Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 131
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Hazard Mater ; 476: 134741, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-38991640

RESUMEN

Exposure to environmental BaP or its metabolite BPDE causes trophoblast cell dysfunctions to induce miscarriage (abnormal early embryo loss), which might be generally regulated by lncRNAs. IL1B, a critical inflammatory cytokine, is closely associated with adverse pregnancy outcomes. However, whether IL1B might cause dysfunctions of BaP/BPDE-exposed trophoblast cells to induce miscarriage, as well as its specific epigenetic regulatory mechanisms, is completely unexplored. In this study, we find that BPDE-DNA adducts, trophoblast cell dysfunctions, and miscarriage are closely associated. Moreover, we also identify a novel lnc-HZ06 and IL1B, both of which are highly expressed in BPDE-exposed trophoblast cells, in villous tissues of recurrent miscarriage patients, and in placental tissues of BaP-exposed mice with miscarriage. Both lnc-HZ06 and IL1B suppress trophoblast cell migration/invasion and increase apoptosis. In mechanism, lnc-HZ06 promotes STAT4-mediated IL1B mRNA transcription, enhances IL1B mRNA stability by promoting the formation of METTL3/HuR/IL1B mRNA ternary complex, and finally up-regulates IL1B expression levels. BPDE exposure promotes TBP-mediated lnc-HZ06 transcription, and thus up-regulates IL1B levels. Knockdown of either murine lnc-hz06 (which down-regulates Il1b levels) or murine Il1b could alleviate miscarriage in BaP-exposed mice. Collectively, this study not only discovers novel biological mechanisms and pathogenesis of unexplained miscarriage but also provides novel potential targets for treatment against BaP/BPDE-induced miscarriage.


Asunto(s)
Interleucina-1beta , ARN Largo no Codificante , Trofoblastos , Animales , Femenino , Humanos , Ratones , Embarazo , Aborto Habitual/genética , Aborto Habitual/metabolismo , Aborto Espontáneo , Apoptosis/efectos de los fármacos , Línea Celular , Movimiento Celular/efectos de los fármacos , Interleucina-1beta/metabolismo , Interleucina-1beta/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Trofoblastos/metabolismo , Trofoblastos/efectos de los fármacos , Regulación hacia Arriba
2.
Placenta ; 154: 145-152, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-38986295

RESUMEN

INTRODUCTION: The aberrant biological behaviors of trophoblast cells actively take part in the pathogenesis of preeclampsia (PE). Herein, we defined the action of the circular RNA (circRNA) circ_0007611 on trophoblast cell apoptosis and growth to understand its role in PE. METHODS: Expression of circ_0007611, miR-34c-5p and lysophosphatidic acid receptor 2 (LPAR2) mRNA was analyzed by qPCR. LPAR2 protein was determined by western blotting. Cell proliferation was analyzed by EdU assay. We assessed apoptosis through flow cytometry and analysis of caspase3 activity and apoptosis-related marker proteins. The binding of miR-34c-5p and circ_0007611 or LPAR2 was verified by dual-luciferase and pull-down assays. RESULTS: Circ_0007611 and LPAR2 levels were augmented, while miR-34c-5p was diminished in blood samples of PE. Circ_0007611 deficiency repressed cell apoptosis and enhanced the growth of HTR-8/SVneo cells. Circ_0007611 interacted with miR-34c-5p, and miR-34c-5p depletion reversed circ_0007611 deficiency-induced HTR-8/SVneo cell apoptotic inhibition and growth enhancement. MiR-34c-5p targeted LPAR2, and circ_0007611 affected LPAR2 expression via miR-34c-5p competition. Circ_0007611 deficiency-induced HHTR-8/SVneo cell apoptotic inhibition and growth enhancement were also counteracted by LPAR2 overexpression. DISCUSSION: Circ_0007611 modulates the miR-34c-5p/LPAR2 cascade to enhance apoptosis and inhibit proliferation in HTR-8/SVneo cells, thereby contributing to the progression of PE.


Asunto(s)
Apoptosis , Proliferación Celular , MicroARNs , Preeclampsia , ARN Circular , Receptores del Ácido Lisofosfatídico , Trofoblastos , Humanos , MicroARNs/metabolismo , MicroARNs/genética , ARN Circular/metabolismo , ARN Circular/genética , Receptores del Ácido Lisofosfatídico/metabolismo , Receptores del Ácido Lisofosfatídico/genética , Embarazo , Femenino , Preeclampsia/metabolismo , Preeclampsia/genética , Trofoblastos/metabolismo , Trofoblastos/fisiología , Línea Celular , Adulto
3.
J Cell Mol Med ; 28(12): e18469, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38899809

RESUMEN

The alterations in DNA methylation and transcriptome in trophoblast cells under conditions of low oxygen and oxidative stress have major implications for pregnancy-related disorders. However, the exact mechanism is still not fully understood. In this study, we established models of hypoxia (H group) and oxidative stress (HR group) using HTR-8/SVneo trophoblast cells and performed combined analysis of genome-wide DNA methylation changes using reduced representation bisulphite sequencing and transcriptome expression changes using RNA sequencing. Our findings revealed that the H group exhibited a higher number of differentially methylated genes and differentially expressed genes than the HR group. In the H group, only 0.90% of all differentially expressed genes displayed simultaneous changes in DNA methylation and transcriptome expression. After the threshold was expanded, this number increased to 6.29% in the HR group. Notably, both the H group and HR group exhibited concurrent alterations in DNA methylation and transcriptome expression within Axon guidance and MAPK signalling pathway. Among the top 25 differentially methylated KEGG pathways in the promoter region, 11 pathways were commonly enriched in H group and HR group, accounting for 44.00%. Among the top 25 KEGG pathways in transcriptome with significant differences between the H group and HR group, 10 pathways were consistent, accounting for 40.00%. By integrating our previous data on DNA methylation from preeclamptic placental tissues, we identified that the ANKRD37 and PFKFB3 genes may contribute to the pathogenesis of preeclampsia through DNA methylation-mediated transcriptome expression under hypoxic conditions.


Asunto(s)
Hipoxia de la Célula , Metilación de ADN , Estrés Oxidativo , Transcriptoma , Trofoblastos , Humanos , Trofoblastos/metabolismo , Estrés Oxidativo/genética , Transcriptoma/genética , Hipoxia de la Célula/genética , Línea Celular , Femenino , Embarazo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Fosfofructoquinasa-2/genética , Fosfofructoquinasa-2/metabolismo
4.
BMC Med Genomics ; 17(1): 172, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38943134

RESUMEN

Placental hypoxia is hazardous to maternal health as well as fetal growth and development. Preeclampsia and intrauterine growth restriction are common pregnancy problems, and one of the causes is placental hypoxia. Placental hypoxia is linked to a number of pregnancy illnessesv. To investigate their potential function in anoxic circumstances, we mimicked the anoxic environment of HTR-8/Svneo cells and performed lncRNA and circRNA studies on anoxic HTR-8/Svneo cells using high-throughput RNA sequencing. The miRNA target genes were predicted by integrating the aberrant expression of miRNAs in the placenta of preeclampsia and intrauterine growth restriction, and a ceRNA network map was developed to conduct a complete transcriptomic and bioinformatics investigation of circRNAs and lncRNAs. The signaling pathways in which the genes were primarily engaged were predicted using GO and KEGG analyses. To propose a novel explanation for trophoblastic organism failure caused by lncRNAs and circRNAs in an anoxic environment.


Asunto(s)
Redes Reguladoras de Genes , ARN Circular , ARN Largo no Codificante , Humanos , ARN Circular/genética , ARN Circular/metabolismo , ARN Largo no Codificante/genética , Línea Celular , RNA-Seq , Hipoxia de la Célula/genética , Embarazo , MicroARNs/genética , MicroARNs/metabolismo , Femenino , Placenta/metabolismo , Trofoblastos/metabolismo , Trofoblastos/citología , Biología Computacional/métodos , Perfilación de la Expresión Génica
5.
Food Chem Toxicol ; 189: 114748, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38763501

RESUMEN

Adverse pregnancy outcomes have been associated with the presence of glyphosate (G) in umbilical cord, serum, and urine samples from pregnant women. Our aim was to study the effect of G on blastocyst implantation using an in vitro mouse model, and the migration and acquisition of endothelial phenotype of the human trophoblastic HTR8/SVneo (H8) cells. In mouse blastocysts, no differences in attachment time and implantation outgrowth area were observed after G exposure. H8 cell migration was stimulated by 0.625 µM G without cytotoxicity. After 6 h, the mRNA expression of vascular endothelial growth factor (VEGF) and C-C motif chemokine ligand 2 (CCL2) was upregulated in H8 cells exposed to 1.25 µM G when compared vehicle-treated cells (p ≤ 0.05). No differences were observed in interleukin 11, VEGF receptor 1, and coagulation factor II thrombin receptor in H8 cells exposed to different concentrations of G for 6 h compared to the vehicle. Interestingly, exposure to G did not alter angiogenesis as measured by a tube formation assay. Taken all together, these results suggest that G exposure may contribute as a risk factor during pregnancy, due to its ability to alter trophoblast migration and gene expression.


Asunto(s)
Blastocisto , Movimiento Celular , Implantación del Embrión , Glicina , Glifosato , Trofoblastos , Trofoblastos/efectos de los fármacos , Trofoblastos/metabolismo , Movimiento Celular/efectos de los fármacos , Humanos , Animales , Femenino , Ratones , Glicina/análogos & derivados , Glicina/toxicidad , Glicina/farmacología , Blastocisto/efectos de los fármacos , Blastocisto/metabolismo , Implantación del Embrión/efectos de los fármacos , Neovascularización Fisiológica/efectos de los fármacos , Línea Celular , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Embarazo , Herbicidas/toxicidad , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Angiogénesis
6.
J Obstet Gynaecol ; 44(1): 2350761, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38785148

RESUMEN

BACKGROUND: Asiaticoside (AS) has been reported to improve the changes induced by high glucose stimulation, and it may have potential therapeutic effects on gestational diabetes mellitus (GDM). This study aims to explore the effect of AS on the cell model of GDM and the action mechanism of the PI3K/AKT pathway. METHODS: The GDM model was established in HTR-8/Svneo cells with a high glucose (HG) medium. After the cytotoxicity assay of AS, cells were divided into the control group, HG group and HG + AS group to conduct control experiment in cells. The cell proliferation and migration were detected by CCK-8 assay and scratch test, respectively. The mRNA levels of PI3K, AKT2, mTORC1, and GLUT4 in PI3K/AKT signalling pathway were measured by RT-PCR, and the protein expressions of these signalling molecules were monitored by western blot. RESULTS: AS showed a promotion effect on the cell proliferation rate of HTR-8/Svneo cells, and 80 µmol/L AS with a treatment time of 48 h had no cytotoxicity. The cell proliferation rate, migration rate, mRNA levels and protein expressions of PI3K, AKT2, mTORC1, and GLUT4 in the HG group were significantly lower than those in the control group, which were significantly increased in the HG + AS group (p < 0.05). CONCLUSIONS: AS can facilitate the cell proliferation and migration in the cell model of GDM, and might play a role in GDM treatment via PI3K/AKT pathway.


Asiaticoside possesses various pharmacological effects and has been reported to show a beneficial effect on the treatment of diabetes mellitus. This research firstly investigated the effect and mechanism of asiaticoside on gestational diabetes mellitus, and found that asiaticoside could facilitate the cell proliferation and migration of HTR-8/Svneo cells treated with high glucose, and affect the signalling molecules of PI3K/AKT pathway. Therefore, asiaticoside may be a novel useful therapeutic drug in the treatment of gestational diabetes mellitus.


Asunto(s)
Movimiento Celular , Proliferación Celular , Diabetes Gestacional , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Triterpenos , Humanos , Diabetes Gestacional/metabolismo , Femenino , Embarazo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proliferación Celular/efectos de los fármacos , Triterpenos/farmacología , Transducción de Señal/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo , Movimiento Celular/efectos de los fármacos , Línea Celular , Trofoblastos/efectos de los fármacos , Trofoblastos/metabolismo , Glucosa/farmacología , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo
7.
Pestic Biochem Physiol ; 201: 105849, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38685233

RESUMEN

Beta-cypermethrin (ß-CYP) consists of four chiral isomers, acting as an environmental estrogen and causing reproductive toxicity, neurotoxicity, and dysfunctions in multiple organ systems. This study investigated the toxic effects of ß-CYP, its isomers, metabolite 3-phenoxybenzoic acid (3-PBA), and 17ß-estradiol (E2) on HTR-8/SVneo cells. We focused on the toxic mechanisms of ß-CYP and its specific isomers. Our results showed that ß-CYP and its isomers inhibit HTR-8/SVneo cell proliferation similarly to E2, with 100 µM 1S-trans-αR displaying significant toxicity after 48 h. Notably, 1S-trans-αR, 1R-trans-αS, and ß-CYP were more potent in inducing apoptosis and cell cycle arrest than 1R-cis-αS and 1S-cis-αR at 48 h. AO/EB staining and flow cytometry indicated dose-dependent apoptosis in HTR-8/SVneo cells, particularly at 100 µM 1R-trans-αS. Scratch assays revealed that ß-CYP and its isomers variably reduced cell migration. Receptor inhibition assays demonstrated that post-ICI 182780 treatment, which inhibits estrogen receptor α (ERα) or estrogen receptor ß (ERß), ß-CYP, its isomers, and E2 reduced HTR-8/SVneo cell viability, whereas milrinone, a phosphodiesterase 3 A (PDE3A) inhibitor, increased viability. Molecular docking studies indicated a higher affinity of ß-CYP, its isomers, and E2 for PDE3A than for ERα or ERß. Consequently, ß-CYP, its isomers, and E2 consistently led to decreased cell viability. Transcriptomics and RT-qPCR analyses showed differential expression in treated cells: up-regulation of Il24 and Ptgs2, and down-regulation of Myo7a and Pdgfrb, suggesting the PI3K-AKT signaling pathway as a potential route for toxicity. This study aims to provide a comprehensive evaluation of the cytotoxicity of chiral pesticides and their mechanisms.


Asunto(s)
Apoptosis , Piretrinas , Humanos , Piretrinas/toxicidad , Piretrinas/farmacología , Apoptosis/efectos de los fármacos , Línea Celular , Simulación del Acoplamiento Molecular , Estradiol/farmacología , Proliferación Celular/efectos de los fármacos , Insecticidas/toxicidad , Insecticidas/farmacología , Insecticidas/química , Isomerismo , Movimiento Celular/efectos de los fármacos , Benzoatos/farmacología , Benzoatos/química , Estereoisomerismo , Supervivencia Celular/efectos de los fármacos , Receptor alfa de Estrógeno/metabolismo , Puntos de Control del Ciclo Celular/efectos de los fármacos
8.
Biochem Genet ; 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38642175

RESUMEN

A series of studies have confirmed the relationship between circular RNAs (circRNAs) and metabolic diseases. Hsa_circ_0006260 has been reported to be lowly expressed in the placenta of gestational diabetes mellitus (GDM) patients, but the underlying mechanism and its biological functions remain obscure. Placental tissues were collected from 37 pregnant women with normal glucose tolerance (NGT) and 37 pregnant women with GDM. Expression changes of hsa_circ_0006260 in placentas and high glucose (HG)-stimulated HTR-8/SVneo cells were detected using real-time quantitative polymerase chain reaction. Cell viability and migration were determined by cell counting and transwell assays, respectively. Measurement of cytokines was done by enzyme-linked immunosorbent assay. Cell apoptosis was estimated by flow cytometry assay. The molecular mechanisms were identified using dual-luciferase reporter and RNA-binding protein immunoprecipitation assays. Hsa_circ_0006260 expression was remarkably lowered in GDM patient-derived placentas and HG-stimulated HTR-8/SVneo cells. Functionally, hsa_circ_0006260 overexpression weakened HG-mediated repression of HTR-8/SVneo cell viability and migration, as well as promotion of HTR-8/SVneo cell inflammatory response and apoptosis. Mechanistically, hsa_circ_0006260 functioned as a miR-770-5p decoy to mediate fibronectin type III domains containing protein 5 (FNDC5) expression. Ectopic expression of miR-770-5p weakened hsa_circ_0006260 overexpression-mediated repression of HG-induced HTR-8/SVneo cell dysfunction. Also, FNDC5 knockdown lessened miR-770-5p overexpression-mediated promotion of HG-induced HTR-8/SVneo cell dysfunction. Our findings manifested a novel mechanism by which hsa_circ_0006260 could lower HG-induced HTR-8/SVneo cell dysfunction by upregulating FNDC5 via binding to miR-770-5p, which shed new light on circRNA mediated GDM pathogenesis.

9.
Placenta ; 148: 1-11, 2024 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-38325118

RESUMEN

INTRODUCTION: Gestational diabetes mellitus (GDM) is a prevalent pregnancy complication featuring impaired insulin sensitivity. MiR-155-5p is associated with various metabolic diseases. However, its specific role in GDM remains unclear. CCAAT enhancer binding protein beta (CEBPB), a critical role in regulating glucolipid metabolism, has been identified as a potential target of miR-155-5p. This study aims to investigate the impact of miR-155-5p and CEBPB on insulin sensitivity of trophoblasts in GDM. METHODS: Placental tissues were obtained from GDM and normal pregnant women; miR-155-5p expression was then evaluated by RT‒qPCR and CEBPB expression by western blot and immunohistochemical staining. To investigate the impact of miR-155-5p on insulin sensitivity and CEBPB expression, HTR-8/SVneo cells were transfected with either miR-155-5p mimic or inhibitor under basal and insulin-stimulated conditions. Cellular glucose uptake consumption was quantified using a glucose assay kit. Furthermore, the targeting relationship between miR-155-5p and CEBPB was validated using a dual luciferase reporter assay. RESULTS: Reduced miR-155-5p expression and elevated CEBPB expression were observed in GDM placentas and high glucose treated HTR8/SVneo cells. The overexpression of miR-155-5p significantly enhanced insulin signaling and glucose uptake in trophoblasts. Conversely, inhibiting miR-155-5p induced the opposite effects. Additionally, CEBPB was directly targeted and negatively regulated by miR-155-5p in HTR8/SVneo cells. Silencing CEBPB effectively restored the inhibitory effect of miR-155-5p downregulation on insulin sensitivity in trophoblasts. DISCUSSION: These findings suggest that miR-155-5p could enhance insulin sensitivity in trophoblasts by targeting CEBPB, highlighting the potential of miR-155-5p as a therapeutic target for improving the intrauterine hyperglycemic environment in GDM.


Asunto(s)
Diabetes Gestacional , Resistencia a la Insulina , MicroARNs , Humanos , Femenino , Embarazo , Diabetes Gestacional/metabolismo , Placenta/metabolismo , MicroARNs/metabolismo , Proteína beta Potenciadora de Unión a CCAAT/genética , Proteína beta Potenciadora de Unión a CCAAT/metabolismo , Trofoblastos/metabolismo , Glucosa/metabolismo , Insulina/metabolismo , Proliferación Celular
10.
Adv Clin Exp Med ; 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38197563

RESUMEN

BACKGROUND: In response to the high-glucose environment in patients with gestational diabetes mellitus (GDM), trophoblast cells undergo a series of pathological changes. Gamma-aminobutyric acid type A receptor subunit pi (GABRP) is involved in the development of pregnancy-related diseases and regulation of blood glucose. OBJECTIVES: To explore the relationship between GABRP and hyperglycemia stimulation in GDM patients, and to provide preliminary experimental evidence for whether GABRP has the potential as a molecular target for the treatment of GDM. MATERIAL AND METHODS: Within 30 min after birth, placental samples were taken from 20 GDM patients and 20 pregnant women without GDM. Human chorionic trophoblast HTR-8/SVneo cells were utilized for in vitro experimental investigation. We explored changes in GABRP expression in placental samples and HTR-8/Svneo cells using western blot and quantitative reverse transcription polymerase chain reaction (RT-qPCR). Cells in the high-glucose treatment group were exposed to medium containing 25 mM glucose. To explore the relationship between GABRP and high-glucose stimulation, GABRP was overexpressed in HTR-8/SVneo cells. We monitored the cell viability, invasion and migration abilities using Cell Counting Kit-8 (CCK-8), transwell and scratch assays, respectively. RESULTS: We found that GABRP expression was significantly reduced in placental samples from GDM patients. Furthermore, high-glucose treatment decreased the expression level of GABRP in HTR-8/SVneo cells. High-glucose stimulation reduced the cell viability, invasion and migration abilities. GABRP overexpression reversed the biological dysfunction of the cells induced by high-glucose stimulation. CONCLUSIONS: Hyperglycemia in GDM patients downregulates the expression of GABRP, and overexpression of GABRP promotes the viability, migration and invasive ability of HTR8-/SVneo cells.

11.
Iran J Basic Med Sci ; 27(1): 16-23, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38164486

RESUMEN

Objectives: Inadequate cytotrophoblast migration and invasion are speculated to result in preeclampsia, which is a pro-inflammatory condition. Sodium dichloroacetate (DCA) exerts anti-inflammatory actions. Thus,we sought to investigate the effect of DCA on the migration function of the lipopolysaccharide (LPS)-stimulated human-trophoblast-derived cell line (HTR-8/SVneo). Materials and Methods: HTR-8/SVneo cells were treated with LPS to suppress cell migration. Cell migration was examined by both scratch wound healing assay and transwell migration assay. Western blotting was used to analyze the expression levels of toll-like receptor-4 (TLR4), nuclear factor-κB (NF-κB), TNF-α, IL-1ß, and IL-6 in the cells. Results: DCA reversed LPS-induced inhibition of migration in HTR-8/SVneo cells. Furthermore, DCA significantly suppressed LPS-induced activation of TLR4, phosphorylation of NF-κB (p65), translocation of p65 into the nucleus, and the production of pro-inflammatory cytokines (TNF-α, IL-1ß, and IL-6). Treatment with inhibitors of TLR4 signal transduction (CLI095 or MD2-TLR-4-IN-1) reduced LPS-induced overexpression of pro-inflammatory cytokines, and a synergistic effect was found between TLR4 inhibitors and DCA in HTR-8/SVneo cells. Conclusion: DCA improved trophoblast cell migration function by suppressing LPS-induced inflammation, at least in part, via the TLR4/NF-κB signaling pathway. This result indicates that DCA might be a potential therapeutic candidate for human pregnancy-related complications associated with trophoblast disorder.

12.
J Obstet Gynaecol ; 43(2): 2274527, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37938139

RESUMEN

OBJECTIVE: Tanshinol is an active constituent of Salvia miltiorrhiza that possesses anti-inflammatory, antioxidant, and antibacterial activities. Therefore, this study attempted to detect whether it has a role in the treatment of preeclampsia (PE). METHODS: In this study, we explored the effect of tanshinol on the development of PE at the cellular level. The effect of tanshinol on cell proliferation was measured by colony formation and EdU assays. The migration, invasion, and in vitro angiogenesis of HTR-8/SVneo cells were detected by wound-healing, transwell, and tube formation assays, respectively. In addition, a PE cell model was established by overexpression of Gadd45a, and this cell model was assessed with the optimal concentration of tanshinol. RESULTS: The results show that tanshinol enhanced proliferation, migration, invasion, and tube formation of HTR-8/SVneo cells in vitro. Furthermore, the reduction in proliferation, migration, invasion, and tube formation of cells by Gadd45a overexpression was partially reversed by tanshinol treatment. Tanshinol also inhibited the apoptosis of HTR-8/SVneo cells transfected with Gadd45a. CONCLUSIONS: In summary, tanshinol promoted proliferation, migration, invasion, and tube formation and inhibited the apoptosis of HTR-8/SVneo cells. It may be a novel therapeutic compound to attenuate the development of PE.


Traditional Chinese medicine has maintained the health of people in Asia for thousands of years and is increasingly used worldwide. Tanshinol has been found to be useful in the treatment and prevention of many diseases. Through experiments, we found that tanshinol is a novel therapeutic compound that promotes the proliferation, migration, invasion and tubular formation of HTR-8/SVneo cells. In addition, tanshinol also inhibited the apoptosis rate of preeclampsia cell models. Follow-up experiments will further validate the results of this study.


Asunto(s)
Preeclampsia , Femenino , Embarazo , Humanos , Preeclampsia/tratamiento farmacológico , Trofoblastos , Antibacterianos , Antioxidantes
13.
Food Chem Toxicol ; 182: 114189, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37980977

RESUMEN

Microcystin-leucine-arginine (MC-LR) is widespread in the water and food, which has suspected to be associated with adverse pregnancy outcomes. In the present study, we aim to assess the interaction between MC-LR exposure and preeclampsia development and elucidate the molecular events involved. After exposure to MC-LR during pregnancy, the mice developed hypertension and proteinuria, the typical symptoms of preeclampsia. This was associated with decreased invasiveness of placental trophoblast and vascular dysplasia caused by MC-LR through down-regulating VEGFA and TGF-ß expression via AKT/m-TOR/HIF-1α pathway. In addition, this conclusion has been confirmed in a case-control study. Significantly, the addition of Deferoxamine (DFM), a phosphorylated serine-threonine protein kinases (p-AKT) specific agonist, can antagonize the inhibitory effect of MC-LR on the expression of related proteins, which further ameliorate the migration and invasion ability of HTR-8/Svneo cells. To sum up, our study revealed the pathologic mechanism by which MC-LR lead to preeclampsia and emphasized the importance of pregnancy management.


Asunto(s)
Preeclampsia , Efectos Tardíos de la Exposición Prenatal , Animales , Femenino , Ratones , Embarazo , Estudios de Casos y Controles , Microcistinas/toxicidad , Placenta/metabolismo , Preeclampsia/inducido químicamente , Preeclampsia/metabolismo , Efectos Tardíos de la Exposición Prenatal/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Factor A de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Factor A de Crecimiento Endotelial Vascular/metabolismo , Factor de Crecimiento Transformador beta/antagonistas & inhibidores , Factor de Crecimiento Transformador beta/metabolismo
14.
Biochem Genet ; 2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37698761

RESUMEN

Existing research has confirmed the dysregulation of circular RNA (circRNA) in a wide variety of human diseases. Thus, in this study, we explored the potential mechanism of circRNA_0088196 in preeclampsia (PE). We performed quantitative real-time PCR to examine circRNA_0088196 expression and verified the function of circRNA_0088196 in vitro using CCK-8, TUNEL, flow cytometry, and Western blotting analyses. Additionally, we studied the mechanism using dual-luciferase reporter gene experiments. The results of our research revealed the up-regulation of circRNA_0088196 in PE patients' placentas and Heat Shock 70 kDa Protein 5 (HSPA5)-stimulated trophoblast (HTR-8/SVneo) cells. An investigation of the mechanism also showed that there was a binding between miR-379-5p and circRNA_0088196. Additionally, circRNA_0088196 inhibited HTR-8/SVneo cell proliferation and promoted cell apoptosis via the miR-337-3p/HSPA5 axis, thereby facilitating PE. In vivo experiments indicated that circRNA_0088196 regulated HTR-8/SVneo cell production through miR-379-5p. Overall, the findings of this study illustrate that circRNA_0088196 interference promotes cell apoptosis and inhibits HTR-8/SVneo proliferation via the miR-379-5p/HSPA5 axis, thereby accelerating the development of PE.

15.
Mol Biol Rep ; 50(10): 8189-8199, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37563526

RESUMEN

BACKGROUND: Placenta accreta spectrum (PAS) is mainly characterized by excessive invasion of the uterine muscle layer accompanied by a large number of foreign blood vessels, leading to severe bleeding during and after delivery. However, the mechanism of excessive invasion of nutrient cells in placenta accreta is currently unclear. METHODS: We performed RNA sequencing of 6 PAS patients and 4 control donors, coupled with Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. The mRNA and protein expression of C-X-C motif ligand 8 (CXCL8) in the placental tissue was measured by qRT‒PCR, immunohistochemical staining and Western blotting. HTR-8/SVneo human villous trophoblast Neo cells were used for in vitro investigation of cell migration and invasion as well as the expression level of CXCL8. RESULTS: A total of 1120 differentially expressed mRNAs were identified in PAS patients. Moreover, GO and KEGG analyses indicated that the differentially expressed mRNAs were most closely associated with immune system processes, biological adhesion and Wnt signaling pathway. The CXCL8 mRNA and protein levels in PAS tissue were significantly higher than those in normal placental tissue. Forced overexpression of CXCL8 significantly increased the migration and invasion of HTR-8/SVneo cells, accompanied by the upregulation of matrix metalloproteinase-2 and matrix metalloproteinase-9 and the downregulation of E-cadherin, which was reversed by knockdown of CXCL8. CONCLUSIONS: CXCL8 was highly expressed in PAS, and knockdown of CXCL8 suppressed the migration and invasion of HTR-8/SVneo cells, suggesting its potential as a diagnostic and therapeutic target for PAS.


Asunto(s)
Interleucina-8 , Placenta Accreta , Placenta , Femenino , Humanos , Embarazo , Movimiento Celular/genética , Metaloproteinasa 2 de la Matriz/genética , Metaloproteinasa 2 de la Matriz/metabolismo , Placenta/metabolismo , Placenta Accreta/genética , Placenta Accreta/metabolismo , ARN Mensajero/metabolismo , Trofoblastos/metabolismo , Interleucina-8/genética , Interleucina-8/metabolismo
16.
BMC Mol Cell Biol ; 24(1): 24, 2023 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-37550619

RESUMEN

BACKGROUND: Bone morphogenetic protein 9 (BMP9) has been shown to regulate processes such as angiogenesis, endothelial dysfunction, and tumorigenesis. However, the role of BMP9 in preeclampsia (PE) is unclear. The purpose of this study was to investigate the role and mechanism of BMP9 in PE. METHODS: The effects of BMP9 on the viability, migration and invasion of HTR-8/Svneo cells were investigated by CCK-8 assay, wound healing assay and Transwell invasion assay. The effect of BMP9 on apoptosis of HTR-8/Svneo cells was detected by flow cytometry. Plasma levels of BMP9, SDF1 and CXCR4 were detected by ELISA kit. qRT-PCR and Western blot were used to detect the expression levels of each gene in the cells. RESULTS: Overexpression of BMP9 promoted the proliferation and migration of trophoblast cells and inhibited apoptosis. Knockdown of BMP9 had the opposite effect. The levels of BMP9, SDF1 and CXCR4 in the plasma of PE patients were down-regulated, and BMP9 was positively correlated with the levels of SDF1 and CXCR4. BMP9 also significantly upregulated the mRNA and protein levels of SDF1 and CXCR4 in HTR-8/SVneo cells. Further mechanistic studies found that BMP9 promoted the migration and invasion of HTR-8/SVneo cells and inhibited apoptosis by activating the SDF1/CXCR4 pathway. CONCLUSION: We demonstrate for the first time that BMP9 promoted the migration and invasion of HTR-8/SVneo cells and inhibits apoptosis by activating the SDF1/CXCR4 pathway. This suggests that BMP9 may be a biomarker molecule for PE.


Asunto(s)
Factor 2 de Diferenciación de Crecimiento , Trofoblastos , Línea Celular , Movimiento Celular/genética , Factor 2 de Diferenciación de Crecimiento/genética , Factor 2 de Diferenciación de Crecimiento/metabolismo , Factor 2 de Diferenciación de Crecimiento/farmacología , Fenotipo , Trofoblastos/metabolismo , Humanos
17.
J Obstet Gynaecol Res ; 49(8): 2093-2101, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37277920

RESUMEN

AIM: Vitamin D3 has been implicated in multiple reproductive events, whereas the effect of its bioactive metabolite 1α, 25 dihydroxyvitamin D3 (1,25(OH) 2 D3 ) on transcriptome profile of the placenta is unclear. The aim of this article is to determine transcriptome-wide profile caused by 1,25(OH) 2 D3 in human placental trophoblast cells. METHODS: We performed RNA sequencing after stimulation of HTR-8/SVneo cells with 0.1, 1, 10, and 100 nM 1,25(OH)2 D3 for 24 h, identified differentially expressed genes by edgeR package (version 3.38.4), and analyzed Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways by webtool Metascape. Also, common genes and specific genes in different concentrations of 1,25(OH) 2 D3 were identified. RESULTS: There were 180, 158, 161, and 174 differentially expressed genes after 0.1, 1, 10, and 100 nM 1,25(OH) 2 D3 stimulation, respectively. KEGG pathway analysis displayed that "lipid and atherosclerosis" were significantly enriched at 0.1 and 1 nM 1,25(OH)2 D3 , while "cytokine-cytokine receptor interaction," "TGF-beta signaling pathway" and "hippo signaling pathway" were significantly enriched in 1, 10, and 100 nM 1,25(OH)2 D3 . CYP24A1 was a significantly expressed common gene. UCP3 was significantly expressed in low concentrations and might affect energy metabolism. TCF24, EIF3CL, ABCD2, EPHA7, CRLF1, and SECTM1 were specific genes at physiological concentration. Similarly, SPDYE1, IQUB, IL18R1, and ZNF713 were considered as specific genes at supraphysiological concentration. CONCLUSIONS: 1,25(OH)2 D3 mainly affected the expression of CYP24A1 gene in HTR-8/SVneo cells. Specific genes accounted for the majority of differentially expressed genes at different concentrations. However, their functions need to be further confirmed.


Asunto(s)
Placenta , Transcriptoma , Femenino , Humanos , Embarazo , Vitamina D3 24-Hidroxilasa/metabolismo , Placenta/metabolismo , Vitamina D , Colecalciferol
18.
Curr Issues Mol Biol ; 45(5): 3815-3828, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-37232715

RESUMEN

The HtrA serine peptidase 1 (HTRA1) is a multidomain secretory protein with serine-protease activity involved in the regulation of many cellular processes in both physiological and pathological conditions. HTRA1 is normally expressed in the human placenta, and its expression is higher in the first trimester compared to the third trimester, suggesting an important role of this serine protease in the early phases of human placenta development. The aim of this study was to evaluate the functional role of HTRA1 in in vitro models of human placenta in order to define the role of this serine protease in preeclampsia (PE). BeWo and HTR8/SVneo cells expressing HTRA1 were used as syncytiotrophoblast and cytotrophoblast models, respectively. Oxidative stress was induced by treating BeWo and HTR8/SVneo cells with H2O2 to mimic PE conditions in order to evaluate its effect on HTRA1 expression. In addition, HTRA1 overexpression and silencing experiments were performed to evaluate the effects on syncytialization, cell mobility, and invasion processes. Our main data showed that oxidative stress significantly increased HTRA1 expression in both BeWo and HTR8/SVneo cells. In addition, we demonstrated that HTRA1 has a pivotal role in cell motility and invasion processes. In particular, HTRA1 overexpression increased while HTRA1 silencing decreased cell motility and invasion in HTR8/SVneo cell model. In conclusion, our results suggest an important role of HTRA1 in regulating extravillous cytotrophoblast invasion and motility during the early stage of placentation in the first trimester of gestation, suggesting a key role of this serine protease in PE onset.

19.
J Obstet Gynaecol Res ; 49(7): 1710-1716, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37150840

RESUMEN

AIM: To investigate the expression of autophagy mediated by the hypoxia-inducible factor 1α (HIF-1α)/BNIP3 signaling pathway in villus tissues of missed abortion and HTR-8/SVneo cells and to elucidate the association of HIF-1α and BNIP3 in autophagy of missed abortion. METHODS: Villus tissues from 30 healthy women with induced abortion and 35 patients with missed abortion were collected, and HTR-8/SVneo cells were cultured under hypoxia and transfected with HIF-1α-siRNA. Real-time polymerase chain reaction was utilized to measure the mRNA levels of HIF-1α and BNIP3; Western blotting was performed to determine the protein levels of HIF-1α, BNIP3, LC3 II/I, and Beclin 1 in villus tissues and HTR-8/SVneo cells. Cellular invasion activity was detected by transwell matrigel assay. The level of autophagy was confirmed by transmission electron microscopy of autophagosome formation. RESULTS: The mRNA levels of HIF-1α and BNIP3 were significantly lower in the missed abortion villi than in the induced abortion samples. The protein levels of HIF-1α, BNIP3, Beclin 1, and LC3II/I were significantly decreased in villus tissues from missed abortion, and autophagosomes were significantly decreased in villus tissues from missed abortion. Under hypoxia, the mRNA expression of HIF-1α and BNIP3 was inhibited after silencing HIF-1α by RNAi, while the protein expression of HIF-1α, BNIP3, Beclin1, and LC3II/I was significantly downregulated. The number of invading cells was significantly decreased, and autophagosomes were significantly decreased after silencing HIF-1α by RNAi in HTR-8/SVneo cells. CONCLUSIONS: Autophagy mediated by the HIF-1α/BNIP3 signaling pathway in villous trophoblast cells may be associated with the progression and development of missed abortion.


Asunto(s)
Aborto Retenido , Embarazo , Humanos , Femenino , Aborto Retenido/genética , Beclina-1/metabolismo , Vellosidades Coriónicas/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Hipoxia , Autofagia , ARN Mensajero , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo
20.
J Tradit Chin Med ; 43(3): 457-465, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37147746

RESUMEN

OBJECTIVE: To elucidate the regulatory effects of salvianolic acid B (SalB) on trophoblast cells in preeclampsia (PE). METHODS: 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenylte-trazolium bromide (MTT) assays were used to detect the viability of human extravillous trophoblast HTR-8/Svneo cells induced by HO following treatment with different concentrations of SalB. The levels of oxidative stress-related molecules, including superoxide dismutase, glutathione-Px and malondialdehyde were detected using corresponding kits. Cell apoptosis was detected using a Terminal deoxynucleotidyl transferase (TdT) dUTP Nick-End Labeling (TUNEL) assay, and the expression of apoptosis-related proteins was detected using western blot analysis. In the present study, wound healing and Transwell assays were performed to measure the levels of cell invasion and migration. Western blot analysis was also used to detect the expression levels of epithelial-mesenchymal transition-related proteins. The mechanisms underlying SalB were further investigated using reverse transcription-quantitative real-time polymerase chain reaction (RT-qPCR) and western blot analysis, to determine the expression levels of matrix metallopeptidase 9 (MMP-9) and phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/protein kinase B (Akt). RESULTS: SalB increased the activity of HTR-8/Svneo cells, inhibited oxidative damage and promoted the invasion and migration of trophoblast cells induced by HO. Furthermore, the expression levels of MMP-9 and members of the PI3K/Akt signaling pathway were significantly decreased. The pathway agonist, LY294002, and MMP-9 inhibitor, GM6001, reversed the effects of SalB on HO-induced cells. CONCLUSIONS: SalB promoted the invasion and migration of HO-induced HTR-8/Svneo trophoblast cells by upregulating MMP-9 the PI3K/Akt signaling pathway.


Asunto(s)
Proteínas Proto-Oncogénicas c-akt , Trofoblastos , Embarazo , Femenino , Humanos , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Trofoblastos/metabolismo , Metaloproteinasa 9 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/metabolismo , Línea Celular , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Movimiento Celular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA