Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Heliyon ; 10(12): e33101, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-39021971

RESUMEN

The main objective of this study was to evaluate the impact of the length and retention time of a tubular helical flow flocculator (THFF) on the elimination of turbidity and color from raw water, to obtain quality treated water for consumption in areas rural. For this, a large-scale field experimental system was used, the THFF was built with 4-inch diameter polyethylene hose and coupled to a sedimentation and filtration process. For the different experimental tests, aluminum sulfate was chosen as the coagulant. To find the optimal dose of coagulant, jar tests were previously carried out. For the tests the length of the THFF was varied (50 m and 75 m), flow rates of 0.25, 0.5, 0.75, 1 and 2 L/s and turbidity ranges of <10, 10-20, 21-50, 51-100 and > 100 NTU of raw water were tested. An evaluation of the hydraulic behavior of the THFF was carried out through an analysis of the temporal distribution curve of the concentration of a tracer, applying the Wolf-Resnick model. The average results revealed a haze and color removal efficiency of 98.07 % and 98.50 %, respectively. The residence time and velocity gradient exhibited variations in a range of 2.25-35.0 min and 3.64 to 56.94 s-1, respectively. It was evident that the operation and effectiveness of THFF are directly influenced by the turbidity of the raw water, the residence time and the velocity gradient. These findings indicate that THFF could play a valuable role as a flocculation unit in a purification system, mainly the existence of a plug-type flow was observed. The findings indicate that THFF, complemented by settling and filtration processes, could be a valuable tool for implementation in rural areas.

2.
Comput Biol Med ; 172: 108191, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38457932

RESUMEN

Bicuspid aortic valve (BAV), the most common congenital heart disease, is prone to develop significant valvular dysfunction and aortic wall abnormalities such as ascending aortic aneurysm. Growing evidence has suggested that abnormal BAV hemodynamics could contribute to disease progression. In order to investigate BAV hemodynamics, we performed 3D patient-specific fluid-structure interaction (FSI) simulations with fully coupled blood flow dynamics and valve motion throughout the cardiac cycle. Results showed that the hemodynamics during systole can be characterized by a systolic jet and two counter-rotating recirculation vortices. At peak systole, the jet was usually eccentric, with asymmetric recirculation vortices and helical flow motion in the ascending aorta. The flow structure at peak systole was quantified using the vorticity, flow rate reversal ratio and local normalized helicity (LNH) at four locations from the aortic root to the ascending aorta. The systolic jet was evaluated with the peak velocity, normalized flow displacement, and jet angle. It was found that peak velocity and normalized flow displacement (rather than jet angle) gave a strong correlation with the vorticity and LNH in the ascending aorta, which suggests that these two metrics could be used for clinical noninvasive evaluation of abnormal blood flow patterns in BAV patients.


Asunto(s)
Enfermedad de la Válvula Aórtica Bicúspide , Enfermedades de las Válvulas Cardíacas , Humanos , Válvula Aórtica/anomalías , Enfermedades de las Válvulas Cardíacas/diagnóstico por imagen , Aorta , Hemodinámica/fisiología
3.
Materials (Basel) ; 17(5)2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38473539

RESUMEN

Microscale electronics have become increasingly more powerful, requiring more efficient cooling systems to manage the higher thermal loads. To meet this need, current research has been focused on overcoming the inefficiencies present in typical thermal management systems due to low Reynolds numbers within microchannels and poor physical properties of the working fluids. For the first time, this research investigated the effects of a connector with helical geometry on the heat transfer coefficient at low Reynolds numbers. The introduction of a helical connector at the inlet of a microchannel has been experimentally tested and results have shown that this approach to flow augmentation has a great potential to increase the heat transfer capabilities of the working fluid, even at low Reynolds numbers. In general, a helical connector can act as a stabilizer or a mixer, based on the characteristics of the connector for the given conditions. When the helical connector acts as a mixer, secondary flows develop that increase the random motion of molecules and possible nanoparticles, leading to an enhancement in the heat transfer coefficient in the microchannel. Otherwise, the heat transfer coefficient decreases. It is widely known that introducing nanoparticles into the working fluids has the potential to increase the thermal conductivity of the base fluid, positively impacting the heat transfer coefficient; however, viscosity also tends to increase, reducing the random motion of molecules and ultimately reducing the heat transfer capabilities of the working fluid. Therefore, optimizing the effects of nanoparticles characteristics while reducing viscous effects is essential. In this study, deionized water and deionized water-diamond nanofluid at 0.1 wt% were tested in a two-microchannel system fitted with a helical connector in between. It was found that the helical connector can make a great heat transfer coefficient enhancement in low Reynolds numbers when characteristics of geometry are optimized for given conditions.

4.
Cardiovasc Eng Technol ; 15(3): 317-332, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38315312

RESUMEN

PURPOSE: Altered hemodynamics caused by the presence of an endovascular device may undermine the success of peripheral stenting procedures. Flow-enhanced stent designs are under investigation to recover physiological blood flow patterns in the treated artery and reduce long-term complications. However, flow-enhanced designs require the development of customised manufacturing processes that consider the complex behaviour of Nickel-Titanium (Ni-Ti). While the manufacturing routes of traditional self-expanding Ni-Ti stents are well-established, the process to introduce alternative stent designs is rarely reported in the literature, with much of this information (especially related to shape-setting step) being commercially sensitive and not reaching the public domain, as yet. METHODS: A reliable manufacturing method was developed and improved to induce a helical ridge onto laser-cut and wire-braided Nickel-Titanium self-expanding stents. The process consisted of fastening the stent into a custom-built fixture that provided the helical shape, which was followed by a shape-setting in air furnace and rapid quenching in cold water. The parameters employed for the shape-setting in air furnace were thoroughly explored, and their effects assessed in terms of the mechanical performance of the device, material transformation temperatures and surface finishing. RESULTS: Both stents were successfully imparted with a helical ridge and the optimal heat treatment parameters combination was found. The settings of 500 °C/30 min provided mechanical properties comparable with the original design, and transformation temperatures suitable for stenting applications (Af = 23.5 °C). Microscopy analysis confirmed that the manufacturing process did not alter the surface finishing. Deliverability testing showed the helical device could be loaded onto a catheter delivery system and deployed with full recovery of the expanded helical configuration. CONCLUSION: This demonstrates the feasibility of an additional heat treatment regime to allow for helical shape-setting of laser-cut and wire-braided devices that may be applied to further designs.


Asunto(s)
Ensayo de Materiales , Níquel , Diseño de Prótesis , Titanio , Titanio/química , Níquel/química , Stents Metálicos Autoexpandibles , Rayos Láser , Propiedades de Superficie , Stents , Humanos
5.
Acta Biomater ; 177: 216-227, 2024 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-38253303

RESUMEN

The effects of helical flow in a blood vessel are investigated in a dynamic flow generator using surface acoustic wave (SAW) in the microfluidic device. The SAW, generated by an interdigital transducer (IDT), induces acoustic streaming, resulting in a stable and consistent helical flow pattern in microscale channels. This approach allows rapid development of helical flow within the channel without directly contacting the medium. The precise design of the window enables the creation of distinct unidirectional vortices, which can be controlled by adjusting the amplitude of the SAW. Within this device, optimal operational parameters of the dynamic flow generator to preserve the integrity of endothelial cells are found, and in such settings, the actin filaments within the cells are aligned to the desired state. Our findings reveal that intracellular Ca2+ concentrations vary in response to flow conditions. Specifically, comparable maximum intensity and graphical patterns were observed between low-flow rate helical flow and high-flow rate Hagen-Poiseuille flow. These suggest that the cells respond to the helical flow through mechanosensitive ion channels. Finally, adherence of monocytes is effectively reduced under helical flow conditions in an inflammatory environment, highlighting the atheroprotective role of helical flow. STATEMENT OF SIGNIFICANCE: Helical flow in blood vessels is well known to prevent atherosclerosis. However, despite efforts to replicate helical flow in microscale channels, there is still a lack of in vitro models which can generate helical flow for analyzing its effects on the vascular system. In this study, we developed a method for generating steady and constant helical flow in microfluidic channel using acoustofluidic techniques. By utilizing this dynamic flow generator, we were able to observe the atheroprotective aspects of helical flow in vitro, including the enhancement of calcium ion flux and reduction of monocyte adhesion. This study paves the way for an in vitro model of dynamic cell culture and offers advanced investigation into helical flow in our circulatory system.


Asunto(s)
Aterosclerosis , Células Endoteliales , Humanos , Acústica , Microfluídica , Dispositivos Laboratorio en un Chip
6.
Front Cardiovasc Med ; 10: 1216796, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37719972

RESUMEN

Background: Computational fluid dynamics (CFD) is emerging as an effective technology able to improve procedural outcomes and enhance clinical decision-making in patients with coronary artery disease (CAD). The present study aims to assess the state of knowledge, use and clinical acceptability of CFD in the diagnosis and treatment of CAD. Methods: We realized a 20-questions international, anonymous, cross-sectional survey to cardiologists to test their knowledge and confidence on CFD as a technology applied to patients suffering from CAD. Responses were recorded between May 18, 2022, and June 12, 2022. Results: A total of 466 interventional cardiologists (mean age 48.4 ± 8.3 years, males 362), from 42 different countries completed the survey, for a response rate of 45.9%. Of these, 66.6% declared to be familiar with the term CFD, especially for optimization of existing interventional techniques (16.1%) and assessment of hemodynamic quantities related with CAD (13.7%). About 30% of respondents correctly answered to the questions exploring their knowledge on the pathophysiological role of some CFD-derived quantities such as wall shear stress and helical flow in coronary arteries. Among respondents, 85.9% would consider patient-specific CFD-based analysis in daily interventional practice while 94.2% declared to be interested in receiving a brief foundation course on the basic CFD principles. Finally, 87.7% of respondents declared to be interested in a cath-lab software able to conduct affordable CFD-based analyses at the point-of-care. Conclusions: Interventional cardiologists reported to be profoundly interested in adopting CFD simulations as a technology supporting decision making in the treatment of CAD in daily practice.

7.
Comput Methods Programs Biomed ; 242: 107823, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37757568

RESUMEN

BACKGROUND: The combination of medical imaging and computational hemodynamics is a promising technology to diagnose/prognose coronary artery disease (CAD). However, the clinical translation of in silico hemodynamic models is still hampered by assumptions/idealizations that must be introduced in model-based strategies and that necessarily imply uncertainty. This study aims to provide a definite answer to the open question of how to properly model blood rheological properties in computational fluid dynamics (CFD) simulations of coronary hemodynamics. METHODS: The geometry of the right coronary artery (RCA) of 144 hemodynamically stable patients with different stenosis degree were reconstructed from angiography. On them, unsteady-state CFD simulations were carried out. On each reconstructed RCA two different simulation strategies were applied to account for blood rheological properties, implementing (i) a Newtonian (N) and (ii) a shear-thinning non-Newtonian (non-N) rheological model. Their impact was evaluated in terms of wall shear stress (WSS magnitude, multidirectionality, topological skeleton) and helical flow (strength, topology) profiles. Additionally, luminal surface areas (SAs) exposed to shear disturbances were identified and the co-localization of paired N and non-N SAs was quantified in terms of similarity index (SI). RESULTS: The comparison between paired N vs. shear-thinning non-N simulations revealed remarkably similar profiles of WSS-based and helicity-based quantities, independent of the adopted blood rheology model and of the degree of stenosis of the vessel. Statistically, for each paired N and non-N hemodynamic quantity emerged negligible bias from Bland-Altman plots, and strong positive linear correlation (r > 0.94 for almost all the WSS-based quantities, r > 0.99 for helicity-based quantities). Moreover, a remarkable co-localization of N vs. non-N luminal SAs exposed to disturbed shear clearly emerged (SI distribution 0.95 [0.93, 0.97]). Helical flow topology resulted to be unaffected by blood rheological properties. CONCLUSIONS: This study, performed on 288 angio-based CFD simulations on 144 RCA models presenting with different degrees of stenosis, suggests that the assumptions on blood rheology have negligible impact both on WSS and helical flow profiles associated with CAD, thus definitively answering to the question "is Newtonian assumption for blood rheology adequate in coronary hemodynamics simulations?".


Asunto(s)
Enfermedad de la Arteria Coronaria , Vasos Coronarios , Humanos , Vasos Coronarios/diagnóstico por imagen , Constricción Patológica , Hemodinámica , Reología , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Modelos Cardiovasculares , Estrés Mecánico , Velocidad del Flujo Sanguíneo/fisiología , Simulación por Computador
8.
Diagnostics (Basel) ; 13(12)2023 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-37371010

RESUMEN

We aimed to explore the feasibility of 4D flow magnetic resonance imaging (MRI) for patients undergoing thoracic aorta endovascular repair (TEVAR). We retrospectively evaluated ten patients (two female), with a mean (±standard deviation) age of 61 ± 20 years, undergoing MRI for a follow-up after TEVAR. All 4D flow examinations were performed using a 1.5-T system (MAGNETOM Aera, Siemens Healthcare, Erlangen, Germany). In addition to the standard examination protocol, a 4D flow-sensitive 3D spatial-encoding, time-resolved, phase-contrast prototype sequence was acquired. Among our cases, flow evaluation was feasible in all patients, although we observed some artifacts in 3 out of 10 patients. Three individuals displayed a reduced signal within the vessel lumen where the endograft was placed, while others presented with turbulent or increased flow. An aortic endograft did not necessarily hinder the visualization of blood flow through 4D flow sequences, although the graft could generate flow artifacts in some cases. A 4D Flow MRI may represent the ideal tool to follow up on both healthy subjects deemed to be at an increased risk based on their anatomical characteristics or patients submitted to TEVAR for whom a surveillance protocol with computed tomography angiography would be cumbersome and unjustified.

9.
J Biomech ; 154: 111620, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37178494

RESUMEN

In the context of aortic hemodynamics, uncertainties affecting blood flow simulations hamper their translational potential as supportive technology in clinics. Computational fluid dynamics (CFD) simulations under rigid-walls assumption are largely adopted, even though the aorta contributes markedly to the systemic compliance and is characterized by a complex motion. To account for personalized wall displacements in aortic hemodynamics simulations, the moving-boundary method (MBM) has been recently proposed as a computationally convenient strategy, although its implementation requires dynamic imaging acquisitions not always available in clinics. In this study we aim to clarify the real need for introducing aortic wall displacements in CFD simulations to accurately capture the large-scale flow structures in the healthy human ascending aorta (AAo). To do that, the impact of wall displacements is analyzed using subject-specific models where two CFD simulations are performed imposing (1) rigid walls, and (2) personalized wall displacements adopting a MBM, integrating dynamic CT imaging and a mesh morphing technique based on radial basis functions. The impact of wall displacements on AAo hemodynamics is analyzed in terms of large-scale flow patterns of physiological significance, namely axial blood flow coherence (quantified applying the Complex Networks theory), secondary flows, helical flow and wall shear stress (WSS). From the comparison with rigid-wall simulations, it emerges that wall displacements have a minor impact on the AAo large-scale axial flow, but they can affect secondary flows and WSS directional changes. Overall, helical flow topology is moderately affected by aortic wall displacements, whereas helicity intensity remains almost unchanged. We conclude that CFD simulations with rigid-wall assumption can be a valid approach to study large-scale aortic flows of physiological significance.


Asunto(s)
Aorta Torácica , Aorta , Humanos , Aorta Torácica/fisiología , Aorta/fisiología , Hemodinámica/fisiología , Estrés Mecánico , Modelos Cardiovasculares , Velocidad del Flujo Sanguíneo/fisiología
10.
Bioprocess Biosyst Eng ; 46(5): 681-692, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36806976

RESUMEN

Bioreactors can perform biochemical conversions mediated by biocatalysts, such as enzymes, animal cells, plants, and microorganisms. Among several existing models, airlift bioreactors are devices with the low shear environment and good mass transfer with low energy consumption, employed in several biochemical processes. The fluid flow is enabled through air injection by the sparger located at the bioreactor base. Despite its simple geometry compared with the conventional bioreactors, airlift performance can be optimized via geometrical modifications. Therefore, the objective of this work was to evaluate the effects of the addition of helical flow promoters, positioned in the riser and/or downcomer regions of an airlift of concentric tubes measuring the volumetric oxygen coefficient (kLa) and gas holdup. The results obtained by varying the gas flow rate from 1.0 to 4.0 vvm allowed the system evaluation of oxygen transfer and gas holdup. The inclusion of helical flow promoters increased the kLa, reaching up to 23% in oxygen transfer compared to tests without helicoids and up to 14% increase in the gas holdup. The inclusion of helical flow promotors was beneficial for all gas flow rates. Thus, including these flow promoters is an effective strategy to increase the oxygen transfer rate for bioprocess optimization.


Asunto(s)
Reactores Biológicos , Oxígeno , Oxígeno/química
11.
Comput Methods Programs Biomed ; 230: 107331, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36621070

RESUMEN

BACKGROUND AND OBJECTIVE: The occurrence of acute type B aortic dissection (TBAD) remained unclear. This study aimed to investigate the association between flow features and hemodynamic parameters in aortas that demonstrated the risk of TBAD occurrence. METHODS: The geometries of 15 hyperacute TBAD and 12 control patients (with healthy aorta) were reconstructed from computed tomography angiography images. Pre-TBAD models were then obtained by eliminating the dissection flaps. Flow features and hemodynamic parameters, including wall shear stress-related parameters and helicities, were compared between pre-TBAD and control models using computational fluid dynamics. RESULTS: There were no significant differences in baseline characteristics and anatomical parameters between the two groups. Significant contralateral helical blood flow was present in the healthy thoracic aorta, while almost no helical flow was observed in the pre-TBAD group. In addition, the mean normal transverse wall shear stress (NtransWSS) was significantly higher in the pre-TBAD group (aortic arch 0.49±0.09 vs. 0.40±0.05, P = 0.04; descending aorta: 0.46±0.05 vs. 0.33±0.02, P<0.01). Moreover, a significantly negative correlation was found between helicity and NtransWSS in the descending aorta. Moreover, the location of primary tears in 12 pre-TABD subjects matched well with regions of high NtransWSS. CONCLUSIONS: Loss of helical flow in the aortic arch and descending aorta may be a major flow feature in patients with underlying TBAD, resulting in increased flow disturbance and wall lesions.


Asunto(s)
Aneurisma de la Aorta Torácica , Disección Aórtica , Humanos , Aneurisma de la Aorta Torácica/diagnóstico por imagen , Aneurisma de la Aorta Torácica/cirugía , Disección Aórtica/diagnóstico por imagen , Aorta , Hemodinámica , Resultado del Tratamiento , Estudios Retrospectivos
12.
Cardiovasc Eng Technol ; 14(1): 152-165, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36151366

RESUMEN

PURPOSE: Areas of disturbed shear that arise following arteriovenous fistula (AVF) creation are believed to contribute to the development of intimal hyperplasia (IH). The presence of helical flow can suppress areas of disturbed shear, which may protect the vasculature from IH. Therefore, the aim of this study is to determine if helical flow, specifically spiral laminar flow (SLF), is present in patient-specific AVF models and is associated with a reduction in exposure to disturbed shear. METHODS: Four AVF were imaged using MRI within the first two weeks following fistula creation. Patient-specific boundary conditions were obtained using phase-contrast MRI and applied at the inlet and outlets of each model. Computational fluid dynamics was used to analyse the hemodynamics in each model and compare the helical content of the flow to the distribution of disturbed shear. RESULTS: BC-1 and RC-2 are characterised by the presence of SLF, which coincides with the lowest distribution of disturbed shear. Contrastingly, SLF is absent from BC-2 and RC-1 and experience the largest amount of disturbed shear. Interestingly, BC-2 and RC-1 developed an anastomosis stenosis, while BC-1 and RC-2 remained stenosis free. CONCLUSION: These findings are in agreement with previous clinical studies and further highlight the clinical potential of SLF as a prognostic marker for a healthy AVF, as its presence correlates with an overall reduction in exposure to disturbed shear and a decrease in the incidence of AVF dysfunction, albeit in a small sample size.


Asunto(s)
Fístula Arteriovenosa , Derivación Arteriovenosa Quirúrgica , Humanos , Hemodinámica , Fístula Arteriovenosa/diagnóstico por imagen , Anastomosis Quirúrgica , Imagen por Resonancia Magnética , Derivación Arteriovenosa Quirúrgica/efectos adversos , Diálisis Renal
14.
Insights Imaging ; 13(1): 192, 2022 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-36512292

RESUMEN

BACKGROUND: Marked changes in hemodynamics have been suggested to be a potential contributing factor to portal vein thrombosis (PVT) development. This study investigated the effect of portal hemodynamics based on the anatomical structure of the portal venous system on PVT development. METHODS: The morphological features of portal venous system in patients with PVT and those without PVT subgroups were compared. In addition, idealized PV models were established to numerically evaluate the effect of the variation in the angulation of superior mesenteric vein (SMV) and splenic vein (SV) on the hemodynamics of portal venous system. RESULTS: The angle α (angulation of SMV and SV) in patients with PVT was lower than that in patients without PVT (p < 0.0001), which was the only independent risk factor (odds ratio (OR), 0.90 (95% CI 0.84-0.95); p < 0.0001) for the presence of PVT. With the change in angle α, the flow pattern of blood flow changed greatly, especially the helical flow. When α = 80°, helical flow only appeared at the local PV near the intersection of SMV and SV. When α = 120°, most regions were occupied by the helical flow. In addition, the h2 gradually increased with increasing α, when α = 80°, h2 = 12.6 m/s2; when α = 120°, h2 = 29.3 m/s2. CONCLUSIONS: The angulation of SV and SMV was closely associated with PVT development. Helical flow changed following the varying angulation of SV and SMV. Therefore, angulation of SV and SMV may help to identify high-risk cohorts for future PVT development earlier.

15.
J Chromatogr A ; 1685: 463623, 2022 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-36347074

RESUMEN

Open-Tubular Liquid Chromatography (OTLC) is currently limited by two shortcomings, namely the low ratio of adsorbing area to the channel volume and the large values of the Height Equivalent of the Theoretical Plate (HETP) due to Taylor-Aris dispersion. Previous work focusing on axial dispersion of nonadsorbing solutes showed how it is possible to tame the Taylor-Aris effect by inducing transversal velocity components acting alongside the main pressure-driven axial flow. We here analyze the impact of transversal flow on the separation resolution in OTLC, where simultaneous equilibrium adsorption at the channel walls is superimposed to the analyte transport in the mobile phase. A three-dimensional steady flow generated by the combination of a pressure-driven flow and an electroosmotically-induced transversal flow is used as case study. Flows geometries possessing regular and chaotic streamlines are created by axially-invariant and periodically-alternate arrangements of the electrodes along the channel walls, respectively. By enforcing Brenner's macrotransport approach, we predict the column length achieving a prescribed level of resolution as a function of the Péclet number and of the species affinity towards the stationary adsorbing phase. Results show that the presence of transversal flows can lower sensitively the dependence of the column length on the Péclet number. Flows possessing chaotic streamlines prove the most efficient choice at large eluent velocities and low values of the column adsorption constant.


Asunto(s)
Cromatografía Liquida , Cromatografía Liquida/métodos , Adsorción
16.
Front Cardiovasc Med ; 9: 873144, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35694668

RESUMEN

Objective: The standard treatment for complicated Stanford type B aortic dissection (TBAD) is thoracic endovascular aortic repair (TEVAR). Functional parameters, specifically blood flow, are not measured in the clinical assessment of TEVAR, yet they are of outmost importance in patient outcome. Consequently, we investigated the impact of TEVAR on the flows in the aorta and its branches in TBAD using 4D Phase-Contrast Magnetic Resonance Imaging (4D Flow MRI). Methods: Seven patients with TBAD scheduled for TEVAR underwent pre and post-operative 4D Flow MRI. An experienced reader assessed the presence of helical flow in the false lumen (FL) using streamlines and measured net flow at specific locations. In addition, forward and reverse flows, stasis, helicity, and absolute helicity were computed automatically along the aorta centerline. Average values were then computed in the segmented vessels. Impact of TEVAR on these parameters was assessed with a Wilcoxon signed rank test. Impact of the metallic stent on the velocity quantification was assessed using intra-class correlation coefficient (ICC) between velocities measured intra-stent and in adjacent stent-free regions. Results: FL helical flow was observed proximally in 6 cases and distally in 2 cases pre-operatively. Helical flow disappeared post-TEVAR proximally, but developed distally for 2 patients. Intra-stent measures were similar to stent-free with a median difference of 0.1 L/min and an ICC equal to 0.967 (p < 0.01). Forward flow increased from 59.9 to 81.6% in the TL and significantly decreased in the FL from 15.9 to 3.3%. Similarly, reverse flow increased in the TL from 4.36 to 10.8% and decreased in the FL from 10.3 to 4.6%. No significant changes were observed in net flow for aortic branches (p > 0.05). A significant increase in FL stasis was observed (p = 0.04). Discussion: TEVAR significantly increased forward flow in the TL and significantly decreased both forward and reverse flows in the FL. Interestingly, reverse flow in the TL increased post-TEVAR, which could be due to increased rigidity of the wall, due to the metallic stent. User independent helicity quantification enabled detection of elevated helicity at the level of secondary entry tears which had been missed by streamline visualization.

17.
Comput Methods Programs Biomed ; 221: 106882, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35597205

RESUMEN

BACKGROUND AND OBJECTIVES: The translation of hemodynamic quantities based on wall shear stress (WSS) or intravascular helical flow into clinical biomarkers of coronary atherosclerotic disease is still hampered by the assumptions/idealizations required by the computational fluid dynamics (CFD) simulations of the coronary hemodynamics. In the resulting budget of uncertainty, inflow boundary conditions (BCs) play a primary role. Accordingly, in this study we investigated the impact of the approach adopted for in vivo coronary artery blood flow rate assessment on personalized CFD simulations where blood flow rate is used as inflow BC. METHODS: CFD simulations were carried out on coronary angiograms by applying personalized inflow BCs derived from four different techniques assessing in vivo surrogates of flow rate: continuous thermodilution, intravascular Doppler, frame count-based 3D contrast velocity, and diameter-based scaling law. The impact of inflow BCs on coronary hemodynamics was evaluated in terms of WSS- and helicity-based quantities. RESULTS: As main findings, we report that: (i) coronary flow rate values may differ based on the applied flow derivation technique, as continuous thermodilution provided higher flow rate values than intravascular Doppler and diameter-based scaling law (p = 0.0014 and p = 0.0023, respectively); (ii) such intrasubject differences in flow rate values lead to different surface-averaged values of WSS magnitude and helical blood flow intensity (p<0.0020); (iii) luminal surface areas exposed to low WSS and helical flow topological features showed robustness to the flow rate values. CONCLUSIONS: Although the absence of a clinically applicable gold standard approach prevents a general recommendation for one coronary blood flow rate derivation technique, our findings indicate that the inflow BC may impact computational hemodynamic results, suggesting that a standardization would be desirable to provide comparable results among personalized CFD simulations of the coronary hemodynamics.


Asunto(s)
Enfermedad de la Arteria Coronaria , Modelos Cardiovasculares , Velocidad del Flujo Sanguíneo , Hemodinámica/fisiología , Humanos , Hidrodinámica , Estrés Mecánico
18.
Eur Radiol ; 32(12): 8597-8607, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35612663

RESUMEN

OBJECTIVES: 4D flow MRI enables quantitative assessment of helical flow. We sought to generate normal values and elucidate changes of helical flow (duration, volume, length, velocities and rotational direction) and flow jet (displacement, flow angle) as well as wall shear stress (WSS). METHODS: We assessed the temporal helical existence (THEX), maximum helical volume (HVmax), accumulated helical volume (HVacc), accumulated helical volume length (HVLacc), maximum forward velocity (maxVfor), maximum circumferential velocity (maxVcirc), rotational direction (RD) and maximum wall shear stress (WSS) as reported elsewhere using the software tool Bloodline in 86 healthy volunteers (46 females, mean age 41 ± 13 years). RESULTS: WSS decreased by 42.1% and maxVfor by 55.7% across age. There was no link between age and gender regarding the other parameters. CONCLUSION: This study provides age-dependent normal values regarding WSS and maxVfor and age- and gender-independent normal values regarding THEX, HVmax, HVacc, HVLacc, RD and maxVcirc. KEY POINTS: • 4D flow provides numerous new parameters; therefore, normal values are mandatory. • Wall shear stress decreases over age. • Maximum helical forward velocity decreases over age.


Asunto(s)
Aorta , Hemodinámica , Femenino , Humanos , Adulto , Persona de Mediana Edad , Velocidad del Flujo Sanguíneo , Valores de Referencia , Voluntarios Sanos , Estrés Mecánico
19.
Comput Biol Med ; 140: 105072, 2021 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-34856465

RESUMEN

BACKGROUND: Carotid endarterectomy (CEA) remains the first-line treatment option of symptomatic and asymptomatic carotid stenosis, while stenting (CAS) is reserved for selected patients at high surgical risk. Here, we compare the vascular remodeling process in CEA- and CAS-treated patients with respect to morphological and hemodynamic features, because of their possible engagement in carotid atherosclerosis. METHODS: Twelve (12) patients were included, half with patched CEA and half with CAS. Pre- and post-operative 3D image-based models of the carotid bifurcation were anatomically characterized in terms of flare, tortuosity, and curvature. Individual computational fluid dynamics simulations allowed to quantify the postoperative hemodynamic milieu in terms of (1) wall shear stress and (2) helical flow. RESULTS: Carotid flare increased in all cases, but a more marked increase emerged after CEA compared to CAS. Tortuosity and curvature increased after CEA but decreased after CAS. CEA patients presented with significantly higher postoperative tortuosity than CAS patients. CEA was associated with a worse (non-statistically significant) score in all flow disturbance indicators vs. CAS. CONCLUSION: The increased flare and tortuosity of the carotid bifurcation after CEA vs. CAS is a marked difference in the vascular remodeling process between the two modalities. CAS seems to induce a less pro-restenosis hemodynamic environment compared to CEA. The emerged differences stimulate further analysis on a larger cohort with long-term outcomes, to shed light on the clinical impact of the observations.

20.
J Biomech ; 129: 110755, 2021 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-34601214

RESUMEN

Coronary bifurcations have complex flow patterns including secondary flow zones and helical flow, which directly affect pathophysiological mechanisms such as the development of atherosclerosis. The objective of this study was to generate insights into the effects of curvature, bifurcation angle and the presence of stents on flow patterns and resulting haemodynamics in coronary left main bifurcations. The blood flow and associated metrics were modelled in both idealised and patient-specific bifurcations with varying curvature and bifurcation angles with and without stents, resulting in a total of 128 geometries considered. The results showed that larger curvature of bifurcating vessels has a significant influence on secondary flow, especially with distance to the bifurcation region, causing a skew, spin and asymmetry of Dean vortices, an increase in helical flow intensity with symmetry loss, and a decrease in adversely low time-average wall shear stress (TAWSS). Generally, asymmetric flow patterns coincided with adversely low TAWSS regions. In identical stented geometries, the presence of the stents induced local recirculation immediately adjacent to the stent struts, thus generating adversely low TAWSS in these areas, with some effect on the overall secondary flow. Overall, the effect of stents outweighed the effect of curvature and BA. This new knowledge contributes to a better understanding of the joint effects of curvature, bifurcation angle, and stents on flow patterns and haemodynamics in coronary bifurcations.


Asunto(s)
Vasos Coronarios , Modelos Cardiovasculares , Hemodinámica , Humanos , Stents , Estrés Mecánico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA