophagy markers and phenotypes, indicating their potential roles in normal and dysfunctional kidney development.


Asunto(s)
Autofagia , Chaperón BiP del Retículo Endoplásmico , Proteínas HSP70 de Choque Térmico , Riñón , Proteína 2 de la Membrana Asociada a los Lisosomas , Proteínas Asociadas a Microtúbulos , Humanos , Proteína 2 de la Membrana Asociada a los Lisosomas/metabolismo , Proteína 2 de la Membrana Asociada a los Lisosomas/genética , Riñón/metabolismo , Riñón/anomalías , Riñón/patología , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas de Choque Térmico/metabolismo , Anomalías Urogenitales/metabolismo , Anomalías Urogenitales/patología , Sistema Urinario/metabolismo , Sistema Urinario/anomalías , Reflujo Vesicoureteral/metabolismo , Reflujo Vesicoureteral/patología
12.
Iran J Basic Med Sci ; 27(9): 1162-1171, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39055872

RESUMEN

Objectives: This study aimed to investigate the effects of Warm Water Immersion (WWI) on inflammation, kidney function, and kidney tissue damage in rats with diabetes mellitus (DM). Materials and Methods: Forty male rats were divided into four groups: Healthy Control (HC), Diabetic Control (DC), Diabetic Rats treated with WWI (DW), and Healthy Rats treated with WWI (HW). Daily 15-minute WWI sessions at 43 °C were administered for eight weeks. Various parameters including lipids, fasting blood sugar (FBS), HbA1C, insulin, advanced glycation end products (AGEs), HSP70, glomerular filtration rate (GFR), urinary albumin excretion, creatinine, blood urea nitrogen (BUN), oxidative stress, anti-oxidant parameters, and gene expression of RAGE, VEGF, and TGFß1 were assessed. Histological examination of kidney tissue was also conducted. Results: Significant reductions in FBS, AGEs, glutathione, superoxide dismutase (SOD), and nitric oxide (NO) levels were observed in the DW group compared to DC. Expression of RAGE, VEGF, and TGFß1 genes decreased in DW. Triglycerides, total cholesterol, and LDL cholesterol were lower in DW. Insulin, HDL cholesterol, catalase, total anti-oxidant capacity (TAC), and tissue HSP70 were higher in DW. Histological assessment revealed reduced kidney damage in DW compared to DC. Conclusion: WWI for eight weeks shows promise in mitigating diabetic nephropathy in rats, suggesting its potential as a non-invasive adjunctive therapy for managing diabetes complications.

13.
Insects ; 15(7)2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-39057227

RESUMEN

Honey bees are a commonly used species for alcohol research due to their genome being fully sequenced, their behavioral changes following consumption, and their preference for alcohol. The purpose of this article is to provide a preliminary examination of the genetic expression of heat shock protein 70 (HSP70) and big potassium ion channel protein (BKP) in honey bees following the consumption of either 0%, 2.5%, 5%, or 10% ethanol (EtOH) solutions. The foraging behaviors of the bees were observed and recorded through their return and drinking times. There were significant differences in the return and drinking times between some of the groups. The bees in the 10% condition took significantly longer to return compared to the other groups. Additionally, the bees in the 5% group spent significantly more time drinking compared to the bees in the control (0%) group. There were no significant differences in HSP70 or BKP between the different ethanol groups. Cumulatively, these findings suggest that, while bees may exhibit behavioral differences, the differences in gene expression may not be observed at the transcriptional level.

14.
J Clin Med ; 13(14)2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39064192

RESUMEN

(1) Background: Due to similar clinical presentation and a lack of specific biomarkers, initial differentiation between Takotsubo syndrome (TTS) and non-ST-segment elevation myocardial infarction (NSTEMI) remains challenging in daily practice. Heat Shock Protein 70 (HSP70) is a novel biomarker that is recognized for its potential in the diagnosis and differentiation of cardiovascular conditions. (2) Methods: Data from a total of 156 patients were analyzed (32.1% NSTEMI, 32.7% TTS, and 35.3% controls). Serum concentrations of HSP70 were determined using ELISA and compared between patients and controls. ROC curve analysis, logistic regression analysis and propensity-score-weighted logistic regression were conducted. (3) Results: Concentrations of HSP70 were highest in patients with TTS (median 1727 pg/mL vs. ACS: median 1545 pg/mL vs. controls: median 583 pg/mL, p < 0.0001). HSP70 was predictive for TTS in binary logistic regression analysis (B(SE) = 0.634(0.22), p = 0.004), which even remained significant after correction for possible confounders in propensity-score-weighted analysis. ROC curve analysis also revealed a significant association of HSP70 with TTS (AUC: 0.633, p = 0.008). (4) Conclusions: Based on our findings, HSP70 constitutes a promising biomarker for discrimination between TTS and NSTEMI, especially in combination with established cardiovascular biomarkers like pBNP or high-sensitivity cardiac troponin.

15.
Endocrinol Diabetes Metab ; 7(4): e508, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39001578

RESUMEN

AIM: To investigate the association between vitamin D3 level and oxidative stress biomarkers such as Heat Shock Protein 70 (HSP70), ferric reducing ability of plasma (FRAP), advanced oxidation protein products (AOPP) and advanced glycation end products (AGEs) in patients with Type 2 diabetes. METHOD: In this cross-sectional study, 54 patients including 32 females and 22 males with a mean age of 54.92 ± 11.37 years with T2D attending the diabetes clinic from 2021 to 2022 were included. According to the average level of vitamin D in this population (14.91), they were divided into two groups with vitamin D ≤15 ng/mL and vitamin D >15 ng/mL. Multivariate regression analysis was conducted to evaluate the relationship between vitamin D and AOPP, HSP and FRAP parameters. The correlation between vitamin D and other variables was evaluated via the Pearson correlation test. RESULT: Vitamin D level had a positive relation with FRAP (ß = 0.32, p = 0.017) and HSP (ß = 0.39, p = 0.003), but had a negative relation with AOPP (ß = -0.30, p = 0.02). The level of 2hPP also had a negative relation with the level of vitamin D (ß = -0.33, p = 0.03). There was not any relationship between the level of vitamin D and AGEs or other variables. After adjusting for multiple confounders for the multivariate regression model, HSP remained significant. CONCLUSION: This research indicates the relationship between vitamin D levels and oxidative stress biomarkers in patients with Type 2 diabetes.


Asunto(s)
Productos Avanzados de Oxidación de Proteínas , Diabetes Mellitus Tipo 2 , Productos Finales de Glicación Avanzada , Proteínas HSP70 de Choque Térmico , Estrés Oxidativo , Vitamina D , Humanos , Diabetes Mellitus Tipo 2/sangre , Masculino , Femenino , Productos Avanzados de Oxidación de Proteínas/sangre , Persona de Mediana Edad , Estudios Transversales , Productos Finales de Glicación Avanzada/metabolismo , Vitamina D/sangre , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas HSP70 de Choque Térmico/sangre , Anciano , Adulto , Biomarcadores/sangre , Oxidación-Reducción
16.
J Clin Med ; 13(13)2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38999417

RESUMEN

Heat shock proteins (HSPs) have been attracting the attention of researchers for many years. HSPs are a family of ubiquitous, well-characterised proteins that are generally regarded as protective multifunctional molecules that are expressed in response to different types of cell stress. Their activity in many organs has been reported, including the heart, brain, and retina. By acting as chaperone proteins, HSPs help to refold denatured proteins. Moreover, HSPs elicit inhibitory activity in apoptotic pathways and inflammation. Heat shock proteins were originally classified into several subfamilies, including the HSP70 family. The aim of this paper is to systematise information from the available literature about the presence of HSP70 in the human eye and its role in the pathogenesis of ocular diseases. HSP70 has been identified in the cornea, lens, and retina of a normal eye. The increased expression and synthesis of HSP70 induced by cell stress has also been demonstrated in eyes with pathologies such as glaucoma, eye cancers, cataracts, scarring of the cornea, ocular toxpoplasmosis, PEX, AMD, RPE, and diabetic retinopathy. Most of the studies cited in this paper confirm the protective role of HSP70. However, little is known about these molecules in the human eye and their role in the pathogenesis of eye diseases. Therefore, understanding the role of HSP70 in the pathophysiology of injuries to the cornea, lens, and retina is essential for the development of new therapies aimed at limiting and/or reversing the processes that cause damage to the eye.

17.
Plants (Basel) ; 13(14)2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39065510

RESUMEN

Xylem sap proteomics provides crucial insights into plant defense and root-to-shoot communication. This study highlights the sensitivity and reproducibility of xylem sap proteome analyses, using a single plant per sample to track over 3000 proteins in two model crop plants, Solanum tuberosum and Hordeum vulgare. By analyzing the flg22 response, we identified immune response components not detectable through root or shoot analyses. Notably, we discovered previously unknown elements of the plant immune system, including calcium/calmodulin-dependent kinases and G-type lectin receptor kinases. Despite similarities in the metabolic pathways identified in the xylem sap of both plants, the flg22 response differed significantly: S. tuberosum exhibited 78 differentially abundant proteins, whereas H. vulgare had over 450. However, an evolutionarily conserved overlap in the flg22 response proteins was evident, particularly in the CAZymes and lipid metabolism pathways, where lipid transfer proteins and lipases showed a similar response to flg22. Additionally, many proteins without conserved signal sequences for extracellular targeting were found, such as members of the HSP70 family. Interestingly, the HSP70 response to flg22 was specific to the xylem sap proteome, suggesting a unique regulatory role in the extracellular space similar to that reported in mammalians.

18.
Mol Biotechnol ; 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38940979

RESUMEN

Huanglongbing (HLB), a global citrus threat, is transmitted by Diaphorina citri Kuwayama, a widespread insect pest. The disease's rapid spread and incurability necessitate efficient, sustainable control strategies. This study investigates heat shock protein 70 (HSP70) genes in D. citri, known to play a pivotal role in insect survival and stress response. The genome-wide identification, gene structure analysis, and conserved protein domain analysis of 22 HSP70 genes in D. citri were performed. Furthermore, the expression of these genes during HLB infection or developmental processes was gauged. Phylogenetic analysis revealed the functional categorization of the identified genes, while gene structure and conserved motifs offered insights into gene function. The expression analysis unveiled dynamic profiles in response to infection and across development stages, potentially aiding future targeted pest control strategies. These findings offer promising leads for the design of novel inhibitors or RNAi strategies targeting D. citri and HLB.

19.
Int J Mol Sci ; 25(11)2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38891896

RESUMEN

Heat shock proteins (HSPs) are a class of highly conserved proteins that play an important role in biological responses to various environmental stresses. The mariculture of Thamnaconus septentrionalis, a burgeoning aquaculture species in China, frequently encounters stressors such as extreme temperatures, salinity variations, and elevated ammonia levels. However, systematic identification and analysis of the HSP70 and HSP90 gene families in T. septentrionalis remain unexplored. This study conducted the first genome-wide identification of 12 HSP70 and 4 HSP90 genes in T. septentrionalis, followed by a comprehensive analysis including phylogenetics, gene structure, conserved domains, chromosomal localization, and expression profiling. Expression analysis from RNA-seq data across various tissues and developmental stages revealed predominant expression in muscle, spleen, and liver, with the highest expression found during the tailbud stage, followed by the gastrula, neurula, and juvenile stages. Under abiotic stress, most HSP70 and HSP90 genes were upregulated in response to high temperature, high salinity, and low salinity, notably hspa5 during thermal stress, hspa14 in high salinity, and hsp90ab1 under low salinity conditions. Ammonia stress led to a predominance of downregulated HSP genes in the liver, particularly hspa2, while upregulation was observed in the gills, especially for hsp90b1. Quantitative real-time PCR analysis corroborated the expression levels under environmental stresses, validating their involvement in stress responses. This investigation provides insights into the molecular mechanisms of HSP70 and HSP90 in T. septentrionalis under stress, offering valuable information for future functional studies of HSPs in teleost evolution, optimizing aquaculture techniques, and developing stress-resistant strains.


Asunto(s)
Proteínas HSP70 de Choque Térmico , Proteínas HSP90 de Choque Térmico , Filogenia , Estrés Fisiológico , Animales , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas HSP90 de Choque Térmico/genética , Proteínas HSP90 de Choque Térmico/metabolismo , Estrés Fisiológico/genética , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Familia de Multigenes , Perfilación de la Expresión Génica , Peces/genética , Peces/metabolismo , Salinidad
20.
Mol Cell ; 84(13): 2455-2471.e8, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38908370

RESUMEN

Protein folding is assisted by molecular chaperones that bind nascent polypeptides during mRNA translation. Several structurally distinct classes of chaperones promote de novo folding, suggesting that their activities are coordinated at the ribosome. We used biochemical reconstitution and structural proteomics to explore the molecular basis for cotranslational chaperone action in bacteria. We found that chaperone binding is disfavored close to the ribosome, allowing folding to precede chaperone recruitment. Trigger factor recognizes compact folding intermediates that expose an extensive unfolded surface, and dictates DnaJ access to nascent chains. DnaJ uses a large surface to bind structurally diverse intermediates and recruits DnaK to sequence-diverse solvent-accessible sites. Neither Trigger factor, DnaJ, nor DnaK destabilize cotranslational folding intermediates. Instead, the chaperones collaborate to protect incipient structure in the nascent polypeptide well beyond the ribosome exit tunnel. Our findings show how the chaperone network selects and modulates cotranslational folding intermediates.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Proteínas del Choque Térmico HSP40 , Proteínas HSP70 de Choque Térmico , Biosíntesis de Proteínas , Pliegue de Proteína , Ribosomas , Ribosomas/metabolismo , Ribosomas/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas HSP70 de Choque Térmico/genética , Proteínas del Choque Térmico HSP40/metabolismo , Proteínas del Choque Térmico HSP40/genética , Escherichia coli/metabolismo , Escherichia coli/genética , Unión Proteica , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/genética , Modelos Moleculares , Conformación Proteica , Isomerasa de Peptidilprolil
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA