Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.105
Filtrar
1.
Front Immunol ; 15: 1425847, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39086480

RESUMEN

Objective: This article aims to investigate the changes of T helper 17 (Th17) cells, regulatory T (Treg) cells and their associated cytokines in patients with systemic lupus erythematosus (SLE). Methods: Multiple databases were investigated to identify articles that explored Th17 cells, Treg cells and relevant cytokines in SLE patients. A random effects model was used for calculating pooled standardized mean differences. Stata version 15.0 was utilized to conduct the meta-analysis. Results: The levels of Th17 cells, IL-17, IL-6, IL-21 and IL-10 were higher in SLE patients than in healthy controls (HCs), but the TGF-ß levels were lower. The percentage of Treg cells was lower than HCs in SLE individuals older than 33. Among studies that had 93% or lower females, the percentage of Th17 cells was greater in patients than in HCs. However, the percentage of Treg cells was lower when the proportion of females was less than 90%. Patients with lupus nephritis or active SLE had an increased proportion of Th17 cells and a decreased proportion of Treg cells. Conclusions: The increased level of Th17 cells and related cytokines could be the main reason for the elevated Th17/Treg ratio in SLE. The percentages of Th17 and Treg cells were associated with gender, age, disease activity and kidney function. Furthermore, the reduced proportions of Treg cells may primarily result in a rise in the Th17/Treg ratio in older or active SLE patients. Systematic Review Registration: https://www.crd.york.ac.uk/prospero, identifier CRD42023454937.


Asunto(s)
Citocinas , Lupus Eritematoso Sistémico , Linfocitos T Reguladores , Células Th17 , Humanos , Células Th17/inmunología , Células Th17/metabolismo , Lupus Eritematoso Sistémico/inmunología , Linfocitos T Reguladores/inmunología , Citocinas/metabolismo , Femenino , Masculino
2.
FEBS Lett ; 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39095330

RESUMEN

Goto-Kakizaki (GK) rats develop a well-defined insulin resistance (IR) and type 2 diabetes mellitus (T2DM) without presenting obesity. The lymphocyte profile in nonobese diabetic conditions is not yet characterized. Therefore, GK rats were chosen to explore T lymphocyte (TL) dynamics at various stages (21, 60, and 120 days) compared to Wistar rats. GK rats exhibit progressive disruption of glucose regulation, with early glucose intolerance at 21 days and reduced insulin sensitivity at 60 days, confirming IR. Glucose transporter 1 (GLUT1) expression was consistently elevated in GK rats, suggesting heightened TL activation. T-regulatory lymphocyte markers diminished at 21 days. However, GK rats showed increased Th1 markers and reduced Gata-3 expression (crucial for Th2 cell differentiation) at 120 days. These findings underscore an early breakdown of anti-inflammatory mechanisms in GK rats, indicating a proinflammatory TL profile that may worsen chronic inflammation in T2DM.

3.
Mol Ther Oncol ; 32(3): 200835, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39040850

RESUMEN

CD4+ T helper antigens are essential components of cancer vaccines, but the relevance of the source of these MHC class II-restricted antigens remains underexplored. To compare the effectiveness of tumor-specific versus tumor-unrelated helper antigens, we designed three DNA vaccines for the murine MC-38 colon carcinoma, encoding CD8+ T cell neoantigens alone (noHELP) or in combination with either "universal" helper antigens (uniHELP) or helper neoantigens (neoHELP). Both types of helped vaccines increased the frequency of vaccine-induced CD8+ T cells, and particularly uniHELP increased the fraction of KLRG1+ and PD-1low effector cells. However, when mice were subsequently injected with MC-38 cells, only neoHELP vaccination resulted in significantly better tumor control than noHELP. In contrast to uniHELP, neoHELP-induced tumor control was dependent on the presence of CD4+ T cells, while both vaccines relied on CD8+ T cells. In line with this, neoHELP variants containing wild-type counterparts of the CD4+ or CD8+ T cell neoantigens displayed reduced tumor control. These data indicate that optimal personalized cancer vaccines should include MHC class II-restricted neoantigens to elicit tumor-specific CD4+ T cell help.

4.
Dermatopathology (Basel) ; 11(3): 218-229, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39051325

RESUMEN

IgG4-RD is a multisystem fibroinflammatory disease characterized by the infiltration of tissues by IgG4 plasma cells. Combined skin and biliary tract involvement in IgG4-RD has not been described. We present perhaps the most comprehensive analysis of lymphocyte subsets in the first case of IgG4-related generalized skin rash and first case of combined skin and biliary tract manifestations. A 55-year-old male presented with painful jaundice and generalized macular pigmented pruritic eruptions, and CT abdomen revealed biliary obstruction. Ampulla and skin biopsies were subjected to histology and immunostaining. Naïve, central memory (TCM), effector memory (TEM), terminally differentiated effector memory (TEMRA) subsets of CD4+ and CD8+ T cells, T follicular helper subsets, naïve, transitional, marginal zone (MZ), germinal center (GC), IgM memory, and class-switched memory (CSM) B cells, and T follicular regulatory, regulatory B cells, CD4 Treg, and CD8 Treg were analyzed. Serum IgG4 was elevated at 448 mg/dL. Ampula biopsy showed lamina propria fibrosis and increased IgG4-positive plasma cells. Skin punch biopsy showed lymphoplasmacytic infiltrates with a 67% ratio of IgG4+:IgG+ plasma cells. CD4+TN and CD4+TCM decreased, whereas CD4+TEM increased. Naïve B cells increased; transitional, MZ, CSM, GC B cells, and plasmablasts decreased compared to control. CD4 Treg increased, whereas CD8 Treg and Breg decreased. In conclusion, IgG-RD may present with combined biliary tract and generalized dermatological manifestations. Changes in regulatory lymphocytes suggest their role in the pathogenesis of IgG4-RD.

5.
Entropy (Basel) ; 26(7)2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-39056932

RESUMEN

The capacity of a memoryless state-dependent channel is derived for a setting in which the encoder is provided with rate-limited assistance from a cribbing helper that observes the state sequence causally and the past channel inputs strictly causally. Said cribbing may increase capacity but not to the level achievable by a message-cognizant helper.

6.
medRxiv ; 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-39006439

RESUMEN

Leveraging endogenous tumor-resident T-cells for immunotherapy using bispecific antibodies (BsAb) targeting CD20 and CD3 has emerged as a promising therapeutic strategy for patients with B-cell non-Hodgkin lymphomas. However, features associated with treatment response or resistance are unknown. To this end, we analyzed data from patients treated with epcoritamab-containing regimens in the EPCORE NHL-2 trial (NCT04663347). We observed downregulation of CD20 expression on B-cells following treatment initiation both in progressing patients and in patients achieving durable complete responses (CR), suggesting that CD20 downregulation does not universally predict resistance to BsAb-based therapy. Single-cell immune profiling of tumor biopsies obtained following one cycle of therapy revealed substantial clonal expansion of cytotoxic CD4+ and CD8+ T-cells in patients achieving CR, and an expansion of follicular helper and regulatory CD4+ T-cells in patients whose disease progressed. These results identify distinct tumor-resident T-cell profiles associated with response or resistance to BsAb therapy.

7.
J Transl Med ; 22(1): 663, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39010157

RESUMEN

The T-helper 17 (Th17) cell and regulatory T cell (Treg) axis plays a crucial role in the development of multiple sclerosis (MS), which is regarded as an immune imbalance between pro-inflammatory cytokines and the maintenance of immune tolerance. Mesenchymal stem cell (MSC)-mediated therapies have received increasing attention in MS research. In MS and its animal model experimental autoimmune encephalomyelitis, MSC injection was shown to alter the differentiation of CD4+T cells. This alteration occurred by inducing anergy and reduction in the number of Th17 cells, stimulating the polarization of antigen-specific Treg to reverse the imbalance of the Th17/Treg axis, reducing the inflammatory cascade response and demyelination, and restoring an overall state of immune tolerance. In this review, we summarize the mechanisms by which MSCs regulate the balance between Th17 cells and Tregs, including extracellular vesicles, mitochondrial transfer, metabolic reprogramming, and autophagy. We aimed to identify new targets for MS treatment using cellular therapy by analyzing MSC-mediated Th17-to-Treg polarization.


Asunto(s)
Tolerancia Inmunológica , Células Madre Mesenquimatosas , Esclerosis Múltiple , Linfocitos T Reguladores , Células Th17 , Humanos , Células Th17/inmunología , Linfocitos T Reguladores/inmunología , Células Madre Mesenquimatosas/inmunología , Animales , Esclerosis Múltiple/inmunología , Esclerosis Múltiple/terapia , Trasplante de Células Madre Mesenquimatosas
8.
Mol Ther Methods Clin Dev ; 32(3): 101279, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-38993326

RESUMEN

Systemic delivery of oncolytic and immunomodulatory adenoviruses may be required for optimal effects on human malignancies. Mesenchymal stromal cells (MSCs) can serve as delivery systems for cancer therapeutics due to their ability to transport and shield these agents while homing to tumors. We now use MSCs to deliver a clinically validated binary oncolytic and helper-dependent adenovirus combination (CAdVEC) to tumor cells. We show successful oncolysis and helper-dependent virus function in tumor cells even in the presence of plasma from adenovirus-seropositive donors. In both two- and three-dimensional cultures, CAdVEC function is eliminated even at high dilutions of seropositive plasma but is well sustained when CAdVEC is delivered by MSCs. These results provide a robust in vitro model to measure oncolytic and helper-dependent virus spread and demonstrate a beneficial role of using MSCs for systemic delivery of CAdVEC even in the presence of a neutralizing humoral response.

9.
Adv Exp Med Biol ; 1459: 115-141, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39017842

RESUMEN

Molecular oxygen doubles as a biomolecular building block and an element required for energy generation and metabolism in aerobic organisms. A variety of systems in mammalian cells sense the concentration of oxygen to which they are exposed and are tuned to the range present in our blood and tissues. The ability to respond to insufficient O2 in tissues is central to regulation of erythroid lineage cells, but challenges also are posed for immune cells by a need to adjust to very different oxygen concentrations. Hypoxia-inducible factors (HIFs) provide a major means of making such adjustments. For adaptive immunity, lymphoid lineages are initially defined in bone marrow niches; T lineage cells arise in the thymus, and B cells complete maturation in the spleen. Lymphocytes move from these first stops into microenvironments (bloodstream, lymphatics, and tissues) with distinct oxygenation in each. Herein, evidence pertaining to functions of the HIF transcription factors (TFs) in lymphocyte differentiation and function is reviewed. For the CD4+ and CD8+ subsets of T cells, the case is very strong that hypoxia and HIFs regulate important differentiation events and functions after the naïve lymphocytes emerge from the thymus. In the B lineage, the data indicate that HIF1 contributes to a balanced regulation of B-cell fates after antigen (Ag) activation during immunity. A model synthesized from the aggregate literature is that HIF in lymphocytes generally serves to modulate function in a manner dependent on the molecular context framed by other TFs and signals.


Asunto(s)
Diferenciación Celular , Humanos , Animales , Hipoxia de la Célula , Factor 1 Inducible por Hipoxia/metabolismo , Linfocitos/metabolismo , Linfocitos/inmunología , Hipoxia/inmunología , Hipoxia/metabolismo , Oxígeno/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética
10.
Int J Mol Sci ; 25(13)2024 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-38999993

RESUMEN

The process of thyroid autoimmunization develops against the background of genetic predispositions associated with class II human leukocyte antigens (HLA-DR), as well as cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), protein tyrosine phosphatase non-receptor type 22 (PTPN22), and forkhead transcription box protein P3 (FOXP3). Environmental factors, such as vitamin D deficiency, Zn, Se, and Mg, as well as infections, chronic stress, pregnancy, smoking, alcohol, medications, intestinal dysbiosis, and malnutrition, also play an important role. The first stage of autoimmunization involves the accumulation of macrophages and dendritic cells, as well as plasma cells. In the second stage, the mutual interactions of individual cells in the immune system lead to a decrease in the level of CD8+ in favor of CD4+, which intensifies the synthesis of T lymphocyte derivatives, especially Th1, Th17, Tfh, and Tc, reducing the level of Treg. Consequently, the number of the anti-inflammatory cytokines IL10 and IL2 decreases, and the synthesis of the pro-inflammatory cytokines IL-2, Il-12, Il-17, IL-21, IL-22, IFN-γ, and TNF-α increases. The latter two especially trigger the pyroptosis process involving the inflammasome. Activation of the inflammasome by IL-ß and IL-18 produced by macrophages is one of the mechanisms of pyroptosis in the course of Hashimoto's thyroiditis, involving Gram-negative bacteria and NLRC4. In the next step, the apoptosis of thyroid cells is initiated by the intensification of perforin, granzyme, and proteoglycan synthesis by Tc and NK cells. The current findings raise many possibilities regarding interventions related to the inhibition of pro-inflammatory cytokines and the stimulation of anti-inflammatory cytokines produced by both T and B lymphocytes. Furthermore, since there is currently no effective method for treating thyroid autoimmunity, a summary of the review may provide answers regarding the treatment of not only Hashimoto's thyroiditis, but also other autoimmune diseases associated with autoimmunity.


Asunto(s)
Enfermedad de Hashimoto , Humanos , Enfermedad de Hashimoto/inmunología , Enfermedad de Hashimoto/metabolismo , Sistema Inmunológico/metabolismo , Sistema Inmunológico/inmunología , Citocinas/metabolismo , Animales , Autoinmunidad
12.
Front Immunol ; 15: 1387835, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39035008

RESUMEN

Oral Squamous Cell Carcinoma (OSCC) is the most common malignant tumor of the oral cavity. Despite recent advances in the field of oral cancer therapy, including the introduction of immunotherapeutic approaches, the 5-year survival rate remains steadily assessed around 50%. Thus, there is an urgent need for new therapeutic strategies. After the characterization of the immune phenotype of three human OSCC cell lines (CAL-27, SCC-25, and SCC-4) and one mouse OSCC cell line (MOC2) showing their similarities to resected patient tumors, we explored for the first time an experimental preclinical model of therapeutic vaccination with mouse OSCC MOC2 cell line stably expressing MHC class II antigens after CIITA gene transfection (MOC2-CIITA). Mice injected with MOC2-CIITA reject or strongly retard tumor growth; more importantly, vaccinated animals that fully reject MOC2-CIITA tumors display anti-tumor immunological memory protective against challenge with parental MOC2 tumor cells. Further experiments of adoptive cell transfer or in vivo cell depletion show that both CD4+ and CD8+ T lymphocytes prove fundamental in tumor rejection. This unprecedented approach for oral cancer opens the way for possible future translation of novel immunotherapeutic strategies to the human setting for the treatment of this tumor.


Asunto(s)
Vacunas contra el Cáncer , Carcinoma de Células Escamosas , Neoplasias de la Boca , Animales , Neoplasias de la Boca/inmunología , Neoplasias de la Boca/terapia , Ratones , Humanos , Línea Celular Tumoral , Vacunas contra el Cáncer/inmunología , Carcinoma de Células Escamosas/inmunología , Carcinoma de Células Escamosas/terapia , Linfocitos T Colaboradores-Inductores/inmunología , Vacunación , Transactivadores/genética , Transactivadores/inmunología , Femenino , Memoria Inmunológica , Linfocitos T CD4-Positivos/inmunología , Proteínas Nucleares
13.
Biochim Biophys Acta Mol Basis Dis ; 1870(7): 167346, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38986820

RESUMEN

PDAC is a typical "cold tumor" characterized by low immune cell infiltration and a suppressive immune microenvironment. We previously observed the existence of a rare group of follicular helper T cells (Tfh) that could enhance antitumor immune responses by recruiting other immune cells in PDAC. In this study, we ectopically expressed BCL6 in CD4+ T cells, and successfully induced Tfh-like transdifferentiation in vitro. This strategy provided abundant Tfh-like cells (iTfhs) that can recruit CD8+ T cells like endogenous Tfhs. Subsequently, Chimeric Antigen Receptors (CARs) against both MSL (Mesothelin) and EPHA2 (Ephrin receptor A2) were used to modify iTfh cells, and the CAR-iTfh cells significantly improved infiltration and antitumor cytotoxicity of co-cultured CD8+ T cells. After that, combinatory administration of CAR-iTfh & CAR-CD8 T cell therapy displayed a better effect in repressing the PDAC tumors in xenograft mouse models, compared to conventional CAR-CD4 & CAR-CD8 combinations, and the models received the CAR-iTfh & CAR-CD8 T cells displayed a significantly improved survival rate. Our study revealed the plasticity of Thelper differentiation, expanded the source of Tfh-like cells for cell therapy, and demonstrated a novel and potentially more efficient cellular composition for CAR-T therapy.

14.
Mol Cell Probes ; 76: 101969, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38964425

RESUMEN

The progression and pathogenesis of membranous glomerulonephritis (MGN) are inextricably linked to chronic inflammation. Despite improving clinical remission rates due to the application of cyclophosphamide (CYC), treatment of MGN still requires further exploration. Ruxolitinib (Ruxo) negatively affects the signaling pathways participating in the production of pro-inflammatory cytokines. Hence, we investigated whether the combination of CYC and Ruxo can modulate inflammation through influencing T helper 17 (Th17) lineages and regulatory T cells (Tregs). Passive Heymann nephritis (PHN), an experimental model of MGN, was induced in a population of rats. Then, the animals were divided into five groups: PHN, CYC-receiving, Ruxo-receiving, CYC-Ruxo-receiving PHN rats, and healthy controls. After 28 days of treatment, biochemistry analysis was performed and splenocytes were isolated for flowcytometry investigation of Th17 cells and Tregs. The correlative transcription factors of the cells, alongside their downstream cytokine gene expressions, were also assessed using real-time PCR. Furthermore, serum cytokine signatures for the lymphocytes were determined through ELISA. The combination of CYC and Ruxo significantly reduced the serum values of urea in rats versus the PHN group (24.62 ± 7.970 vs. 40.60 ± 10.81 mg/dL). In contrast to Treg's activities, the functionality of Th17 cells noticeably increased not only in PHN rats but also in CYC or Ruxo-receiving PHN animals when compared with the control (10.60 ± 2.236, 8.800 ± 1.465, 8.680 ± 1.314 vs. 4.420 ± 1.551 %). However, in comparison to the PHN group, the incidence of Th17 cells notably fell in rats receiving CYC and Ruxo (10.60 ± 2.236 vs. 6.000 ± 1.373 %) in favor of the Treg's percentage (5.020 ± 1.761 vs. 8.980 ± 1.178 %), which was verified by the gene expressions and cytokine productions correlative to these lymphocytes. The combination of CYC and Ruxo was able to decline Th17 cells in favor of Tregs improvement in PHN rats, suggesting an innovative combination therapy in MGN treatment approaches.


Asunto(s)
Ciclofosfamida , Citocinas , Glomerulonefritis Membranosa , Nitrilos , Pirazoles , Pirimidinas , Linfocitos T Reguladores , Células Th17 , Animales , Glomerulonefritis Membranosa/tratamiento farmacológico , Glomerulonefritis Membranosa/inmunología , Linfocitos T Reguladores/efectos de los fármacos , Linfocitos T Reguladores/inmunología , Células Th17/efectos de los fármacos , Células Th17/inmunología , Ciclofosfamida/farmacología , Ciclofosfamida/uso terapéutico , Nitrilos/farmacología , Nitrilos/uso terapéutico , Pirimidinas/farmacología , Pirimidinas/uso terapéutico , Ratas , Pirazoles/farmacología , Pirazoles/uso terapéutico , Citocinas/metabolismo , Masculino , Modelos Animales de Enfermedad , Quimioterapia Combinada
15.
Int J Mol Sci ; 25(14)2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39062968

RESUMEN

Despite advances in understanding systemic lupus erythematosus (SLE), many challenges remain in unraveling the precise mechanisms behind the disease's development and progression. Recent evidence has questioned the role of programmed cell death protein 1 (PD-1) in suppressing autoreactive CD4+ T cells during autoimmune responses. Research has investigated the potential impacts of PD-1 on various CD4+ T-cell subpopulations, including T follicular helper (Tfh) cells, circulating Tfh (cTfh) cells, and T peripheral helper (Tph) cells, all of which exhibit substantial PD-1 expression and are closely related to several autoimmune disorders, including SLE. This review highlights the complex role of PD-1 in autoimmunity and emphasizes the imperative for further research to elucidate its functions during autoreactive T-cell responses. Additionally, we address the potential of PD-1 and its ligands as possible therapeutic targets in SLE.


Asunto(s)
Autoinmunidad , Lupus Eritematoso Sistémico , Receptor de Muerte Celular Programada 1 , Lupus Eritematoso Sistémico/inmunología , Lupus Eritematoso Sistémico/metabolismo , Humanos , Receptor de Muerte Celular Programada 1/metabolismo , Receptor de Muerte Celular Programada 1/inmunología , Animales , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo
16.
Front Immunol ; 15: 1410638, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38983865

RESUMEN

Introduction: Angioimmunoblastic T-cell lymphoma (AITL) is a peripheral T-cell lymphoma characterized by a T follicular helper cell phenotype expressing PD-1 (programmed cell death-1). AITL exhibits a poor response to conventional chemotherapy, with a median 5-year overall survival of 44% and a progression-free survival of 32%. Relapse is common, resulting in a median overall survival of 6 months. Recurrent mutations are detected in genes regulating DNA methylation, including TET2, DNMT3A, and IDH2 variants, along with the prevalent RHOA G17V mutation. In this context, patients treated with the hypomethylating agent 5-azacytidine achieved overall response and complete response rates of 75% and 41%, respectively. We hypothesized that targeted therapies combining anti-PD-1 checkpoint blockers with hypomethylating agents could be efficient in AITL patients and less toxic than standard chemotherapy. Methods: Here, we report the efficacy of a regimen combining 5-azacytidine and nivolumab in nine relapsed or refractory AITL patients. Results: This regimen was well-tolerated, especially in elderly patients. The overall response rate was 78%, including four partial responses (44%) and three complete responses (33%). Allogeneic hematopoietic stem cell transplantation was performed in two patients who reached complete response. Discussion: These preliminary favorable results may serve as a basis for further investigation in prospective studies.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica , Azacitidina , Nivolumab , Humanos , Nivolumab/uso terapéutico , Azacitidina/uso terapéutico , Femenino , Masculino , Anciano , Persona de Mediana Edad , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Recurrencia Local de Neoplasia/tratamiento farmacológico , Linfoma de Células T Periférico/tratamiento farmacológico , Linfoma de Células T Periférico/mortalidad , Resultado del Tratamiento , Anciano de 80 o más Años , Resistencia a Antineoplásicos , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inhibidores de Puntos de Control Inmunológico/efectos adversos
17.
Arch Pharm Res ; 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38977652

RESUMEN

Systemic lupus erythematosus (SLE) is a common autoimmune disease, and its pathogenesis mainly involves the aberrant activation of B cells through follicular helper T (Tfh) cells to produce pathogenic antibodies, which requires more effective and safe treatment methods. Dihydroartemisinin (DHA) is the main active ingredient of artemisinin and has immunosuppressive effects. In this study, in vitro experiments confirmed that DHA inhibited Tfh cell induction and weakened its auxiliary function in B cell differentiation; furthermore, DHA directly inhibited B cell activation, differentiation, and antibody production. Furthermore, a mouse model of SLE was established, and we confirmed that DHA significantly reduced the symptoms of SLE and lupus nephritis, and decreased serum immunoglobulin (Ig)G, IgM, IgA, and anti-dsDNA levels. Moreover, DHA reduced the frequencies of total Tfh cells, activated Tfh cells, and B cell lymphoma 6, and interleukin (IL)-21 levels in Tfh cells from the spleen and lymph nodes, as well as the levels of B cells, germinal center B cells, and plasma cells in the spleen, lymph nodes, and kidneys. Additionally, DHA inhibited Tfh cells by blocking IL-2-inducible T cell kinase (ITK) signaling and its downstream nuclear factor (NF)-κB, nuclear factor of activated T cell, and activating protein-1 pathways, and directly inhibited B cells by blocking Bruton's tyrosine kinase (BTK) signaling and the downstream NF-κB and Myc pathways. Overall, our results demonstrated that DHA inhibited Tfh cells by blocking ITK signaling and also directly inhibited B cells by blocking BTK signaling. Therefore, reducing the production of pathogenic antibodies might effectively treat SLE.

18.
Inflammation ; 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38980500

RESUMEN

Methylprednisolone (MP) is a potent glucocorticoid that can effectively inhibit immune system inflammation and brain tissue damage in Multiple sclerosis (MS) patients. T follicular helper (Tfh) cells are a subpopulation of activated CD4 + T cells, while T follicular regulatory (Tfr) cells, a novel subset of Treg cells, possess specialized abilities to suppress the Tfh-GC response and inhibit antibody production. Dysregulation of either Tfh or Tfr cells has been implicated in the pathogenesis of MS. However, the molecular mechanism underlying the anti-inflammatory effects of MP therapy on experimental autoimmune encephalomyelitis (EAE), a representative model for MS, remains unclear. This study aimed to investigate the effects of MP treatment on EAE and elucidate the possible underlying molecular mechanisms involed. We evaluated the effects of MP on disease progression, CNS inflammatory cell infiltration and myelination, microglia and astrocyte activation, as well as Tfr/Tfh ratio and related molecules/inflammatory factors in EAE mice. Additionally, Western blotting was used to assess the expression of proteins associated with the PI3K/AKT pathway. Our findings demonstrated that MP treatment ameliorated clinical symptoms, inflammatory cell infiltration, and myelination. Furthermore, it reduced microglial and astrocytic activation. MP may increase the number of Tfr cells and the levels of cytokine TGF-ß1, while reducing the number of Tfh cells and the levels of cytokine IL-21, as well as regulate the imbalanced Tfr/Tfh ratio in EAE mice. The PI3K/AKT/FoxO1 and PI3K/AKT/mTOR pathways were found to be involved in EAE development. However, MP treatment inhibited their activation. MP reduced neuroinflammation in EAE by regulating the balance between Tfr/Tfh cells via inhibition of the PI3K/AKT/FoxO1 and PI3K/AKT/mTOR signalling pathways.

19.
J Periodontal Res ; 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38962877

RESUMEN

AIM: Periodontitis is an inflammatory disease driven by opportunistic bacteria including Porphyromonas gingivalis and Fusobacterium nucleatum, where T-cell and NKT-cell responses to these bacteria in patients with periodontitis grade B or C are not fully elucidated. The objective is to determine if exaggerated proinflammatory Th-cell responses to periodontitis-associated bacteria, but not commensal bacteria, is a characteristic of increased periodontitis grade. METHODS: Mononuclear cells from patients with periodontitis grade C (n = 26) or grade B (n = 33) and healthy controls (HCs; n = 26) were stimulated with P. gingivalis, F. nucleatum or the commensal bacteria, Staphylococcus epidermidis and Cutibacterium acnes. Cytokine production by different T-cell populations and FOXP3-expression by regulatory T cells were assessed by flow cytometry. RESULTS: Compared to HCs, grade C patients had decreased frequencies of interleukin (IL)-10-producing CD4+ T cells before stimulation (p = .02) and increased frequencies of IFN-y-producing CD4+ T cells after stimulation with P. gingivalis (p = .0019). Grade B patients had decreased frequencies of FOXP3+ CD4+ T cells before (p = .030) before and after stimulation with anti-CD2/anti-CD3/anti-CD28-loaded beads (p = .047), P. gingivalis (p = .013) and S. epidermidis (p = .018). Clinical attachment loss correlated with the frequencies of IFN-y-producing Th1 cells in P. gingivalis- and F. nucleatum-stimulated cultures in grade B patients (p = .023 and p = .048, respectively) and with the frequencies of Th17 cells in P. gingivalis-stimulated cultures (p = .0062) in grade C patients. Patients with periodontitis grade C or grade B showed lower frequencies of IL-10-producing NKT cells than HCs in unstimulated cultures (p = .0043 and p = .027 respectively). CONCLUSIONS: Both periodontitis groups showed decreased frequencies of immunoregulatory T-cell and NKT cell subsets at baseline. Clinical attachment loss correlated with P. gingivalis-induced Th17-responses in grade C patients and with Th1-responses in grade B patients when cells were stimulated with P. gingivalis, supporting that dysregulated pro-inflammatory T-cell responses to periodontitis-associated bacteria contribute to the pathogenesis of periodontitis.

20.
Clin Exp Hypertens ; 46(1): 2373467, 2024 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-38963020

RESUMEN

BACKGROUND: Aortic endothelial diastolic dysfunction is an early complication of diabetes and the abnormal differentiation of Th17 cells is involved in the development of diabetes. However, the exact role of exercise on regulating the Th17 cells differentiation and the underlying molecular mechanisms remain to be elucidated in diabetic mice. METHODS: db/db and db/m+ mice were randomly divided into exercise and sedentary groups. Mice in exercise group were exercised daily, 6 days/week, for 6 weeks and mice in sedentary groups were placed on a nonmoving treadmill for 6 weeks. Vascular endothelial function was measured via wire myograph and the frequencies of Th17 from peripheral blood in mice were assessed via flow cytometry. RESULTS: Our data showed that exercise improved insulin resistance and aortic endothelial diastolic function in db/db mice. In addition, the proportion of Th17 cells and IL-17A level in peripheral blood of db/db mice were significantly increased, and exercise could promote Th17 cell differentiation and reduce IL-17A level. More importantly, STAT3 or ROR-γt inhibitors could promote Th17 cell differentiation in db/db mice, while exercise significantly down-regulated p-STAT3/ROR-γt signaling in db/db mice, suggesting that exercise regulated Th17 differentiation through STAT3/ROR-γt signaling. CONCLUSIONS: This study demonstrated that exercise improved vascular endothelial function in diabetic mice via reducing Th17 cell differentiation through p-STAT3/ROR-γt pathway, suggesting exercise may be an important non-pharmacological intervention strategy for the treatment of diabetes-related vascular complications.


Asunto(s)
Diferenciación Celular , Diabetes Mellitus Experimental , Interleucina-17 , Condicionamiento Físico Animal , Factor de Transcripción STAT3 , Células Th17 , Vasodilatación , Animales , Ratones , Condicionamiento Físico Animal/fisiología , Condicionamiento Físico Animal/métodos , Vasodilatación/fisiología , Factor de Transcripción STAT3/metabolismo , Diabetes Mellitus Experimental/fisiopatología , Diabetes Mellitus Experimental/terapia , Masculino , Interleucina-17/sangre , Interleucina-17/metabolismo , Endotelio Vascular/fisiopatología , Resistencia a la Insulina/fisiología , Transducción de Señal , Ratones Endogámicos C57BL , Aorta/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA