Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanomaterials (Basel) ; 14(14)2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39057882

RESUMEN

With the gradual increase in energy demand in global industrialization, the energy crisis has become an urgent problem. Due to high heat storage density, small volume change, and nearly constant transition temperature, phase change materials (PCMs) provide a promising method to store thermal energy. In this work, we designed and fabricated three kinds of porous metal structures with hexagonal, rectangular, and circular pores and explored the phase change process of PCMs within them. A two-dimensional numerical model was established to investigate the heat transfer process of PCMs within different shapes of porous metal structures and analyze the influence of heat source location on the thermal performance of the thermal storage units. Visualization experiments were also carried out to reveal the melting process of PCMs within different porous metal structures by a digital camera. The results show that paraffin in a porous metal structure with hexagonal pores has the fastest melting rate, while that in a porous metal structure with circular pores has the slowest melting rate. Under the bottom heating mode, the melting time of the paraffin in porous metal structures with hexagonal pores is shortened by 18.6% compared to that in porous metal structures with circular pores. Under the left heating mode, the corresponding melting time is shortened by 16.7%. These findings in this work will offer an effective method to design and optimize the structure of porous metal and improve the thermal properties of PCMs.

2.
Heliyon ; 10(12): e32307, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38975123

RESUMEN

The objective of this paper is to present new heat transfer enhancement approaches in plate-fin heat sinks (PFHS) using copper foam and twisted tapes. The motivation behind these concepts is to reduce pressure drop while enhancing heat transfer compared to PFHSs fully inserted with copper foam. The impact of twisted tape type, twist ratio, and Reynolds number (Re) on the heat and flow behaviors inside the PFHS equipped with copper foam (PFHSCF) is investigated. Copper foam has a porosity of 0.932 and a pore density of 40 pores per inch. Stationary and rotating twisted tapes with twist ratios between 2.7 and 4 are tested at Re between 3000 and 6000. The experimental results indicated that the pressure drop of the airflow inside a PFHS equipped with copper foam and a stationary twisted tape (PFHSCF_STT) as well as a PFHS equipped with copper foam and rotating twisted tapes (PFHSCF_RTT) decreased by an average of 34.8 % and 37.9 %, respectively, compared to a PFHSCF. When the twist ratio is decreased from 4 to 2.7, the thermal resistances of PFHSCF_STT and PFHSCF_RTT are reduced by 14.2 and 14.8 %, respectively. Based on assessment, the thermal-hydraulic performance of a PFHSCF_RTT with twist ratios of 2.7 and 3.3 is higher than that of a PFHSCF. To facilitate practical applications, correlations are proposed to predict the Nusselt number and friction factor. Additionally, considering the outcomes of the current study, conducting numerical investigations on the thermal performance of PFHS under different pore densities of copper foam and wider twist ratios of twisted tapes is recommended to determine optimal working conditions for future research.

3.
Small ; : e2401292, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38726946

RESUMEN

Nanodiamonds are metastable allotropes of carbon. Based on their high hardness, chemical inertness, high thermal conductivity, and wide bandgap, nanodiamonds are widely used in energy and engineering applications in the form of coatings, such as mechanical processing, nuclear engineering, semiconductors, etc., particularly focusing on the reinforcement in mechanical performance, corrosion resistance, heat transfer, and electrical behavior. In mechanical performance, nanodiamond coatings can elevate hardness and wear resistance, improve the efficiency of mechanical components, and concomitantly reduce friction, diminish maintenance costs, particularly under high-load conditions. Concerning chemical inertness and corrosion resistance, nanodiamond coatings are gradually becoming the preferred manufacturing material or surface modification material for equipment in harsh environments. As for heat transfer, the extremely high coefficient of thermal conductivity of nanodiamond coatings makes them one of the main surface modification materials for heat exchange equipment. The increase of nucleation sites results in excellent performance of nanodiamond coatings during the boiling heat transfer stage. Additionally, concerning electrical properties, nanodiamond coatings elevate the efficiency of solar cells and fuel cells, and great performance in electrochemical and electrocatalytic is found. This article will briefly describe the application and mechanism analysis of nanodiamonds in the above-mentioned fields.

4.
Sci Rep ; 14(1): 12442, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38816432

RESUMEN

One of the major problems of using nanofluids in heat exchange applications is the forming and deposition of nanoparticles on the inner surface of the heat exchanger. In this paper, Water-Cmc fluid is used as a surfactant for nanoparticles to prevent deposition and congregation. The pressure drops and heat transfer in U-bend double pipe heat exchanger based on water-MgO-Cmc fluid, are examined. Nanoparticles of Magnesium Oxide (MgO) and Carboxymethyl Cellulose (Cmc) are used with pure water as a base fluid. The experimental rig and procedures are designed to facilitate various operational conditions such as flow rate, volume concentration of MgO particles and weight concentration of Cmc particles. Furthermore, convective heat transfer coefficient, heat exchanger effectiveness, pressure drop, friction factor, under different conditions, are measured. The results demonstrate convective heat transfer coefficient of U-bend double pipe heat exchangers is enhanced by 35% for 1 MgO vol.% and 0.2 Cmc wt.% compared to base fluid (Water-Cmc). It is concluded that pressure drops are directly proportion to the increase of MgO nanoparticles at same Cmc concentration by 23% at 0.2 wt.%. Whilst, friction factor of the system is inversely proportion to the increase of volumetric flow rate of water-MgO-Cmc fluid. An increase in MgO nanoparticle concentration increases the friction factor, hence maximum friction factor enhancement by 38% for MgO concentration of 1 vol.%. The effectiveness of heat exchanger is slightly increased by 8% with increase of MgO concentration and flow rate. Finally, thermo-physical characteristics of water-MgO-Cmc fluid at various temperatures, are measured.

5.
Nanomaterials (Basel) ; 14(8)2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38668161

RESUMEN

The rapid progress of electronic devices has necessitated efficient heat dissipation within boiling cooling systems, underscoring the need for improvements in boiling heat transfer coefficient (HTC) and critical heat flux (CHF). While different approaches for micropillar fabrication on copper or silicon substrates have been developed and have shown significant boiling performance improvements, such enhancement approaches on aluminum surfaces are not broadly investigated, despite their industrial applicability. This study introduces a scalable approach to engineering hierarchical micro-nano structures on aluminum surfaces, aiming to simultaneously increase HTC and CHF. One set of samples was produced using a combination of nanosecond laser texturing and chemical etching in hydrochloric acid, while another set underwent an additional laser texturing step. Three distinct micropillar patterns were tested under saturated pool boiling conditions using water at atmospheric pressure. Our findings reveal that microcavities created atop pillars successfully facilitate nucleation and micropillars representing nucleation site areas on a microscale, leading to an enhanced HTC up to 242 kW m-2 K-1. At the same time, the combination of the surrounding hydrophilic porous area enables increased wicking and pillar patterning, defining the vapor-liquid pathways on a macroscale, which leads to an increase in CHF of up to 2609 kW m-2.

6.
Micromachines (Basel) ; 15(4)2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38675324

RESUMEN

To satisfy the demand for efficient heat transfer, a novel three-dimensional overall jagged internal finned tube (3D-OJIFT) was fabricated, using the rolling-ploughing/extruding method. The thermal performance of the 3D-OJIFT were studied and compared in experiments and three-dimensional numerical simulations. The RNG k-ε turbulence model is well verified with the experimental results. By analyzing the distributions of velocity, temperature, and turbulence kinetic energy, it was found that the 3D-OJIFT destroyed the development of the velocity and thermal boundary layers, increased the turbulence disturbance, and reduced the temperature gradient, thus improving the heat transfer. The influences of the jagged height and jagged spiral angle of the 3D-OJIFT are discussed. The Nu and f increased as the jagged height of the 3D-OJIFT increased. The Nusselt number of the 3D-OJIFT was 1.67-2.04 times the value for the smooth tube. In addition, the comprehensive heat transfer performance of the 3D-OJIFT improved after increasing the jagged spiral angle. Compared with conventional internal helical-finned tubes and other reinforcement structures reported in the literature, the 3D-OJIFT demonstrated better comprehensive heat transfer performance. Finally, empirical correlations of the 3D-OJIFT were obtained.

7.
Sci Rep ; 14(1): 9637, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38670963

RESUMEN

The Double-tube heat exchanger (DTHX) is widely favored across various industries due to its compact size, low maintenance requirements, and ability to operate effectively in high-pressure applications. This study explores methods to enhance heat transfer within a DTHX using both experimental and numerical approaches, specifically by integrating a nail rod insert (NRI). A steel nails rod insert, 1000 mm in length, is introduced into the DTHX, which is subjected to turbulent flows characterized by Reynolds numbers ranging from 3200 to 5700. Three different pitches of NRI (100 mm, 50 mm, and 25 mm) are investigated. The results indicate a significant increase in the Nusselt (Nu) number upon the insertion of nail rods, with further improvements achievable by reducing the pitch length. Particularly noteworthy is the Nu number enhancement ratio for the 25 mm pitch NRI, which is 1.81-1.9 times higher than that for the plain tube. However, it is observed that pressure drop increases in all configurations with NRI due to heightened turbulence and obstruction by the NRI. Among the various pitch lengths, the 25 mm pitch exhibits the highest pressure drop values. Moreover, exergy efficiency is found to improve across all cases with NRI, corresponding to increased heat transfer, with the 25 mm pitch length showing a remarkable 128% improvement. Numerical analysis reveals that the novel insert enhances flow turbulence through the generation of secondary flows, thereby enhancing heat transfer within the DTHX. This study provides a comprehensive analysis, including temperature, velocity, and pressure drop distributions derived from numerical simulations.

8.
Sci Rep ; 14(1): 7363, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38548748

RESUMEN

This article employs a plate with V-shape ribs inside a tube as turbulator to augment the heat transfer rate. The utilized vortex generators are double-winglets arranged in a V-shape placed on both sides of the plate. The proposed system's suggested working fluids are water-based hybrid nanofluids, including Al2O3-Cu/water, Cu-CuO/water, and Cu-TiO2/water. This work involves a numerical evaluation of the effects of the type and volume concentration of the examined hybrid nanofluids on the enhancement of heat transfer. The experimental results are used to validate the numerical model. It is worth mentioning that all the obtained numerical results are compared with the simple tube, without any turbulator (vortex generator) and in the presence of water instead of the hybrid nanofluids. Based on the numerical results, it can be concluded that all employed hybrid nanofluids showed improved thermal performance compared to pure water. Furthermore, the differences between the models are more substantial for higher Reynolds numbers than for lower Reynolds numbers. In Re = 30,000, the Cu-TiO2/water exhibits the lowest thermal performance improvement (augmentation of about 0.3%), while the Cu-CuO/water at Re = 50,000 exhibits the largest thermal performance improvement (augmentation of approximately 5.7%), in the case of ∅1 = ∅2 = 0.5%. For ∅1 = ∅2 = 1%, the Cu-TiO2/water at Re = 30,000 has the lowest thermal performance improvement (augmentation of around 1.1%), while the Cu-CuO/water at Re = 50,000 has the most thermal performance improvement (augmentation of roughly 8.7%). According to the augmentation of around 2.8% at Re = 30,000 for Cu-TiO2/water and approximately 10.8% at Re = 50,000 for Cu-CuO/water, the thermal performance increase in the scenario of ∅1 = ∅2 = 1.5% is the lowest. In Conclusion, the Cu-CuO/water hybrid nanofluid with a volume concentration of ∅1 = ∅2 = 1.5% has the greatest thermal performance value of all the hybrid nanofluids studied.

9.
Environ Sci Pollut Res Int ; 31(12): 18260-18280, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37227636

RESUMEN

There are several strict reasons to overcome the dependence on fossil fuels and count on renewable energy sources such as solar energy. In this study, a numerical/experimental investigation on a hybrid photovoltaic/thermal system is carried out. A hybrid system would achieve higher electrical efficiency by reducing panel surface temperature, and the heat transferred could have further benefits. Using wire coils inside cooling tubes is a passive method selected in this paper to improve heat transfer. The appropriate number of wire coils was determined using numerical simulation, and then the experimental study began in real-time. Different flow rates with different pitch to diameter ratios for wire coils were considered. The results show that placing three wire coils inside the cooling tube would increase the average electrical and thermal efficiency by 2.29 and 16.87%, respectively, compared to the simple cooling mode. According to the results, if a wire coil is used in the cooling tube, a 9.42% increase in the average total efficiency based on electricity generation during a test day would appear compared to the simple cooling. A numerical method was applied again to evaluate the results of experimental tests as well as observe the phenomena in the cooling fluid path.


Asunto(s)
Frío , Energía Solar , Temperatura , Calor , Transición de Fase
10.
Environ Sci Pollut Res Int ; 30(51): 109921-109954, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37792196

RESUMEN

This paper reviews the impacts of employing inserts, nanofluids, and their combinations on the thermal performance of flat plate solar collectors. The present work outlines the new studies on this specific kind of solar collector. In particular, the influential factors upon operation of flat plate solar collectors with nanofluids are investigated. These include the type of nanoparticle, kind of base fluid, volume fraction of nanoparticles, and thermal efficiency. According to the reports, most of the employed nanofluids in the flat plate solar collectors include Al2O3, CuO, and TiO2. Moreover, 62.34%, 16.88%, and 11.26% of the utilized nanofluids have volume fractions between 0 and 0.5%, 0.5 and 1%, and 1 and 2%, respectively. The twisted tape is the most widely employed of various inserts, with a share of about one-third. Furthermore, the highest achieved flat plate solar collectors' thermal efficiency with turbulator is about 86.5%. The review is closed with a discussion about the recent analyses on the simultaneous use of nanofluids and various inserts in flat plate solar collectors. According to the review of works containing nanofluid and turbulator, it has been determined that the maximum efficiency of about 84.85% can be obtained from a flat plate solar collector. It has also been observed that very few works have been done on the combination of two methods of employing nanofluid and turbulator in the flat plate solar collector, and more detailed work can still be done, using more diverse nanofluids (both single and hybrid types) and turbulators with more efficient geometries.


Asunto(s)
Nanopartículas
11.
Heliyon ; 9(8): e18694, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37576259

RESUMEN

For sustainable low-carbon cities, using sustainable urban energy system solutions is imperative. CO2-based bionanofluid is one proposed energy system solution that is sustainable and environmentally friendly. This paper examines the thermal-hydraulic and entropy production properties of mango bark/CO2 nanofluid for industrial-inclined gas cooling applications. The influence of gravitational force (in terms of tube inclination angle), volume fraction, and Reynolds number on the heat transfer, pressure drop, and entropy production of CO2-based mango bark nanofluids in laminar flow through a circular aluminum tube are numerically studied. The bionanofluid flows through a tube with an inner radius of 2.25 mm, a length of 970.0 mm, and an initial temperature of 320.0 K. A constant heat flux of -10.0 W/m2 is applied to the flow at its walls. The laminar flow regime with Reynolds numbers of 100, 400, 700, and 1000 are subjected to flow inclinations of ±90°, ±60°, ±45°, ±30°, and 0° and bionanofluid volume fractions of 0.5%, 1.0%, and 2.0%. Results show that ±45° tube inclination angle offers the optimal heat transfer coefficient, maximum pressure drop, and minimum total entropy production rates for Re > 100; however, for Re = 100, these occur at the inclination angle of -30° and +60°. The pressure drop shows less sensitivity to the inclination angle; however, it offers peak values at the same inclination angles as the heat transfer coefficient for the respective Reynolds number values. The maximum thermal enhancements due to gravitational effect are 42%, 93.98%, 121.28%, and 150% for Reynolds numbers of 100, 400, 700, and 1000, respectively, while that due to nanofluid volume fraction are less than 16%.

12.
ACS Appl Mater Interfaces ; 15(34): 41121-41129, 2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37584594

RESUMEN

Inhibiting the Leidenfrost effect has drawn extensive attention due to its detrimental impact on heat dissipation in high-temperature industrial applications. Although hierarchical structures have improved the Leidenfrost point to over 1000 °C, the current performance of single-scale structures remains inadequate. Herein, we present a facile high-temperature treatment method to fabricate superhydrophilic nickel foams that demonstrate ultrafast droplet permeation within tens of milliseconds, elevating the Leidenfrost point above 500 °C. Theoretical analysis based on the pressure balance suggests that these remarkable features arise from the superhydrophilic property, high porosity, and large pore diameter of nickel foams that promote capillary wicking and vapor evacuation. Compared to solid nickel surfaces with a Leidenfrost temperature of approximately 235 °C, nickel foams nucleate boiling at high superheat, triggering an order of magnitude higher heat flux. The effects of the pore diameter and surface temperature on droplet permeation behaviors and heat transfer characteristics are also elucidated. The results indicate that droplet permeation is dominated by inertial and capillary forces at low and high superheat, respectively, and moderate pore diameters are more conducive to facilitating droplet permeation. Furthermore, our heat transfer model reveals that pore diameter plays a negligible role in the heat flux at high surface temperatures due to the trade-off between effective thermal conductivity and specific surface area. This work provides a new strategy to address the Leidenfrost effect by metal foams, which may promise great potential in steel forging and nuclear reactor safety.

13.
Entropy (Basel) ; 25(7)2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37509909

RESUMEN

In this study, the influence of an axial-electromagnetic field treatment device (AEFTD) with a solenoid structure using different electromagnetic frequencies on calcium carbonate (CaCO3) crystallization fouling on the tube side of a shell-and-tube heat exchanger was investigated. The experimental results indicated that the application of the AEFTD could effectively reduce fouling resistance and decelerate the growth rate of CaCO3 fouling. The opposite trend between fouling resistance and the outlet temperature of an experimental fluid indicated that the application of the AEFTD could enhance heat transfer. Meanwhile, the crystal morphologies of the fouling samples were analyzed by means of scanning electron microscopy (SEM). The axial-electromagnetic field favored the formation of vaterite as opposed to calcite. Non-adhesive vaterite did not easily aggregate into clusters and was suspended in bulk to form muddy fouling that could be carried away by turbulent flow. Furthermore, the anti-fouling mechanism of the axial-electromagnetic field is discussed in detail. The anti-fouling effect of the AEFTD on CaCO3 fouling exhibited extreme characteristics in this study. Therefore, the effectiveness of the AEFTD is contingent upon the selection of the electromagnetic parameters.

14.
Heliyon ; 9(7): e17626, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37449158

RESUMEN

Parabolic trough collectors (P.T.Cs) are efficient solar energy harvesting devices utilized in various industries, for instance, space heating, solar cooling, solar drying, pasteurization, sterilization, electricity generation, process heat, solar cooking, and many other applications. However, their usage is limited as the high capital and operating costs; according to the International Renewable Energy Agency's 2020 report, the global weighted average levelized cost of electricity (L.C.O.E) for P.T.Cs was 0.185 $/kWh in 2018. This work analyses the economic, technical, and environmental potential of sustainable energy to increase the use of P.T.Cs in different sectors. To study how self-weight, heat loss, and wind velocity affect P.T.C performance, prototype testing, and wind flow analysis were used. Although P.T.Cs outperform in capacity factor, gross-to-net conversion, and annual energy production, improving their overall efficiency is crucial in reducing total energy production costs. Wire coils, discs, and twisted tape-type inserts can enhance their performance by increasing turbulence and heat transfer area. Improving the system's overall efficiency by enhancing the functioning and operation of individual components will also help decrease total energy production costs. The aim is to minimize the L.C.O.E associated with a P.T.C in order to enhance its economic viability for an extended period. When the nanofluid-oriented P.T.C was included in the conventional P.T.C workings, there was a decrease in the L.C.O.E by 1%. Of all the technologies available, ocean, geothermal, and C.S.P parabolic trough plants generate lower amounts of waste and harmful gases, with average emissions of 2.39%, 2.23%, and 2.16%, respectively, throughout their lifespan. For solar-only and non-hybrid thermal energy storage plants, the range of greenhouse gas emissions is between 20 and 34 kgCO2 equivalents per megawatt-hour. Coal, natural gas steam turbines, nuclear power plants, bioenergy, solar PV, geothermal, concentrated solar power, hydropower reservoir, hydropower river, ocean, and wind power plants all release greenhouse gases at rates of 1022, 587.5, 110.5, 633, 111, 48, 41, 82.5, 7.5, 12.5, and 41.5 gCO2-e/kWh, respectively. This information is useful to compare the environmental effect of various energy sources and help us to choose cleaner, more sustainable options for the production of electricity. The ongoing advancements and future scope of P.T.Cs could potentially make them more economically viable for domestic, commercial, and industrial applications.

15.
Materials (Basel) ; 16(11)2023 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-37297077

RESUMEN

Nanofluids have attracted significant attention from researchers due to their ability to significantly enhance heat transfer, especially in jet impingement flows, which can improve their cooling performance. However, there is a lack of research on the use of nanofluids in multiple jet impingements, both in terms of experimental and numerical studies. Therefore, further investigation is necessary to fully understand the potential benefits and limitations of using nanofluids in this type of cooling system. Thus, an experimental and numerical investigation was performed to study the flow structure and heat transfer behavior of multiple jet impingement using MgO-water nanofluids with a 3 × 3 inline jet array at a nozzle-to-plate distance of 3 mm. The jet spacing was set to 3, 4.5, and 6 mm; the Reynolds number varies from 1000 to 10,000; and the particle volume fraction ranges from 0% to 0.15%. A 3D numerical analysis using ANSYS Fluent with SST k-ω turbulent model was presented. The single-phase model is adopted to predict the thermal physical nanofluid. The flow field and temperature distribution were investigated. Experimental results show that a nanofluid can provide a heat transfer enhancement at a small jet-to-jet spacing using a high particle volume fraction under a low Reynolds number; otherwise, an adverse effect on heat transfer may occur. The numerical results show that the single-phase model can predict the heat transfer trend of multiple jet impingement using nanofluids correctly but with significant deviation from experimental results because it cannot capture the effect of nanoparticles.

16.
Environ Sci Pollut Res Int ; 30(24): 65338-65350, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37084051

RESUMEN

Hybrid turbulators have been introduced as a feasible solution to improve heat transfer in fluid channels. In this study, a perforated circular segment was used as a vortex generator to enhance the heat transfer rate in an air collector duct. The effects of key parameters, including Reynolds numbers ranging from 6000 to 18,000 (four values), angles of attack from 30 to 90° (five values), and inline and staggered segment arrangements, on heat transfer, pressure loss, and thermohydraulic performance were investigated. A 3D numerical simulation using the RNG k-ε turbulence model with experimental verification was performed in this study. The results showed that the maximum thermohydraulic performance parameter was 1.3, and an attack angle of 30° provided the best performance. Strong turbulence occurred with an angle of attack of 60°, which caused a large pressure loss in comparison with the heat transfer enhancement. The maximum turbulence kinetic energy shifted from the root to the peak of a segment when the angle of attack increased. The Nusselt number and friction factor of the staggered configuration were 1.72 times and 1.88 times the corresponding values of the inline arrangement.


Asunto(s)
Modelos Teóricos , Luz Solar , Simulación por Computador , Calor
17.
Philos Trans A Math Phys Eng Sci ; 381(2246): 20220116, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36907208

RESUMEN

This study experimentally and numerically investigated the thermo-fluid dynamics of Taylor-Couette flow with an axial temperature gradient from the chemical engineering perspective. A Taylor-Couette apparatus with a jacket vertically divided into two parts was used in the experiments. Based on the flow visualization and temperature measurement for glycerol aqueous solutions with various concentrations, the flow pattern was classified into six modes: heat convection dominant mode (Case I), heat convection-Taylor vortex flow alternate mode (Case II), Taylor vortex flow dominant mode (Case III), fluctuation maintaining Taylor cell structure mode (Case IV), segregation between Couette flow and Taylor vortex flow mode (Case V) and upward motion mode (Case VI). These flow modes weremapped in terms of the Reynolds and Grashof numbers. Cases II, IV, V and VI are regarded as transition flow patterns between Case I and Case III, depending on the concentration. In addition, numerical simulations showed that in Case II, heat transfer was enhanced when the Taylor-Couette flow was altered by heat convection. Moreover, the average Nusselt number with the alternate flow was higher than that with the stable Taylor vortex flow. Thus, the interaction between heat convection and Taylor-Couette flow is an effective tool to enhance heat transfer. This article is part of the theme issue 'Taylor-Couette and related flows on the centennial of Taylor's seminal Philosophical Transactions paper (Part 2)'.

18.
Materials (Basel) ; 16(4)2023 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-36836995

RESUMEN

The laser treatment of surfaces enables the alteration of their morphology and makes them suitable for various applications. This paper discusses the use of a laser beam to develop surface features that enhance pool boiling heat transfer. Two types of structures (in the 'macro' and 'micro' scale) were created on the samples: microfins (grooves) and surface roughness. The impact of the pulse duration and scanning velocity on the height of the microfins and surface roughness at the bottom of the grooves was analyzed with a high precision optical profilometer and microscope. The results indicated that the highest microfins and surface roughness were obtained with a pulse duration of 250 ns and scanning velocity of 200 mm/s. In addition, the influence of the 'macro' and 'micro' scale modifications on the boiling heat transfer of distilled water and ethyl alcohol was studied on horizontal samples heated with an electric heater. The largest enhancement was obtained for the highest microfins and roughest surfaces, especially at small superheats. Heat flux dissipated from the samples containing microfins of 0.4 mm height was, maximally, over three times (for water) and two times (for ethanol) higher than for the samples with smaller microfins (0.2 mm high). Thus, a modification of a selected model of boiling heat transfer was developed so that it would be applicable to laser-processed surfaces. The correlation proved to be quite successful, with almost all experimental data falling within the ±100% agreement bands.

19.
Ultrasonics ; 128: 106866, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36283263

RESUMEN

The characteristics of the heat transfer and friction loss of turbulent water flow in a circular pipe were investigated experimentally at a constant surface temperature of 45 ℃ for 28 kHz ultrasound propagation along the mainstream flow. Transducers were installed in five rows and three columns in the upstream section of the test pipe, and the number of active transducers was varied (1, 3, and 15) for a Reynolds number range of 10,000-25,000. The results indicated that the ultrasonic effects yielded positive results for both the heat transfer and pressure loss of the pipe flow. Under the influence of 15 ultrasonic transducers, the maximum Nusselt number ratio was 1.57 and the greatest reduction in the friction factor was 21.6 % for a Reynolds number of 10,000. The corresponding maximum thermal performance factor was approximately 1.7. However, the thermal efficiency tended to decrease with an increase in the number of transducers. The maximum thermal efficiency values under ultrasonic waves with 1, 3, and 15 transducers were 5.43, 3.37, and 1.95, respectively. When the change in the friction factor per ultrasonic input power was considered, the most suitable number of ultrasonic transducers was three. Finally, predictive formulas were proposed for the Nusselt number ratio and friction factor ratio under low-frequency ultrasound, with deviations from -5.5 % to 5.4 % and -7.4 % to 7.4 %, respectively.

20.
Micromachines (Basel) ; 13(12)2022 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-36557358

RESUMEN

Nanofluids offer great potential heat transfer enhancement and provide better thermophysical properties than conventional heat transfer fluids. Application of nanofluids in jet impingement cooling is used for many industrial and scientific purposes as it manages to effectively remove high localized heat. Owing to its tremendous improvement of the heat transfer field, the use of nanofluids in jet impingement cooling has caught the attention of many researchers. This paper reviews previous research and recent advancements of nanofluid jet impingement via both experimental and numerical studies. In experimental approaches, Al2O3-water nanofluids are the most used working fluids by researchers, and most experiments were conducted with conventional impinging jets. As for the numerical approach, the single-phase model was the preferred model over the two-phase model in obtaining numerical solutions, due to the lower computational time required. A deep insight is provided into nanofluid preparation and methods for stabilization. Parameters affecting the performance of the jet impinging system are also investigated with comparison to numerous publications. The main parameters for jet impinging include the jet-to-plate distance (H/D), the shape of the impinged plate (curved, flat or concave), nozzle configurations and the twisted tape ratio. Studies on conventional impinging jets (CIJs), as well as swirling impinging jets (SIJs), are presented in this paper.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA