Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Chin J Integr Med ; 30(8): 675-683, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38570473

RESUMEN

OBJECTIVE: To investigate whether Naoxueshu Oral Liquid (NXS) could promote hematoma absorption in post-craniotomy hematoma (PCH) patients. METHODS: This is an open-label, multicenter, and randomized controlled trial conducted at 9 hospitals in China. Patients aged 18-80 years with post-craniotomy supratentorial hematoma volume ranging from 10 to 30 mL or post-craniotomy infratentorial hematoma volume less than 10 mL, or intraventricular hemorrhage following cranial surgery were enrolled. They were randomly assigned at a 1:1 ratio to the NXS (10 mL thrice daily for 15 days) or control groups using a randomization code table. Standard medical care was administered in both groups. The primary outcome was the percentage reduction in hematoma volume from day 1 to day 15. The secondary outcomes included the percentage reduction in hematoma volume from day 1 to day 7, the absolute reduction in hematoma volume from day 1 to day 7 and 15, and the change in neurological function from day 1 to day 7 and 15. The safety was closely monitored throughout the study. Moreover, subgroup analysis was performed based on age, gender, history of diabetes, and etiology of intracerebral hemorrhage (ICH). RESULTS: A total of 120 patients were enrolled and randomly assigned between March 30, 2018 and April 15, 2020. One patient was lost to follow-up in the control group. Finally, there were 119 patients (60 in the NXS group and 59 in the control group) included in the analysis. In the full analysis set (FAS) analysis, the NXS group had a greater percentage reduction in hematoma volume from day 1 to day 15 than the control group [median (Q1, Q3): 85% (71%, 97%) vs. 76% (53%, 93%), P<0.05]. The secondary outcomes showed no statistical significance between two groups, either in FAS or per-protocol set (P>0.05). Furthermore, no adverse events were reported during the study. In the FAS analysis, the NXS group exhibited a higher percentage reduction in hematoma volume on day 15 in the following subgroups: male patients, patients younger than 65 years, patients without diabetes, or those with initial cranial surgery due to ICH (all P<0.05). CONCLUSIONS: The administration of NXS demonstrated the potential to promote the percentage reduction in hematoma volume from day 1 to day 15. This intervention was found to be safe and feasible. The response to NXS may be influenced by patient characteristics. (Registration No. ChiCTR1800017981).


Asunto(s)
Craneotomía , Hematoma , Humanos , Masculino , Femenino , Hematoma/etiología , Persona de Mediana Edad , Craneotomía/efectos adversos , Anciano , Adulto , Medicamentos Herbarios Chinos/uso terapéutico , Medicamentos Herbarios Chinos/administración & dosificación , Medicamentos Herbarios Chinos/efectos adversos , Anciano de 80 o más Años , Adolescente , Adulto Joven , Administración Oral
2.
J Neuroinflammation ; 21(1): 106, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38658922

RESUMEN

BACKGROUND: Intracerebral hemorrhage (ICH) is a devastating neurological disease causing severe sensorimotor dysfunction and cognitive decline, yet there is no effective treatment strategy to alleviate outcomes of these patients. The Mas axis-mediated neuroprotection is involved in the pathology of various neurological diseases, however, the role of the Mas receptor in the setting of ICH remains to be elucidated. METHODS: C57BL/6 mice were used to establish the ICH model by injection of collagenase into mice striatum. The Mas receptor agonist AVE0991 was administered intranasally (0.9 mg/kg) after ICH. Using a combination of behavioral tests, Western blots, immunofluorescence staining, hematoma volume, brain edema, quantitative-PCR, TUNEL staining, Fluoro-Jade C staining, Nissl staining, and pharmacological methods, we examined the impact of intranasal application of AVE0991 on hematoma absorption and neurological outcomes following ICH and investigated the underlying mechanism. RESULTS: Mas receptor was found to be significantly expressed in activated microglia/macrophages, and the peak expression of Mas receptor in microglia/macrophages was observed at approximately 3-5 days, followed by a subsequent decline. Activation of Mas by AVE0991 post-treatment promoted hematoma absorption, reduced brain edema, and improved both short- and long-term neurological functions in ICH mice. Moreover, AVE0991 treatment effectively attenuated neuronal apoptosis, inhibited neutrophil infiltration, and reduced the release of inflammatory cytokines in perihematomal areas after ICH. Mechanistically, AVE0991 post-treatment significantly promoted the transformation of microglia/macrophages towards an anti-inflammatory, phagocytic, and reparative phenotype, and this functional phenotypic transition of microglia/macrophages by Mas activation was abolished by both Mas inhibitor A779 and Nrf2 inhibitor ML385. Furthermore, hematoma clearance and neuroprotective effects of AVE0991 treatment were reversed after microglia depletion in ICH. CONCLUSIONS: Mas activation can promote hematoma absorption, ameliorate neurological deficits, alleviate neuron apoptosis, reduced neuroinflammation, and regulate the function and phenotype of microglia/macrophages via Akt/Nrf2 signaling pathway after ICH. Thus, intranasal application of Mas agonist ACE0991 may provide promising strategy for clinical treatment of ICH patients.


Asunto(s)
Hematoma , Accidente Cerebrovascular Hemorrágico , Ratones Endogámicos C57BL , Receptores Acoplados a Proteínas G , Recuperación de la Función , Animales , Ratones , Hematoma/tratamiento farmacológico , Hematoma/patología , Hematoma/metabolismo , Masculino , Accidente Cerebrovascular Hemorrágico/patología , Accidente Cerebrovascular Hemorrágico/tratamiento farmacológico , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/metabolismo , Recuperación de la Función/efectos de los fármacos , Recuperación de la Función/fisiología , Proteínas Proto-Oncogénicas/metabolismo , Edema Encefálico/etiología , Edema Encefálico/metabolismo , Edema Encefálico/tratamiento farmacológico , Microglía/efectos de los fármacos , Microglía/metabolismo
3.
J Ethnopharmacol ; 330: 118223, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-38642624

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Leonurus japonicus Houtt. (Labiatae), commonly known as Chinese motherwort, is a herbaceous flowering plant that is native to Asia. It is widely acknowledged in traditional medicine for its diuretic, hypoglycemic, antiepileptic properties and neuroprotection. Currently, Leonurus japonicus (Leo) is included in the Pharmacopoeia of the People's Republic of China. Traditional Chinese Medicine (TCM) recognizes Leo for its myriad pharmacological attributes, but its efficacy against ICH-induced neuronal apoptosis is unclear. AIMS OF THE STUDY: This study aimed to identify the potential targets and regulatory mechanisms of Leo in alleviating neuronal apoptosis after ICH. MATERIALS AND METHODS: The study employed network pharmacology, UPLC-Q-TOF-MS technique, molecular docking, pharmacodynamic studies, western blotting, and immunofluorescence techniques to explore its potential mechanisms. RESULTS: Leo was found to assist hematoma absorption, thus improving the neurological outlook in an ICH mouse model. Importantly, molecular docking highlighted JAK as Leo's potential therapeutic target in ICH scenarios. Further experimental evidence demonstrated that Leo adjusts JAK1 and STAT1 phosphorylation, curbing Bax while augmenting Bcl-2 expression. CONCLUSION: Leo showcases potential in mitigating neuronal apoptosis post-ICH, predominantly via the JAK/STAT mechanism.


Asunto(s)
Apoptosis , Hemorragia Cerebral , Leonurus , Simulación del Acoplamiento Molecular , Farmacología en Red , Neuronas , Animales , Apoptosis/efectos de los fármacos , Leonurus/química , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Ratones , Masculino , Hemorragia Cerebral/tratamiento farmacológico , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/química , Fármacos Neuroprotectores/aislamiento & purificación , Extractos Vegetales/farmacología , Extractos Vegetales/química , Janus Quinasa 1/metabolismo , Factor de Transcripción STAT1/metabolismo , Modelos Animales de Enfermedad
4.
Neural Regen Res ; 19(5): 1072-1077, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-37862210

RESUMEN

MIcroglia/macrophage-mediated erythrophagocytosis plays a crucial role in hematoma clearance after intracerebral hemorrhage. Dynamic cytoskeletal changes accompany phagocytosis. However, whether and how these changes are associated with microglia/macrophage-mediated erythrophagocytosis remain unclear. In this study, we investigated the function of acetylated α-tubulin, a stabilized microtubule form, in microglia/macrophage erythrophagocytosis after intracerebral hemorrhage both in vitro and in vivo. We first assessed the function of acetylated α-tubulin in erythrophagocytosis using primary DiO GFP-labeled red blood cells co-cultured with the BV2 microglia or RAW264.7 macrophage cell lines. Acetylated α-tubulin expression was significantly decreased in BV2 and RAW264.7 cells during erythrophagocytosis. Moreover, silencing α-tubulin acetyltransferase 1 (ATAT1), a newly discovered α-tubulin acetyltransferase, decreased Ac-α-tub levels and enhanced the erythrophagocytosis by BV2 and RAW264.7 cells. Consistent with these findings, in ATAT1-/- mice, we observed increased ionized calcium binding adapter molecule 1 (Iba1) and Perls-positive microglia/macrophage phagocytes of red blood cells in peri-hematoma and reduced hematoma volume in mice with intracerebral hemorrhage. Additionally, knocking out ATAT1 alleviated neuronal apoptosis and pro-inflammatory cytokines and increased anti-inflammatory cytokines around the hematoma, ultimately improving neurological recovery of mice after intracerebral hemorrhage. These findings suggest that ATAT1 deficiency accelerates erythrophagocytosis by microglia/macrophages and hematoma absorption after intracerebral hemorrhage. These results provide novel insights into the mechanisms of hematoma clearance and suggest ATAT1 as a potential target for the treatment of intracerebral hemorrhage.

5.
Phytomedicine ; 108: 154530, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36356328

RESUMEN

BACKGROUND: Intracerebral hemorrhage (ICH) is a life-threatening stroke subtype with high rates of disability and mortality. Naoxueshu oral liquid is a proprietary Chinese medicine that absorbs hematoma and exhibits neuroprotective effects in patients with ICH. However, the underlying mechanisms remain obscure. PURPOSE: Exploring and elucidating the pharmacological mechanism of Naoxueshu oral liquid in the treatment of ICH. STUDY DESIGN AND METHODS: The Gene Expression Omnibus (GEO) database was used to download the gene expression data on ICH. ICH-related hub modules were obtained by weighted gene co-expression network analysis (WGCNA) of differentially co-expressed genes (DEGs). The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were conducted using the obtained key modules to identify the ICH-related signaling pathways. Network pharmacology technology was applied to forecast the targets of Naoxueshu oral liquid and to establish a protein-protein interaction (PPI) network of overlapping targets between Naoxueshu oral liquid and ICH. Functional annotation and enrichment pathway analyses of the intersectional targets were performed using the omicsbean database. Finally, we verified the therapeutic role and mechanism of Naoxueshu oral liquid in ICH through molecular docking and experiments. RESULTS: Through the WGCNA analysis, combined with network pharmacology, it was found that immune inflammation was closely related to the early pathological mechanism of ICH. Naoxueshu oral liquid suppressed the inflammatory response; hence, it could be a potential drug for ICH treatment. Molecular docking further confirmed that the effective components of Naoxueshu oral liquid docked well with CD163. Finally, the experimental results showed that Naoxueshu oral liquid treatment in the ICH rat model attenuated neurological deficits and neuronal injury, decreased hematoma volume, and promoted hematoma absorption. In addition, Naoxueshu oral liquid treatment also significantly increased the levels of Arg-1, CD163, Nrf2, and HO-1 around hematoma after ICH. CONCLUSION: This study demonstrated that Naoxueshu oral liquid attenuated neurological deficits and accelerated hematoma absorption, possibly by suppressing inflammatory responses, which might be related to the regulation of Nrf2/CD163/HO-1 that interfered with the activation of M2 microglia, thus accelerating the clearance and decomposition of hemoglobin in the hematoma.


Asunto(s)
Hemorragia Cerebral , Factor 2 Relacionado con NF-E2 , Animales , Ratas , Factor 2 Relacionado con NF-E2/metabolismo , Simulación del Acoplamiento Molecular , Hemorragia Cerebral/tratamiento farmacológico , Hemorragia Cerebral/genética , Hematoma/metabolismo , Hematoma/patología , Ontología de Genes
6.
Cell Mol Life Sci ; 79(5): 224, 2022 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-35389112

RESUMEN

BACKGROUND: Hematoma leads to progressive neurological deficits and poor outcomes after intracerebral hemorrhage (ICH). Early clearance of hematoma is widely recognized as an essential treatment to limit the damage and improve the clinical prognosis. CD163, alias hemoglobin (Hb) scavenger receptor on microglia, plays a pivotal role in hematoma absorption, but CD163 on neurons permits Hb uptake and results in neurotoxicity. In this study, we focus on how to specially promote microglial but not neuronal CD163 mediated-Hb uptake and hematoma absorption. METHODS: RNA sequencing was used to explore the potential molecules involved in ICH progression, and hematoma was detected by magnetic resonance imaging (MRI). Western blot and immunofluorescence were used to evaluate the expression and location of fractalkine (FKN) after ICH. Erythrophagocytosis assay was performed to study the specific mechanism of action of FKN in hematoma clearance. Small interfering RNA (siRNA) transfection was used to explore the effect of peroxisome proliferator-activated receptor-γ (PPAR-γ) on hematoma absorption. Enzyme-linked immunosorbent assay (ELISA) was used to determine the serum FKN concentration in ICH patients. RESULTS: FKN was found to be significantly increased around the hematoma in a mouse model after ICH. With its unique receptor CX3CR1 in microglia, FKN significantly decreased the hematoma size and Hb content, and improved neurological deficits in vivo. Further, FKN could enhance erythrophagocytosis of microglia in vitro via the CD163/ hemeoxygenase-1 (HO-1) axis, while AZD8797 (a specific CX3CR1 inhibitor) reversed this effect. Moreover, PPAR-γ was found to mediate the increase in the CD163/HO-1 axis expression and erythrophagocytosis induced by FKN in microglia. Of note, a higher serum FKN level was found to be associated with better hematoma resolution in ICH patients. CONCLUSIONS: We systematically identified that FKN may be a potential therapeutic target to improve hematoma absorption and we shed light on ICH treatment.


Asunto(s)
Quimiocina CX3CL1 , Microglía , Animales , Antígenos CD , Antígenos de Diferenciación Mielomonocítica , Hemorragia Cerebral/tratamiento farmacológico , Hemorragia Cerebral/metabolismo , Hemorragia Cerebral/patología , Quimiocina CX3CL1/metabolismo , Hematoma/tratamiento farmacológico , Hematoma/metabolismo , Humanos , Ratones , Microglía/metabolismo , Neuronas/metabolismo , PPAR gamma/metabolismo , Receptores de Superficie Celular
7.
Aging (Albany NY) ; 11(24): 12147-12164, 2019 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-31841443

RESUMEN

Exosomes are small (30-150 nm diameter) lipid bilayer-enclosed vesicles found in all bodily fluids. We investigated whether exosomes play a role in chronic subdural hematoma (CSDH). Exosomes were identified and characterized using transmission electron microscopy and NanoSight particle tracking. The functions of hematoma-derived exosomes were evaluated in a rat model of acute subdural hematoma (SDH). The hematoma-derived exosomes inhibited hematoma absorption and exacerbated neurological deficits in SDH rats. We examined the effects of the exosomes on angiogenesis and cell permeability in human umbilical vein endothelial cells (HUVECs). Co-culture of exosomes with HUVECs revealed that the hematoma-derived exosomes were taken-in by the HUVECs, resulting in enhanced tube formation and vascular permeability. Additionally, there was a concomitant increase in ANG-2 expression and decrease in ANG-1 expression. Exosomes were enriched with microRNAs including miR-144-5p, which they could deliver to HUVECs to promote angiogenesis and increase membrane permeability. Overexpression of miR-144-5p in HUVECs and in SDH rats promoted abnormal angiogenesis and reduced hematoma absorption, which mimicked the effects of the hematoma-derived exosomes both in vitro and in vivo. Thus, hematoma-derived exosomes promote abnormal angiogenesis with high permeability and inhibit hematoma absorption through miR-144-5p in CSDH.


Asunto(s)
Permeabilidad Capilar , Exosomas , Hematoma Subdural Crónico/etiología , MicroARNs/metabolismo , Neovascularización Patológica , Animales , Estudios de Casos y Controles , Cognición , Modelos Animales de Enfermedad , Hematoma Subdural Crónico/sangre , Células Endoteliales de la Vena Umbilical Humana , Humanos , Ratas
9.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-462810

RESUMEN

Objective A large number of traditional Chinese medicine(TCM)are widely used for the treatment of patients with cerebral hemorrhage in China. The aim of this study is to systematically review the existing clinical evidences on TCM treatment for cerebral hemorrhage. Methods Randomized controlled trails(RCTs) of TCM treatment of cerebral hemorrhage were identified, eligible studies were included, the methodological quality of inclusive trails was assessed by the modified Jadad scale. The Cochrane Collaberation’s Revman 5.20 was used for data analysis. Results 69 RCTs were available and included. Meta-analysis indicated that relative risk of overall effective rate of Sanqi, Ciwujia, Chuanxiongqin and Naoxueshu were significant difference; SMD(95% CI) of neural function defect score was SMD=-0.46, 95%CI(-0.56,-0.35)of Sanqi, Danshen, Qingkailing, Liangxuetongyufang;SMD(95%CI) of the reduce of cerebral hemorrhage was SMD = -0.98, 95% CI(-1.32, -0.63)of Danshen, Dahuang, Ciwujia, Qingkailing, Liangxue-Tongyufang. Conclusions The evidence currently available showed that the TCM which included do not increase the death rate and adverse reaction of the patients with cerebral hemorrhage, TCM could reduce neurological deficit and improve the absorption of hematoma.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA