Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 135
Filtrar
1.
Front Oral Health ; 5: 1373885, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38933119

RESUMEN

Introduction: Silver(I)-diammine fluoride (SDF) and silver(I)-fluoride (SF) complexes have been successfully employed for the arrest of dental caries for many years. However, to date there are very few studies available reporting on the molecular structural compositional and solution status of these agents [typically applied as highly-concentrated 38% (w/v) solutions]. Here, we explored the solution status and chemical constitution of commercially-available SDF and SF products, and secondly investigated the multicomponent interplay of these products with biomolecules present in intact human whole-mouth salivary supernatants (WMSSs) in vitro. Methods: High-resolution 19F NMR analysis was employed to explore SDF and SF product solutions, and to determine WMSS fluoride (F-) concentrations, whereas ammonia (NH3) release form SDF was tracked by 1H NMR spectroscopy. SEM and thin-film FTIR-ATR analyses were employed to explore the atomic and molecular compositions of sequentially-generated AgCl deposits and chromophoric Ag/AgCl nanoparticles (CSNPs); the time-dependent generation of the latter was followed spectrophotometrically. Results: 19F NMR spectra of aqueous SF solutions contained a very broad F- signal (Δv1/2 70 Hz), demonstrating that much of its solvated F- content was rapidly exchanging with Ag(I) on the NMR timescale, but those of SDF had a much sharper resonance, similar to that of "free" F- (4 Hz). Moreover, further NMR results revealed that a popular SDF product contained high molar excesses of both F- and NH3. Treatment of WMSSs with SDF and SF generated an off-white precipitate, which slowly developed into CSNPs at 23°C; SEM demonstrated high contents of both silver and chloride in this material (ca.1:1 atomic content ratio). FTIR-ATR analysis found that the CSNPs formed contained a range of salivary biomolecules, which appear to encapsulate the Ag/AgCl core (significant thiocyanate contents were also found). In conclusion, NMR results acquired demonstrated that SF, but not SDF, product solutions feature rapidly-exchanging F - between its "free" and Ag(I)-bound forms, and that SDF contains large excesses of both F- and its NH3 ligands. Characterised AgCl deposits and CSNPs were sequentially produced from the interactions of these complexes with WMSS biomolecules. Discussion: In view of their well-known microbicidal and cariostatic properties, the observed autobioconstruction of CSNPs involving salivary catalysis is of much therapeutic significance.

2.
J Agric Food Chem ; 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38603459

RESUMEN

Beneficial polyphenols in apples can reach the stomach as complexes formed with salivary proteins. The present study aimed at documenting the interactions between salivary proteins and cider apple polyphenols and the fate of complexes during gastric digestion. A polyphenolic extract was mixed with human saliva, and interactions were characterized by analyzing proteins and polyphenols in the insoluble and soluble fractions of the mixtures, before and after in vitro gastric digestion. Results confirmed that proline-rich proteins can efficiently precipitate polyphenols and suggested that two zinc-binding proteins can also form insoluble complexes with polyphenols. The classes of polyphenols involved in such complexes depended on the polyphenol-to-protein ratio. In vitro gastric digestion led to extensive proteolysis of salivary proteins, and we formulate the hypothesis that the resulting peptides can interact with and precipitate some procyanidins. Saliva may therefore partly modulate the bioaccessibility of at least procyanidins in the gastric compartment.

3.
Adv Sci (Weinh) ; 11(27): e2306038, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38381100

RESUMEN

Metabolites are essential molecules involved in various metabolic processes, and their deficiencies and excessive concentrations can trigger significant physiological consequences. The detection of multiple metabolites within a non-invasively collected biofluid could facilitate early prognosis and diagnosis of severe diseases. Here, a metal oxide heterojunction transistor (HJ-TFT) sensor is developed for the label-free, rapid detection of uric acid (UA) and 25(OH)Vitamin-D3 (Vit-D3) in human saliva. The HJ-TFTs utilize a solution-processed In2O3/ZnO channel functionalized with uricase enzyme and Vit-D3 antibody for the selective detection of UA and Vit-D3, respectively. The ultra-thin tri-channel architecture facilitates strong coupling between the electrons transported along the buried In2O3/ZnO heterointerface and the electrostatic perturbations caused by the interactions between the surface-immobilized bioreceptors and target analytes. The biosensors can detect a wide range of concentrations of UA (from 500 nm to 1000 µM) and Vit-D3 (from 100 pM to 120 nm) in human saliva within 60 s. Moreover, the biosensors exhibit good linearity with the physiological concentration of metabolites and limit of detections of ≈152 nm for UA and ≈7 pM for Vit-D3 in real saliva. The specificity is demonstrated against various interfering species, including other metabolites and proteins found in saliva, further showcasing its capabilities.


Asunto(s)
Técnicas Biosensibles , Saliva , Transistores Electrónicos , Ácido Úrico , Humanos , Saliva/química , Saliva/metabolismo , Técnicas Biosensibles/métodos , Técnicas Biosensibles/instrumentación , Ácido Úrico/análisis , Ácido Úrico/metabolismo , Óxidos/química , Indio , Óxido de Zinc/química , Óxido de Zinc/metabolismo , Diseño de Equipo
4.
ACS Appl Bio Mater ; 7(2): 1250-1259, 2024 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-38253544

RESUMEN

Salivary α-amylase is the most abundant protein of human saliva that potentially binds to streptococcus and other bacteria via specific surface-exposed α-amylase-binding proteins and plays a significant role in caries development. The detection of α-amylase in saliva can be used as a bioindicator of caries development. Herein, a facile strategy has been applied, tailoring the photochemical properties of 5,10,15,20-tetrakis(4-hydroxyphenyl)-21H,23H-porphine (TPPOH) and the fullerene C60 complex. The fluorescence emission of TPPOH is quenched by starch-coated fullerene C60 via charge-transfer effects, as determined by UV absorption and fluorescence spectroscopic studies. The starch-coated C60 has been thoroughly characterized via Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), optical microscopy, thermal gravimetric analysis (TGA), static water contact angle measurements, and zeta potential measurements. The analytical response of the assay showed a linear fluorescent response in α-amylase concentrations ranging from 0.001-0.1 Units/mL, with an LOD of 0.001 Units/mL. The applicability of the method was tested using artificial saliva with quantitative recoveries in the range 95-100%. The practicability of the procedure was verified by inspecting saliva samples of real clinical samples covering all age groups. We believe that the proposed method can serve as an alternative analytical method for caries detection and risk assessment that would also minimize the cost of professional preventive measures and treatments.


Asunto(s)
Caries Dental , Fulerenos , Porfirinas , alfa-Amilasas Salivales , Humanos , Fulerenos/química , Almidón/metabolismo , Microscopía Electrónica de Rastreo
5.
Mikrochim Acta ; 191(2): 103, 2024 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-38231275

RESUMEN

A natural stress response induces elevated cortisol levels in biological fluids, such as saliva. While current sensor technologies can detect cortisol in real time, their sensitivity and reliability for human subjects have not been assured. This is due to relatively low concentrations of salivary cortisol, which fluctuate throughout the day and vary significantly between individuals. To address these challenges, we present an improved electrochemical biosensor leveraging graphene's exceptional conductivity and physicochemical properties. A 1-pyrenebutyric acid N-hydroxysuccinimide ester (PBASE-NHS)-modified commercial graphene foam (GF) electrode is presented to realize an ultra-sensitive biosensor for cortisol detection directly in human saliva. The biosensor fabrication process entails the attachment of anti-cortisol monoclonal antibodies (mAb-cort) onto a PBASE-NHS/GF electrode through noncovalent immobilization on the vertically stratified graphene foam electrode surface. This unique immobilization strategy preserves graphene's structural integrity and electrical conductivity while facilitating antibody immobilization. The binding of cortisol to immobilized mAb-cort is read out via differential pulse voltammetry using ferri/ferro redox reactions. The immunosensor demonstrates an exceptional dynamic range of 1.0 fg mL-1 to 10,000 pg mL-1 (R2 = 0.9914) with a detection limit of 0.24 fg mL-1 (n = 3) for cortisol. Furthermore, we have established the reliability of cortisol sensors in monitoring human saliva. We have also performed multiple modes of validation, one against the established enzyme-linked immunosorbent assay (ELISA) and a second by a third-party service Salimetric on 16 student volunteers exposed to different stress levels, showing excellent correlation (r = 0.9961). These findings suggest the potential for using mAb-cort/PBASE-NHS/GF-based cortisol electrodes for monitoring salivary cortisol in the general population.


Asunto(s)
Técnicas Biosensibles , Grafito , Pirenos , Humanos , Hidrocortisona , Inmunoensayo , Reproducibilidad de los Resultados , Ésteres
6.
Int J Biol Macromol ; 257(Pt 1): 128650, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38065455

RESUMEN

The study found that the enzyme activity of human salivary α-amylase (α-AHS) was competitively inhibited by nanoplastic polystyrene (PS-NPs), with a half-inhibitory concentration (IC50) of 92 µg/mL, while the maximum reaction rate (Vmax) remained unchanged at 909 µg/mL•min. An increase in the concentration of PS-NPs led to a quenching of α-AHS fluorescence with a slight red shift, indicating a static mechanism. The binding constant (Ka) and quenching constant (Kq) were calculated to be 2.92 × 1011 M-1 and 1.078 × 1019 M-1• S-1 respectively, with a hill coefficient (n) close to one and an apparent binding equilibrium constant (KA) of 1.54 × 1011 M-1. Molecular docking results suggested that the interaction between α-AHS and PS-NPs involved π-anion interactions between the active site Asp197, Asp300 residues, and van der Waals force interactions affecting the Tyr, Trp, and other residues. Fourier transform infrared (FT-IR) and circular dichroism (CD) analyses revealed conformational changes in α-AHS, including a loss of secondary structure α-helix and ß-sheet. The study concludes that the interaction between α-AHS and PS-NPs leads to structural and functional changes in α-AHS, potentially impacting human health. This research provides a foundation for further toxicological analysis of MPs/NPs in the human digestive system.


Asunto(s)
Microplásticos , alfa-Amilasas Salivales , Humanos , Poliestirenos , Espectroscopía Infrarroja por Transformada de Fourier , Plásticos , Simulación del Acoplamiento Molecular , Dicroismo Circular , Espectrometría de Fluorescencia , Unión Proteica , Termodinámica
7.
Bioelectrochemistry ; 156: 108590, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37976772

RESUMEN

This work describes the development of a novel voltammetric immunosensor for the detection of salivary MMP-8 at the point-of-care. The electrochemical platform was based on a graphene (GPH) screen-printed electrode (SPE) functionalized by gold-nanospheres (AuNSs) and antibodies against MMP-8 protein (anti-MMP-8). The functionalization with anti-MMP-8 was realized by using 11-mercaptoundecanoic acid (11-MUA), thanks to its ability to give strong sulfur bonds with its -SH end, and to cross-link the -NH2 groups of the antibody molecule with the other -COOH end, using the traditional EDC-NHS method. The voltammetric sensor showed good performances with a linear range of 2.5-300 ng mL-1, a LOD value of 1.0 ± 0.1 ng mL-1 and a sensitivity of 0.05 µA mL cm-2 ng-1. Moreover, the proposed immunosensor was tested in real saliva samples, showing comparable results to those obtained with the conventional ELISA method. The biosensor was single-use and cost-effective and required a small quantity of test medium and a short preparation time, representing a very attractive biosensor for MMP-8 detection in human saliva.


Asunto(s)
Técnicas Biosensibles , Periodontitis , Humanos , Metaloproteinasa 8 de la Matriz , Inmunoensayo , Técnicas Biosensibles/métodos , Técnicas Electroquímicas/métodos , Límite de Detección , Biomarcadores , Periodontitis/diagnóstico , Electrodos , Oro
8.
J Pharm Biomed Anal ; 239: 115914, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38101241

RESUMEN

Plant-derived phenolic compounds are regularly ingested as food compounds or as food supplements. Concentrations of individual compounds and metabolites are typically measured in serum or urine samples. This, however, allows no conclusion on the distribution into organs and tissues. An easily accessible biofluid is saliva. At this point, it was not clear yet, whether polyphenols circulating in the blood would be secreted or diffuse into saliva. The purpose of the present study was to develop and validate a method using liquid chromatography coupled to electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) for analysis of phenolic compounds in human saliva. Method validation for the quantification of taxifolin, ferulic acid, caffeic acid, gallic acid, para-coumaric acid, and protocatechuic acid and the gut microbial catechin metabolite δ-(3,4-dihydroxyphenyl)-γ-valerolactone (M1) in human saliva was performed according to current guidelines for bioanalytical method validation. The lower limit of quantification ranged from 0.82 ng/ml for M1 to 8.20 ng/ml for protocatechuic acid. The method was successfully applied to an authentic saliva sample of a volunteer after swallowing of procyanidin-rich pine bark extract capsules (dietary supplement Pycnogenol®). All polyphenols except ferulic acid were quantified at concentrations ranging from 1.20 ng/ml (M1) to 10.34 ng/ml (gallic acid). Notably, in contrast to serum samples, all phenolic compounds were present without sulfate or glucuronic acid conjugation in saliva, suggesting an enzymatic deconjugation, e.g., by a ß-glucuronidase activity, during compound transfer from serum to saliva. Since M1 is only produced in the gut, its presence in saliva ruled out the possibility of sample contamination by phenolic compounds residing in the oral cavity after food intake. To the best of our knowledge, this is the first time that the gut microbiota-derived metabolite M1 has been detected in saliva. To further investigate the role of phenolic compounds in saliva, the described analytical method can be applied in clinical studies investigating the biodistribution of polyphenols and their metabolites.


Asunto(s)
Catequina , Proantocianidinas , Humanos , Catequina/química , Proantocianidinas/análisis , Cromatografía Liquida , Espectrometría de Masas en Tándem/métodos , Cromatografía Líquida con Espectrometría de Masas , Corteza de la Planta/química , Saliva/química , Distribución Tisular , Polifenoles/análisis , Fenoles/análisis , Extractos Vegetales/química , Cromatografía Líquida de Alta Presión/métodos
9.
Environ Sci Technol ; 57(50): 21005-21015, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38048287

RESUMEN

Crumb rubber (CR) is a commonly used infill material in artificial turf worldwide. However, the potential health risk associated with exposure to CR containing environmentally persistent free radicals (EPFRs) remains under investigation. Herein, we observed the widespread presence of CR particles in the range of 2.8-51.4 µg/m3 and EPFRs exceeding 6 × 1015 spins/g in the ambient air surrounding artificial turf fields. Notably, the abundance of these particles tended to increase with the number of operating years of the playing fields. Furthermore, by analyzing saliva samples from 200 participants, we established for the first time that EPFR-carrying CR could be found in saliva specimens, suggesting the potential for inhaling them through the oral cavity and their exposure to the human body. After 40 min of exercise on the turf, we detected a substantial presence of EPFRs, reaching as high as (1.15 ± 1.00) × 1016 spins of EPFR per 10 mL of saliva. Moreover, the presence of EPFRs considerably increased the oxidative potential of CR, leading to the inactivation of Ca2+, redox reactions, and changes in spatial binding of the α-1,4-chain of salivary amylase to Ca2+, all of which could influence human saliva health. Our study provides insights into a new pathway of human exposure to CR with EPFRs in artificial turf infill, indicating an increased human health risk of CR exposure.


Asunto(s)
Exposición a Riesgos Ambientales , Goma , Humanos , Exposición a Riesgos Ambientales/análisis , Saliva , Radicales Libres
10.
Asian Pac J Cancer Prev ; 24(11): 3757-3763, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-38019233

RESUMEN

OBJECTIVE: Our objective in the present study is to detect oral mucosal lesions non-invasively by probing two solutions with reference to diagnostic technique and non-invasive media. In the diagnostic technique, Stokes shift (SS) spectroscopy (SSS) has been utilized for the detection of oral lesions. In the diagnostic media, human oral tissue and saliva are included. METHODS: SS measurements are carried out on oral squamous cell carcinoma (OSCC), dysplastic (precancer), and normal/control tissue and saliva samples. Measurements are performed on 86 tissue and 86 saliva samples using the commercially available spectrofluorometer. Offset wavelength of 120 nm, which is the Stoke shift of nicotinamide adenine dinucleotide (NADH) has been selected over the other offsets (i.e., 20, 40, 70 and 90 nm). RESULT: Presence of tryptophan, collagen, NADH, and flavin adenine dinucleotide (FAD) bands were noticed in the SS spectra of tissue. Like the tissue spectra, presence of these bands was also found in the SS spectra of saliva except the collagen band. Classification among the samples accomplished by the make use of multivariate analysis methods. In the multivariate analysis methods, principal component analysis (PCA) is applied first on SS data of tissue and saliva and then Mahalanobis distance (MD) model and receiver operating characteristic (ROC) analysis employed successively. Overall accuracy values of 94.91 %, 84.61 %, and 85.24 % were obtained among OSCC to normal, dysplasia to normal, and OSCC to dysplasia for tissue samples and 88.46 %, 90.16 % and 94.91 % accuracy values were obtained for saliva using the SS spectroscopy. CONCLUSION: Obtained results of human saliva are equivalent to human oral tissue using the SS spectroscopy. It indicates that saliva may be utilized as a substitute diagnostic medium and SS spectroscopy as a diagnostic technique for non-invasive detection of oral lesions at the primarily stage.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Neoplasias de la Boca , Humanos , Carcinoma de Células Escamosas/diagnóstico , Neoplasias de la Boca/diagnóstico , NAD , Saliva , Análisis Espectral , Carcinoma de Células Escamosas de Cabeza y Cuello , Hiperplasia , Análisis Multivariante , Colágeno
11.
Int J Mol Sci ; 24(19)2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37834061

RESUMEN

Mastocytosis, a rare blood disorder characterized by the proliferation of clonal abnormal mast cells, has a variegated clinical spectrum and diagnosis is often difficult and delayed. Recently we proposed the cathepsin inhibitor cystatin D-R26 as a salivary candidate biomarker of systemic mastocytosis (SM). Its C26 variant is able to form multiprotein complexes (mPCs) and since protein-protein interactions (PPIs) are crucial for studying disease pathogenesis, potential markers, and therapeutic targets, we aimed to define the protein composition of the salivary cystatin D-C26 interactome associated with SM. An exploratory affinity purification-mass spectrometry method was applied on pooled salivary samples from SM patients, SM patient subgroups with and without cutaneous symptoms (SM+C and SM-C), and healthy controls (Ctrls). Interactors specifically detected in Ctrls were found to be implicated in networks associated with cell and tissue homeostasis, innate system, endopeptidase regulation, and antimicrobial protection. Interactors distinctive of SM-C patients participate to PPI networks related to glucose metabolism, protein S-nitrosylation, antibacterial humoral response, and neutrophil degranulation, while interactors specific to SM+C were mainly associated with epithelial and keratinocyte differentiation, cytoskeleton rearrangement, and immune response pathways. Proteins sensitive to redox changes, as well as proteins with immunomodulatory properties and activating mast cells, were identified in patients; many of them were involved directly in cytoskeleton rearrangement, a process crucial for mast cell activation. Although preliminary, these results demonstrate that PPI alterations of the cystatin D-C26 interactome are associated with SM and provide a basis for future investigations based on quantitative proteomic analysis and immune validation.


Asunto(s)
Mastocitosis Sistémica , Mastocitosis , Humanos , Mastocitosis Sistémica/diagnóstico , Cistatinas Salivales/análisis , Proteómica , Mastocitosis/diagnóstico , Mastocitos , Proteínas Proto-Oncogénicas c-kit
12.
Mol Nutr Food Res ; 67(22): e2300055, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37726237

RESUMEN

SCOPE: Apples are an important polyphenol (PP) source. To compare the health benefits of traditional and commercial varieties, the phenolic contents and profiles as well as their release from the matrix (bioaccessibility) during oral digestion are determined. Furthermore, based on these data the proposed beneficial effect of PP on the variety specific allergenicity is discussed. METHODS AND RESULTS: Phenolics are quantified by HPLC-DAD. Total phenolic contents (TPC) are in the range of 111-645 and 343-1950 mg 100 g-1 dry weight for flesh and peel, respectively. Matrix release during oral digestion is investigated ex vivo, with centrifuged and non-centrifuged human saliva and in vitro with simulated saliva fluid (SSF). The overall bioaccessibility is similar in all digestion media, ranging between 40-80% and 39-65% of the TPC in flesh and peel, respectively. Analyzing the correlation among Mal-d 1-allergen-content, unoxidized PP, and the allergenic potential for the samples reveals a negligible effect of phenolics. CONCLUSION: Due to higher phenolic contents in combination with a similar release, increased PP concentrations in the oral phase and an improved uptake of PP from traditional varieties are assumed. However, the proposed beneficial effect of phenolics on allergenicity cannot be confirmed.


Asunto(s)
Malus , Polifenoles , Humanos , Polifenoles/análisis , Frutas/química , Antioxidantes , Fenoles/análisis , Digestión
13.
Metabolites ; 13(7)2023 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-37512499

RESUMEN

Ammonia (NH3) has been shown to be a key biomarker for a wide variety of diseases, such as hepatic and chronic kidney diseases (CKD), and cancers. It also has relevance to the oral health research area, and, hence, its determination in appropriate biofluids and tissues is of much importance. However, since it contains exchangeable >N-H protons, its analysis via 1H NMR spectroscopy, which is a widely employed technique in untargeted metabolomic studies, is rendered complicated. In this study, we focused on the 1H NMR analysis of this biomarker in less invasively collected human saliva samples, and we successfully identified and quantified it as ammonium cation (NH4+) in post-collection acidulated forms of this biofluid using both the standard calibration curve and standard addition method (SAM) approaches. For this purpose, n = 27 whole mouth saliva (WMS) samples were provided by healthy human participants, and all donors were required to follow a fasting/oral environment abstention period of 8 h prior to collection. Following acidification (pH 2.00), diluted WMS supernatant samples treated with 10% (v/v) D2O underwent 1H NMR analysis (600 MHz). The acquired results demonstrated that NH4+ can be reliably determined in these supernatants via integration of the central line of its characteristic 1:1:1 intensity triplet resonance (complete spectral range δ = 6.97-7.21 ppm). Experiments performed also demonstrated that any urease-catalysed NH3 generation occurring post-sampling in WMS samples did not affect the results acquired during the usual timespan of laboratory processing required prior to analysis. Further experiments demonstrated that oral mouth-rinsing episodes conducted prior to sample collection, as reported in previous studies, gave rise to major decreases in salivary NH4+ levels thereafter, which renormalised to only 50-60% of their basal control concentrations at the 180-min post-rinsing time point. Therefore, the WMS sample collection method employed significantly affected the absolute levels of this analyte. The LLOD was 60 µmol/L with 128 scans. The mean ± SD salivary NH4+ concentration of WMS supernatants was 11.4 ± 4.5 mmol/L. The potential extension of these analytical strategies to the screening of other metabolites with exchangeable 1H nuclei is discussed, as is their relevance to the monitoring of human disorders involving the excessive generation and/or uptake of cellular/tissue material, or altered homeostasis, in NH3.

14.
Biosensors (Basel) ; 13(7)2023 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-37504115

RESUMEN

An electronic tongue is a powerful analytical instrument based on an array of non-selective chemical sensors with a partial specificity for data gathering and advanced pattern recognition methods for data analysis. Connecting electronic tongues with electrochemical techniques for data collection has led to various applications, mostly within sensing for food quality and environmental monitoring, but also in biomedical research for the analyses of different bioanalytes in human physiological fluids. In this paper, an electronic tongue consisting of six electrodes (viz., gold, platinum, palladium, titanium, iridium, and glassy carbon) was designed and tested in authentic (undiluted, unpretreated) human saliva samples from eight volunteers, collected before and during the COVID-19 pandemic. Investigations of 11 samples using differential pulse voltammetry and a principal component analysis allowed us to distinguish between SARS-CoV-2-free and infected authentic human saliva. This work, as a proof-of-principle demonstration, provides a new perspective for the use of electronic tongues in the field of enzyme-free electrochemical biosensing, highlighting their potential for future applications in non-invasive biomedical analyses.


Asunto(s)
Técnicas Biosensibles , COVID-19 , Humanos , SARS-CoV-2 , COVID-19/diagnóstico , Nariz Electrónica , Saliva , Estudios de Factibilidad , Pandemias , Técnicas Biosensibles/métodos
15.
Anal Chim Acta ; 1271: 341435, 2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37328243

RESUMEN

In this work, an analytical method for the determination of two endogenous aldehydes (hexanal and heptanal) as lung cancer biomarkers in saliva samples is presented for the first time. The method is based on a modification of magnetic headspace adsorptive microextraction (M-HS-AME) followed by gas chromatography coupled to mass spectrometry (GC-MS). For this purpose, an external magnetic field generated by a neodymium magnet is used to hold the magnetic sorbent (i.e., CoFe2O4 magnetic nanoparticles embedded into a reversed-phase polymer) in the headspace of a microtube to extract the volatilized aldehydes. Subsequently, the analytes are desorbed in the appropriate solvent and the extract is injected into the GC-MS system for separation and determination. Under the optimized conditions, the method was validated and showed good analytical features in terms of linearity (at least up to 50 ng mL-1), limits of detection (0.22 and 0.26 ng mL-1 for hexanal and heptanal, respectively), and repeatability (RSD ≤12%). This new approach was successfully applied to saliva samples from healthy volunteers and those with lung cancer, obtaining notably differences between both groups. These results reveal the prospect of the method as potential diagnostic tool for lung cancer by saliva analysis. This work contributes to the Analytical Chemistry field presenting a double novelty: on the one hand, the use of M-HS-AME in bioanalysis is unprecedentedly proposed, thus expanding the analytical potential of this technique, and, on the other hand, the determination of hexanal and heptanal is carried out in saliva samples for the first time.


Asunto(s)
Neoplasias Pulmonares , Saliva , Humanos , Biomarcadores de Tumor , Aldehídos/química , Neoplasias Pulmonares/diagnóstico , Fenómenos Magnéticos , Microextracción en Fase Sólida/métodos
16.
Molecules ; 28(11)2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37298786

RESUMEN

Surface-Enhanced Raman Scattering (SERS) can obtain the spectroscopic response of specific analytes. In controlled conditions, it is a powerful quantitative technique. However, often the sample and its SERS spectrum are complex. Pharmaceutical compounds in human biofluids with strong interfering signals from proteins and other biomolecules are a typical example. Among the techniques for drug dosage, SERS was reported to detect low drug concentrations, with analytical capability comparable to that of the assessed High-Performance Liquid Chromatography. Here, for the first time, we report the use of SERS for Therapeutic Drug Monitoring of the Anti-Epileptic Drug Perampanel (PER) in human saliva. We used inert substrates decorated with gold NPs deposited via Pulsed Laser Deposition as SERS sensors. We show that it is possible to detect PER in saliva via SERS after an optimized treatment of the saliva sample. Using a phase separation process, it is possible to extract all the diluted PER in saliva from the saliva phase to a chloroform phase. This allows us to detect PER in the saliva at initial concentrations of the order of 10-7 M, thus approaching those of clinical interest.


Asunto(s)
Nanopartículas del Metal , Saliva , Humanos , Saliva/química , Nanopartículas del Metal/química , Piridonas/análisis , Espectrometría Raman/métodos , Oro/química
17.
Microbiome ; 11(1): 123, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37264481

RESUMEN

BACKGROUND: Dental caries is a microbe and sugar-mediated biofilm-dependent oral disease. Of particular significance, a virulent type of dental caries, known as severe early childhood caries (S-ECC), is characterized by the synergistic polymicrobial interaction between the cariogenic bacterium, Streptococcus mutans, and an opportunistic fungal pathogen, Candida albicans. Although cross-sectional studies reveal their important roles in caries development, these exhibit limitations in determining the significance of these microbial interactions in the pathogenesis of the disease. Thus, it remains unclear the mechanism(s) through which the cross-kingdom interaction modulates the composition of the plaque microbiome. Here, we employed a novel ex vivo saliva-derived microcosm biofilm model to assess how exogenous pathogens could impact the structural and functional characteristics of the indigenous native oral microbiota. RESULTS: Through shotgun whole metagenome sequencing, we observed that saliva-derived biofilm has decreased richness and diversity but increased sugar-related metabolism relative to the planktonic phase. Addition of S. mutans and/or C. albicans to the native microbiome drove significant changes in its bacterial composition. In addition, the effect of the exogenous pathogens on microbiome diversity and taxonomic abundances varied depending on the sugar type. While the addition of S. mutans induced a broader effect on Kyoto Encyclopedia of Genes and Genomes (KEGG) ortholog abundances with glucose/fructose, S. mutans-C. albicans combination under sucrose conditions triggered unique and specific changes in microbiota composition/diversity as well as specific effects on KEGG pathways. Finally, we observed the presence of human epithelial cells within the biofilms via confocal microscopy imaging. CONCLUSIONS: Our data revealed that the presence of S. mutans and C. albicans, alone or in combination, as well as the addition of different sugars, induced unique alterations in both the composition and functional attributes of the biofilms. In particular, the combination of S. mutans and C. albicans seemed to drive the development (and perhaps the severity) of a dysbiotic/cariogenic oral microbiome. Our work provides a unique and pragmatic biofilm model for investigating the functional microbiome in health and disease as well as developing strategies to modulate the microbiome. Video Abstract.


Asunto(s)
Caries Dental , Microbiota , Preescolar , Humanos , Biopelículas , Candida albicans/genética , Estudios Transversales , Streptococcus mutans/genética , Azúcares/metabolismo
18.
Anal Chim Acta ; 1238: 340627, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36464433

RESUMEN

The miniaturization of stir bar sorptive dispersive microextraction (mSBSDME) for the analysis of low-availability samples is presented. This new methodology is based on the principles of stir bar sorptive dispersive microextraction, but the amount of sorbent and, most importantly, the amount of sample are considerably reduced to a tiny amount and a few microliters, respectively. Thus, affordable 400-µL flat-base glass inserts and minute bar-shape neodymium magnets (3 mm length x 2 mm diameter) were used as extraction devices hold by a specifically designed multiextraction assembly, which comprises a high-rate stirring plate and a 3D-printed support to treat 15 samples simultaneously. This new approach allows a fast, affordable, portable, and high-throughput analysis of low-volume samples, expanding the potential of the technique. The same extraction device is used along the different stages, thus avoiding transfers, which reduces sample handling. Besides, the reduction in the sample, sorbent and organic solvent amounts allows a considerable decrease of the waste generation, and thus pursues a green sample preparation for bioanalysis. As a proof-of-concept of this new methodology, cortisone and cortisol were determined in human saliva using a composite material made of a reversed phase polymer (Strata™-X-RP) and CoFe2O4 magnetic nanoparticles. Liquid chromatography coupled to tandem mass spectrometry was used to measure both analytes obtaining good analytical features in terms of linearity (R2 > 0.997), method limits of detection and quantification (22.6 and 75.5 ng L-1 for cortisone, and 19.3 and 64.3 ng L-1 for cortisol, respectively), repeatability (RSD ≤11%) and relative recoveries (78-134%).


Asunto(s)
Cortisona , Humanos , Hidrocortisona , Manejo de Especímenes , Cromatografía Liquida , Saliva
19.
Biosens Bioelectron ; 220: 114891, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36379173

RESUMEN

The interest in ketone bodies (KBs) has intensified recently as they play significant roles in healthcare, nutrition, and wellness applications. We present a disposable electrochemical sensing strip for rapid decentralized detection of ß-hydroxybutyrate (HB), one of the dominant physiological KBs, in saliva. The new salivary enzymatic HB sensor strip relies on a gold-coated screen-printed carbon electrode modified with a reagent layer containing toluidine blue O (TBO mediator), ß-hydroxybutyrate dehydrogenase (HBD enzyme), and the HBD cofactor nicotinamide adenine dinucleotide (NAD+ coenzyme), along with carbon nanotubes (CNTs) and chitosan (Chit) for enhancing the sensor's sensitivity and for encapsulating the enzyme and its cofactor, respectively. The systematic optimization resulted in an attractive analytical performance, with a rapid response time within 60 s, a wide HB dynamic detection range from 0.1 to 3.0 mM along with a low limit of detection (50 µM HB) in an artificial saliva medium. The strip displays high selectivity for HB over acetoacetate (AcAc) and other interferences (i.e., acetaminophen, ascorbic acid, glucose, lactic acid, and uric acid), good reproducibility, and high stability towards temperature or pH effects. The new disposable sensing strip system, coupled with a hand-held electrochemical analyzer, showed rapid HB monitoring in human saliva samples collected from healthy volunteers, with similar temporal profiles to those obtained in parallel capillary blood measurements in response to the intake of keto supplements. This strip enables efficient, reliable, and near real-time salivary HB detection to track non-invasively the dynamics of HB concentrations after intaking commercial supplements towards diverse healthcare and nutrition applications.


Asunto(s)
Técnicas Biosensibles , Nanotubos de Carbono , Humanos , Cuerpos Cetónicos , Técnicas Biosensibles/métodos , Reproducibilidad de los Resultados , Electrodos , NAD , Atención a la Salud , Técnicas Electroquímicas
20.
Dent Mater ; 38(12): 2041-2051, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36428113

RESUMEN

OBJECTIVE: To investigate the effects of salivary esterases on biostability of collagen treated by galloylated polyphenols. METHODS: Human dentin was microtomed into 6-µm-thick films, which were demineralized and treated for 60 s using solutions containing 0.6% and 2% of one of the crosslinkers: tannic acid (TAC), epigallocatechin gallate (EGCG), epigallocatechin (EGC), and N-[3-dimethylaminopropyl]-N'-ethylcarbodiimide hydrochloride (EDC)/N-hydroxysuccinimide (NHS), and for 1 h using EDC/NHS. Half of the treated and untreated (control) films were subjected to human saliva incubation. Collagen biostability was assessed via exogenous protease biodegradation by weight loss and hydroxyproline release, and endogenous MMPs by in situ zymography. The degradation products of galloylated polyphenols (TAC and EGCG) by saliva were monitored using proton nuclear magnetic resonance (1H NMR) and gel permeation chromatography (GPC). The esterase activity of saliva induced by the crosslinkers was also assessed. RESULTS: Collagen films treated with TAC and EGCG exhibited significantly improved biostability (p < 0.05); however, the enhanced biostability was severely reduced after saliva incubation (p < 0.001). For EDC/NHS treated collagen, saliva incubation showed negligible effect on the biostability. 1H NMR studies confirmed the esterase-catalyzed hydrolysis of the galloyl. GPC measurements showed decreased molecular weight of TAC in saliva indicating its chemical degradation. Both TAC and EGCG showed much higher esterase activity than other treatment groups. SIGNIFICANCE: The galloyl group plays important role in collagen crosslinking, inducing higher biostability. However, galloylated polyphenols crosslinked on collagen are highly susceptible to metabolism of human saliva by salivary esterase, dramatically compromising the enhanced biostability.


Asunto(s)
Colágeno , Polifenoles , Humanos , Polifenoles/farmacología , Peso Molecular , Esterasas , Dentina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...