Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Redox Biol ; 62: 102681, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37003179

RESUMEN

MiR-27b is highly expressed in endothelial cells (EC) but its function in this context is poorly characterized. This study aims to investigate the effect of miR-27b on inflammatory pathways, cell cycle, apoptosis, and mitochondrial oxidative imbalances in immortalized human aortic endothelial cells (teloHAEC), human umbilical vein endothelial cells (HUVEC), and human coronary artery endothelial cells (HCAEC) exposed to TNF-α. Treatment with TNF-α downregulates the expression of miR-27b in all EC lines, promotes the activation of inflammatory pathways, induces mitochondrial alteration and reactive oxygen species accumulation, fostering the induction of intrinsic apoptosis. Moreover, miR-27b mimic counteracts the TNF-α-related cytotoxicity and inflammation, as well as cell cycle arrest and caspase-3-dependent apoptosis, restoring mitochondria redox state, function, and membrane polarization. Mechanistically, hsa-miR-27b-3p targets the 3'untranslated regions of FOXO1 mRNA to downregulate its expression, blunting the activation of the Akt/FOXO1 pathway. Here, we show that miR-27b is involved in the regulation of a broad range of functionally intertwined phenomena in EC, suggesting its key role in mitigating mithochondrial oxidative stress and inflammation, most likely through targeting of FOXO1. Overall, results reveal for the first time that miR-27b could represent a possible target for future therapies aimed at improving endothelial health.


Asunto(s)
Células Endoteliales de la Vena Umbilical Humana , MicroARNs , Estrés Oxidativo , Humanos , Apoptosis/genética , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Inflamación/genética , MicroARNs/genética , MicroARNs/metabolismo , Factor de Necrosis Tumoral alfa/farmacología , Factor de Necrosis Tumoral alfa/metabolismo
2.
Cell Mol Biol Lett ; 27(1): 79, 2022 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-36138344

RESUMEN

BACKGROUND: MicroRNAs (miRNAs) play crucial roles in the development of hepatocellular carcinoma (HCC). Hsa-microRNA-27b-3p (hsa-miR-27b) is involved in the formation and progression of various cancers, but its role and clinical value in HCC remain unclear. METHODS: The expression of hsa-miR-27b in HCC was examined by quantitative real-time PCR (qRT-PCR) and in situ hybridization (ISH) assays of clinical samples. Cell Counting Kit-8 assays (CCK-8), 5-ethynyl-2'-deoxyuridine (EdU) incorporation assays, Transwell assays, filamentous actin (F-actin) staining and western blot analyses were used to determine the effects of hsa-miR-27b on HCC cells in vitro. Subcutaneous xenograft and lung metastatic animal experiments were conducted to verify the role of hsa-miR-27b in HCC in vivo. In silico prediction, qRT-PCR, western blot, anti-Argonaute 2 (AGO2) RNA immunoprecipitation (RIP) and dual luciferase reporter assays were applied to identify the target genes of hsa-miR-27b. To detect the impacts of hsa-miR-27b on nuclear factor kappa B (NF-кB) signalling cascades mediated by transforming growth factor-activated kinase-binding protein 3 (TAB3), we performed qRT-PCR, western blot assays, immunofluorescence staining, immunohistochemistry (IHC) and dual-luciferase reporter assays. Recombinant oncolytic adenovirus (OncoAd) overexpressing hsa-miR-27b was constructed to detect their therapeutic value in HCC. RESULTS: The expression of hsa-miR-27b was lower in HCC than in adjacent non-tumourous tissues (ANTs), and the reduced expression of hsa-miR-27b was associated with worse outcomes in patients with HCC. Hsa-miR-27b significantly inhibited the proliferation, migration, invasion, subcutaneous tumour growth and lung metastasis of HCC cells. The suppression of hsa-miR-27b promoted the nuclear translocation of NF-κB by upregulating TAB3 expression. TAB3 was highly expressed in HCC compared with ANTs and was negatively correlated with the expression of hsa-miR-27b. The impaired cell proliferation, migration and invasion by hsa-miR-27b overexpression were recovered by ectopic expression of TAB3. Recombinant OncoAd with overexpression of hsa-miR-27b induced anti-tumour activity compared with that induced by negative control (NC) OncoAd in vivo and in vitro. CONCLUSIONS: By targeting TAB3, hsa-miR-27b acted as a tumour suppressor by inactivating the NF-кB pathway in HCC in vitro and in vivo, indicating its therapeutic value against HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroARNs , Actinas/genética , Animales , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Hepáticas/patología , MicroARNs/genética , MicroARNs/metabolismo , FN-kappa B/metabolismo , Factores de Crecimiento Transformadores/genética , Factores de Crecimiento Transformadores/metabolismo
3.
Int J Med Sci ; 15(6): 610-616, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29725252

RESUMEN

Although miRNA markers have been identified for the pathological development of gastric adenocarcinoma (GAC), the underlying molecule mechanism are still not fully understood. Moreover, some gastric adenoma/dysplasia may progress to GAC. In this study, the miRNA expression profiles in normal and paired low-/high-grade dysplasia were analyzed using Affymetrix Gene-Chip miRNA arrays. Of the total 2578 mature miRNA probe sets, ~1600 showed positive signals when the between normal and paired low-/high-grade dysplasia were compared. To verify the miRNA expression, qRT-PCR analysis was performed to quantify the expression of altered miRNAs between normal and paired low-/high-grade dysplasia. The analysis revealed that hsa-miR-421, hsa-miR-29b-1-5p, and hsa-miR-27b-5p were overexpressed in gastric low-/high-grade dysplasia and that based on these miRNA-target interactions, FBXO11 and CREBZF could be considered convincing markers for gastric cancer (GC) progression. Thus, we identified three miRNAs (hsa-miR-421, hsa-miR-29b-1-5p, and hsa-miR-27b-5p) with two mRNAs (FBXO11 and CREBZF) that might play an important role in the GC development from premalignant adenomas. Furthermore, these two target mRNAs and three miRNAs were predicted to be potential biomarkers for the progression of GC by miRNA-target interaction analysis.


Asunto(s)
MicroARNs/genética , Neoplasias Gástricas/genética , Adenoma/genética , Adenoma/patología , Anciano , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Biomarcadores de Tumor/genética , Carcinoma/genética , Carcinoma/patología , Proteínas F-Box/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Persona de Mediana Edad , Análisis de Secuencia por Matrices de Oligonucleótidos , Proteína-Arginina N-Metiltransferasas/genética , Neoplasias Gástricas/patología
4.
Exp Biol Med (Maywood) ; 242(12): 1227-1233, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28343438

RESUMEN

Human cytomegalovirus (HCMV) dormant infection can alter the expression of the hosts' microRNAs (miRNAs) and impact on the regulation of target genes. To investigate the differentially expressed miRNAs induced by HCMV in human glioma U251 cells, a comprehensive miRNA screen was performed. As a result, 19 up-regulated and 14 down-regulated miRNAs were determined. Of these, hsa-miR-27b (miR-27b) attracted our attention. MiR-27b levels in U251 cells increased 7.70-fold, 8.64-fold, and 4.78-fold, respectively, post 24 h, 48 h, and 72 h HCMV infection, compared to those in the mimic-infected cells, and this up-regulation was further confirmed by quantitative RT-PCR. The bioinformatic analyses show that miR-27b targets engrailed-2 (EN2) gene; however, the effect of miR-27b on EN2 is rarely encountered. In this study, we initially conducted dual luciferase assay to validate the target function of miR-27b on EN2. The results manifested that EN2 is a novel target of miR-27b, which could directly target the 3' untranslated region (3'-UTR) of the gene. We further found that the miR-27b transfected glioma U251 cells exhibited longer cell bodies with more synapses and multiple-angle shapes; moreover, Western blot detection revealed that the EN2 protein levels in these cells were significantly low. In conclusion, our study originally reports the up-regulation of miR-27b in HCMV-infected glioma cells. Our study also provides the first experimental evidence that miR-27b could affect glioma cells' growth, target EN2 and inhibit its expression in glioma cells. Our data indicate that miR-27b may be related to the development of neurological disorders with HCMV infection. The newly identified miR-27b/EN2 signal pathway may provide new insights into the glioma pathogenesis and a novel target for glioma therapy. Impact statement Our study is the first to demonstrate that the HCMV infection could alter the expression of cellular microRNAs of the host glioma cells, which may develop an understanding of the pathogenesis of the HCMV infection in the microRNA level. Recently, HCMV infection and engrailed-2 have been reported to be related to the autism spectrum disorder (ASD). In this study, we confirmed that engrailed-2 is the target of hsa-miR-27b. As far as we know, our findings of the hsa-miR-27b up-regulation in the HCMV-infected glioma cells, targeting engrailed-2 and inhibiting its expression have never been reported or documented. Our data indicate that miR-27b may be related to the development of neurological disorders with the HCMV infection. The newly identified miR-27b/EN2 signal pathway may provide new insights into the glioma pathogenesis and a novel target for glioma therapy.


Asunto(s)
Neoplasias Encefálicas/virología , Infecciones por Citomegalovirus/complicaciones , Regulación Neoplásica de la Expresión Génica/fisiología , Glioma/virología , Proteínas de Homeodominio/biosíntesis , MicroARNs/biosíntesis , Proteínas del Tejido Nervioso/biosíntesis , Neoplasias Encefálicas/genética , Línea Celular Tumoral , Glioma/genética , Proteínas de Homeodominio/genética , Humanos , MicroARNs/genética , Proteínas del Tejido Nervioso/genética , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA