Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Sci Total Environ ; 949: 174768, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39009147

RESUMEN

Wastewater Treatment Plants (WWTP) are a major repository and entrance path of nanoparticles (NP) in the environment and hence play a major role in the final NP fate and toxicity. Studies on silver nanoparticles (AgNP) transport via the WWTP system and uptake by aquatic organisms have so far been carried out using unrealistically high AgNP concentrations, unlikely to be encountered in the aquatic environment. The use of high AgNP concentrations is necessitated by both the low sensitivity of the detection methods used and the need to distinguish background Ag from spiked AgNP. In this study, isotopically enriched 109AgNP were synthesized to overcome these shortcomings and characterized by a broad range of methods including transmission electron microscopy, dynamic and electrophoretic light scattering. 109AgNP and gold NP (AuNP) were spiked to a pilot wastewater treatment plant fed with municipal wastewater for up to 21 days. AuNP were used as chemically less reactive tracer. The uptake of the pristine and transformed NP present in the effluent was assessed using the benthic amphipod Hyalella azteca in fresh- and brackish water exposures at environmentally relevant concentrations of 30 to 500 ng Au/L and 39 to 260 ng Ag/L. The unique isotopic signature of the 109AgNP allowed to detect the material at environmentally relevant concentrations in the presence of a much higher natural Ag background. The results show that the transformations reduce the NP uptake at environmentally relevant exposure concentrations. For 109Ag, lower accumulation factors (AF) were obtained after exposure to transformed NP (250-350) compared to the AF values obtained for pristine 109AgNP (750-840). The reduced AF values observed for H. azteca exposed to effluent from the AuNP-spiked WWTP indicate that biological transformation processes (e.g. eco-corona formation) seem to be involved in addition to chemical transformation.


Asunto(s)
Anfípodos , Hormigas , Oro , Nanopartículas del Metal , Eliminación de Residuos Líquidos , Aguas Residuales , Contaminantes Químicos del Agua , Animales , Anfípodos/efectos de los fármacos , Hormigas/efectos de los fármacos , Disponibilidad Biológica , Monitoreo del Ambiente/métodos , Oro/farmacocinética , Oro/toxicidad , Nanopartículas del Metal/toxicidad , Plata/toxicidad , Eliminación de Residuos Líquidos/métodos , Aguas Residuales/química , Contaminantes Químicos del Agua/toxicidad
2.
Chemosphere ; 345: 140492, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37865201

RESUMEN

Non-target organisms in aquatic environments may experience lethal or sublethal effects following exposure to contaminants. Most protocols and regulations, however, are designed to provide protection from lethal effects and are thus based on conventional estimates of population lethality. The relative lack of reliable behavioral endpoints makes it challenging to implement regulations that are similarly protective against sublethal toxicity. The objective of this study was to quantify the avoidance behavior of Hyalella azteca when exposed to three insecticides-bifenthrin (B), chlorpyrifos (C), and permethrin (P)-at a range of estimated lethal concentrations. A two-choice behavioral arena was used for each chemical to quantify H. azteca activity and time spent in either uncontaminated sediment or sediment spiked at concentrations reflecting estimated 48-h lethal concentrations (LC50, LC25, and LC10). For all three insecticides, naïve H. azteca demonstrated a preference for the uncontaminated sediment over the contaminated sediment at the LC50 (B: 312 ng/gOC; C: 1265 ng/gOC; P: 5042 ng/gOC) and LC25 (B: 230 ng/gOC; C: 859 ng/gOC; P: 3817 ng/gOC), spending significantly more time in the uncontaminated side of the arena. H. azteca did not avoid sediment at LC10 (B: 204 ng/gOC; C: 609 ng/gOC; P: 1515 ng/gOC) levels, indicating the existence of a potential threshold of detection. Despite the lack of substrate preference at this exposure level, H. azteca were nevertheless more active (i.e., increased zone-switching) when exposed to bifenthrin at the LC10, suggesting a possible irritation response (e.g., movement after exposure) to this chemical. Our results provide evidence that H. azteca exhibit innate avoidance responses to sediments contaminated with common insecticides at concentrations below those represented by traditional toxicological endpoints (e.g., LC50). The sensitivity and ease with which this behavioral endpoint can be assayed demonstrates the potential utility of behavioral endpoints in toxicological assessments using model organisms.


Asunto(s)
Anfípodos , Insecticidas , Piretrinas , Contaminantes Químicos del Agua , Animales , Insecticidas/análisis , Reacción de Prevención , Piretrinas/toxicidad , Permetrina/análisis , Contaminantes Químicos del Agua/análisis , Sedimentos Geológicos/química
3.
Environ Sci Pollut Res Int ; 30(17): 50257-50268, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36790710

RESUMEN

Bioconcentration tests using the freshwater amphipod Hyalella azteca as an alternative to conventional fish tests have recently received much attention. An appropriate computational model of H. azteca could help in understanding the mechanisms behind bioconcentration, in comparison to the fish as test organism. We here present the first mechanistic model for H. azteca that considers the single diffusive processes in the gills and gut. The model matches with the experimental data from the literature quite well when appropriate physiological information is used. The implementation of facilitated transport was essential for modeling. Application of the model for superhydrophobic compounds revealed binding to organic matter and the resulting decrease in bioavailable fraction as the main reason for the observed counterintuitive decrease in uptake rate constants with increasing octanol/water partition coefficient. Furthermore, estimations of the time needed to reach steady state indicated that durations of more than a month could be needed for compounds with a log Kow > 8, limiting the experimental applicability of the test. In those cases, model-based bioconcentration predictions could be a preferable approach, which could be combined with in vitro biotransformation measurements. However, our sensitivity analysis showed that the uncertainty in determining the octanol/water partition coefficients is a strong source of error for superhydrophobic compounds.


Asunto(s)
Anfípodos , Contaminantes Químicos del Agua , Animales , Anfípodos/metabolismo , Bioacumulación , Contaminantes Químicos del Agua/análisis , Peces/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Agua/metabolismo
4.
Environ Pollut ; 322: 121165, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-36720337

RESUMEN

Hyalella azteca are epibenthic amphipods that have developed resistance to pyrethroid and organophosphate insecticides due to single amino acid substitutions in the voltage-gated sodium channel and the acetylcholinesterase-1 gene, respectively. Aquatic systems are often contaminated with several different types of insecticides, therefore there is a possibility that H. azteca have also developed resistance to other classes of insecticides. The aims of the current study were to verify that pyrethroid- and organophosphate-resistant H. azteca have retained their resistance after being cultured in the absence of selective pressure for 5 years (Escondido Creek population) and 9 years (Mosher Slough population), to determine if these populations have cross-resistance to carbaryl (carbamate) and 4,4'-dichlorodiphenyltrichloroethane (DDT; organochlorine), and determine whether previous field exposure to fipronil (phenylpyrazole) and imidacloprid (neonicotinoid) caused resistance in cultured pyrethroid- and organophosphate-resistant H. azteca populations. Escondido Creek and Mosher Slough H. azteca populations both maintained high tolerances for bifenthrin due to L925I and I936F amino acid substitutions. Resistance was also found for chlorpyrifos in the Escondido Creek and Mosher Slough populations with lower genotype frequencies of the G119S substitution, indicating that additional factors may be responsible for organophosphate resistance in this study. Mosher Slough H. azteca were moderately resistant to DDT, and Escondido Creek and Mosher Slough H. azteca were moderately resistant to carbaryl, suggesting cross-resistance. No differences were observed in acute toxicity values across the three populations of H. azteca for fipronil and imidacloprid, and this is possibly due to the lack of exposure to toxic concentrations of these insecticides in the field and lack of similar modes of action to pyrethroids and organophosphates. Resistance is known to be associated with fitness costs that can place insecticide-resistant populations at risk for decline through decreased survival and reduced fecundity.


Asunto(s)
Anfípodos , Cloropirifos , Insecticidas , Piretrinas , Animales , Insecticidas/análisis , Resistencia a los Insecticidas/genética , Carbaril , DDT , Acetilcolinesterasa , Piretrinas/toxicidad , Cloropirifos/toxicidad
5.
Environ Toxicol Chem ; 2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36718725

RESUMEN

The US Environmental Protection Agency (USEPA) considers sediment toxicity tests as conditional registration requirements for pesticides with soil Kd ≥50 L/kg-solid, Koc ≥1000 L/kg-organic carbon, or log Kow ≥3. The hydrophobicity of these compounds often necessitates use of solvents to ensure accurate and homogeneous dosing of spiked-sediment studies. For sediment tests, a volatile solvent (e.g., acetone) is generally used as a transient carrier. Due to low water solubility, test material is dissolved in a volatile solvent to create stock solutions. A measured aliquot of stock solution is then mixed with sand substrate, after which the solvent is evaporated. This spiking process results in negligible solvent exposure to organisms. In 2016, USEPA released final ecotoxicity test guidelines for subchronic freshwater (850.1735) and marine (850.1740) sediment test. These methods provide an option for conducting experiments with only a solvent control and no negative control. To adopt this testing strategy, functional equivalency between the negative and solvent control must be demonstrated. These test guidelines describe specific factors that should be considered for evaluating functional equivalency, including (a) the concentration of solvent in the test sediment after evaporation, (b) the levels of solvent that are known to affect organism health, (c) the known impurities in the solvent and their potential impact on organism health, and (d) the historical organism performance of solvent versus negative controls. Our analysis considers these factors and overall supports the elimination of the negative control requirement because this change is unlikely to impact the robustness or interpretability of spiked-sediment toxicity tests. Environ Toxicol Chem 2023;00:1-7. © 2023 CropLife America. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.

6.
Glob Chang Biol ; 29(5): 1390-1406, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36448880

RESUMEN

The acceleration of global climate change draws increasing attention towards interactive effects of temperature and organic contaminants. Many studies reported a higher sensitivity of aquatic invertebrates towards contaminant exposure with increasing or fluctuating temperatures. The hypothesis of this study was that the higher sensitivity of invertebrates is associated with the changes of toxicokinetic processes that determine internal concentrations of contaminants and consequently toxic effects. Therefore, the influence of temperature on toxicokinetic processes and the underlying mechanisms were studied in two key amphipod species (Gammarus pulex and Hyalella azteca). Bioconcentration experiments were carried out at four different temperatures with a mixture of 12 exposure relevant polar organic contaminants. Tissue and medium samples were taken in regular intervals and analysed by online solid-phase extraction liquid chromatography high-resolution tandem mass spectrometry. Subsequently, toxicokinetic rates were modelled and analysed in dependence of the exposure temperature using the Arrhenius equation. An exponential relationship between toxicokinetic rates versus temperature was observed and could be well depicted by applying the Arrhenius equation. Due to a similar Arrhenius temperature of uptake and elimination rates, the bioconcentration factors of the contaminants were generally constant across the temperature range. Furthermore, the Arrhenius temperature of the toxicokinetic rates and respiration was mostly similar. However, in some cases (citalopram, cyprodinil), the bioconcentration factor appeared to be temperature dependent, which could potentially be explained by the influence of temperature on active uptake mechanisms or biotransformation. The observed temperature effects on toxicokinetics may be particularly relevant in non-equilibrated systems, such as exposure peaks in summer as exemplified by the exposure modelling of a field measured pesticide peak where the internal concentrations increased by up to fourfold along the temperature gradient. The results provide novel insights into the mechanisms of chemical uptake, biotransformation and elimination in different climate scenarios and can improve environmental risk assessment.


Asunto(s)
Anfípodos , Contaminantes Químicos del Agua , Animales , Temperatura , Toxicocinética , Contaminantes Químicos del Agua/análisis , Invertebrados/metabolismo , Agua Dulce
7.
Environ Sci Technol ; 56(20): 14649-14659, 2022 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-36201633

RESUMEN

Resistance alleles within the voltage-gated sodium channel (vgsc) have been correlated with pyrethroid resistance in wild populations of the nontarget amphipod, Hyalella azteca from California (CA), U.S.A. In the present study, we expand upon the relationship between land use and the evolution of pesticide resistance in H. azteca to develop a quantitative methodology to target and screen novel populations for resistance allele genotypes in a previously uninvestigated region of the U.S. (New England: NE). By incorporating urban land development and toxicity-normalized agricultural pesticide use indices into our site selection, we successfully identified three amino acid substitutions associated with pyrethroid resistance. One of the resistance mutations has been described in H. azteca from CA (L925I). We present the remaining two (vgsc I936F and I936V) as novel pyrethroid-resistance alleles in H. azteca based on previous work in insects and elevated cyfluthrin resistance in one NE population. Our results suggest that urban pesticide use is a strong driver in the evolution of resistance alleles in H. azteca. Furthermore, our method for resistance allele screening provides an applied framework for detecting ecosystem impairment on a nationwide scale that can be incorporated into ecological risk assessment decisions.


Asunto(s)
Anfípodos , Insecticidas , Plaguicidas , Piretrinas , Canales de Sodio Activados por Voltaje , Contaminantes Químicos del Agua , Agricultura , Anfípodos/genética , Animales , Ecosistema , Insecticidas/análisis , Contaminantes Químicos del Agua/análisis
8.
Ecotoxicol Environ Saf ; 241: 113838, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36068762

RESUMEN

Perfluorooctane sulfonic acid (PFOS) is a ubiquitous and persistent contaminant in aquatic ecosystems. Chronic toxicity information for aquatic organisms is limited, therefore we conducted chronic PFOS toxicity tests for four model organisms commonly used for freshwater toxicology assays: Chironomus dilutus (midge), Ceriodaphnia dubia (water flea), Hyalella azteca (amphipod) and Danio rerio (zebrafish). The 16-day survival test with C. dilutus resulted in the lowest PFOS exposure concentrations to cause significant impacts, with reduced survival at 1 µg/L, a LC50 of 7.5 µg/L, and a growth EC10 of 1.5 µg/L. D. rerio was the next most sensitive species, with a 30-day LC50 of 490 µg/L and reduced growth at 260 µg/L. Effects for C. dubia and H. azteca occurred at concentrations a thousand-fold higher than for C. dilutus. H. azteca had a 42-day LC50 of 15 mg/L, an EC50 of 3.8 mg/L for reproduction (neonates per female) and an EC50 of 4.7 mg/L for growth. C. dubia was similarly tolerant of PFOS, with a 6-day LC50 of 20 mg/L for survival and an EC50 of 7 mg/L for reproduction (neonates per adult). H. azteca, C. dubia, and, to a lesser extent, D. rerio, appear tolerant of PFOS concentrations typically found in the environment. However, in agreement with previous studies, C. dilutus was particularly sensitive to PFOS exposure, with lethal and sublethal effects occurring at concentration levels present at highly contaminated sites.


Asunto(s)
Anfípodos , Chironomidae , Cladóceros , Contaminantes Químicos del Agua , Ácidos Alcanesulfónicos , Animales , Ecosistema , Femenino , Fluorocarburos , Contaminantes Químicos del Agua/toxicidad , Pez Cebra
9.
Environ Toxicol Chem ; 41(10): 2488-2499, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35866476

RESUMEN

Freshwater organisms are often exposed to contaminants such as heavy metals from stormwater discharges, which are dependent on rainfall duration and intensity. Therefore, standardized (48- or 96-h) continuous exposure methods developed for whole effluent toxicity (WET) testing might not always accurately convey the effects of stormwater and runoff contaminants. The present study characterized the acute toxicity of copper (Cu), zinc (Zn), and cadmium (Cd) to freshwater amphipods (Hyalella azteca) and cadmium (Cd) to water fleas (Ceriodaphnia dubia) using a modified exposure design that integrated relevant pulsed durations and included post-exposure monitoring. Less than 24-h-old C. dubia and 7 to 8-day-old H. azteca were exposed to water spiked with Cu, Zn, or Cd using 6-, 12-, 26-, or 96-h durations under standard laboratory conditions and monitored for cumulative mortality and reproduction (C. dubia only). Lethal effect (LC10s, LC25s, LC50s) and reproductive effect (EC25s, EC50s) were determined based on either mortality or reproduction of organisms at the end of each pulse (6, 12, or 26 h) and at the end of their respective tests (96 h). For all metals exposed to each organism, acute toxicity was found to be highest for the (96 h) continuous exposures. For pulsed exposures, mortality continued to increase following transfer to clean water for post-exposure monitoring. These results indicate a latent effect of Cu, Zn, and Cd to H. azteca and Cd to C. dubia. The present study concluded that using the continuous (48- or 96-h) WET exposure method overestimates the effects of stormwater and runoff contaminants. However, pulsed exposures without post-exposure monitoring also underestimate the toxicity of contaminants. The proposed pulsed exposure design provides a compromise that is more realistic than current WET methods to assess impacts from episodic events and accounts for potential latent effects that may be overlooked without monitoring post-exposure. Environ Toxicol Chem 2022;41:2488-2499. © 2022 SETAC.


Asunto(s)
Anfípodos , Cladóceros , Metales Pesados , Contaminantes Químicos del Agua , Animales , Organismos Acuáticos , Cadmio , Cobre/toxicidad , Metales Pesados/toxicidad , Contaminantes Químicos del Agua/análisis , Zinc/farmacología
10.
Environ Sci Pollut Res Int ; 29(46): 70380-70395, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35585460

RESUMEN

On August 4, 2014, a tailings dam failed at the Mount Polley copper and gold mine near Likely, British Columbia, Canada, releasing approximately 25 M m[Formula: see text] of contaminated water and solid tailings material into Polley and Quesnel lakes. Water, sediment, freshwater scuds (Hyalella azteca), and mayfly larvae (Ephemeroptera) were collected during the summer of 2018 from Polley Lake, affected and unaffected sites in Quesnel Lake, and both mine-contaminated and clean far-field sites as references. Analytical results indicated that invertebrates from sites affected by the tailings breach had elevated metal concentrations relative to those from non-affected or reference sites. We conducted a controlled laboratory exposure to determine if laboratory-reared Hyalella azteca metal concentrations were related to field-collected water or sediments from the same sites as the field study. Half of the replicates prevented amphipods from directly contacting sediments (water-only exposure), while the other half allowed them direct access (sediment and water exposure). Whole-body Cu concentration was highest in Hyalella exposed to substrate from the most contaminated sites as well as in treatments where they were allowed direct access to sediments. Hyalella having direct access to metal-contaminated sediments showed reduced survival and growth relative to those in reference or control treatments. These results suggest that metals from the fine sediments associated with the Mount Polley mine disaster are bioavailable and potentially toxic to epibenthic invertebrates, even several years after the initial breach.


Asunto(s)
Anfípodos , Desastres , Ephemeroptera , Contaminantes Químicos del Agua , Animales , Colombia Británica , Cobre/toxicidad , Sedimentos Geológicos , Oro , Invertebrados , Lagos , Agua , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
11.
Chemosphere ; 299: 134393, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35337826

RESUMEN

Recent studies demonstrated pyrethroid resistance associated with voltage-gated sodium channel mutations in populations of the epibenthic amphipod, Hyalella azteca. Resistant populations were able to tolerate and bioconcentrate pyrethroids at concentrations significantly higher than toxic levels for non-resistant populations. In conjunction with elevated bioconcentration potential, environmental alteration particularly as a result of global climate change is anticipated to significantly alter abiotic parameters including temperature and salinity. These changes are expected to influence uptake and biotransformation of contaminants. Thus, the aims of the current study were a) to examine the bioconcentration potential of permethrin in two pyrethroid-resistant clades of H. azteca and b) assess the influence of temperature and salinity changes on toxicokinetic parameters. Two pyrethroid-resistant clades of H. azteca were exposed to 14C-permethrin at three salinities (0.2, 1.0 and 6.0 practical salinity units (PSU)) and temperatures (18, 23 and 28 °C). Tests were conducted for up to 36 h and uptake, elimination and biotransformation rates were calculated. Both populations demonstrated bioconcentration factors (BCFs) between five and seven times greater than published data for non-resistant H. azteca, with significant differences between clades. Calculated BCF values were comparable to field populations of resistant H. azteca, emphasizing the potential for elevated pyrethroid bioconcentration in the natural environment and increased exposure for predators consuming pyrethroid-resistant aquatic invertebrates. Alterations to temperature and salinity had no statistically significant effect on uptake or parent compound half-life in either population, though biotransformation was elevated at higher temperatures in both populations. Salinity had a variable effect between the two populations, with lower BCF values at 1.0 PSU in clade D H. azteca and greater BCFs at 6.0 PSU in clade C H. azteca. This is the first study to demonstrate the potential for future climate scenarios to influence toxicokinetics in pyrethroid-resistant aquatic organisms.


Asunto(s)
Anfípodos , Insecticidas , Piretrinas , Contaminantes Químicos del Agua , Animales , Bioacumulación , Insecticidas/análisis , Permetrina/metabolismo , Permetrina/toxicidad , Piretrinas/metabolismo , Salinidad , Temperatura , Toxicocinética , Contaminantes Químicos del Agua/análisis
12.
Aquat Toxicol ; 242: 106016, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34788726

RESUMEN

Silver nanoparticles (AgNPs) are known to cause ecotoxic effects, but there are no existing derived ambient water quality criteria (AWQC) for these nanomaterials to protect freshwater aquatic life due to insufficient toxicological data. We exposed Hyalella azteca to silver nitrate, citrate-coated AgNPs (citrate-AgNPs), and polyvinylpyrrolidone-coated AgNPs (PVP-AgNPs) in a 10-day and 28-day water-only static renewal system with clean sand as a substrate for the amphipods and compared their point estimates with the United States Environmental Protection Agency (USEPA) AWQC for silver. We observed that all treatments decreased the survival, growth, and biomass of H. azteca, and the order of toxicity was AgNO3 > citrate-AgNPs > PVP-AgNPs. The LC50s of AgNO3, citrate-AgNPs, and PVP-AgNPs were 3.0, 9.6, and 296.0 µg total Ag L-1, respectively, for the acute exposure and 2.4, 3.2, and 61.4 µg total Ag L-1, respectively, for the chronic exposure. Acute and chronic EC20s of citrate-AgNPs ranged from 0.5 to 3.5 µg total Ag L-1 while that of PVP-AgNPs ranged from 31.2 to 175 µg total Ag L-1 for growth and biomass. Both Ag+ released from AgNPs and the nanoparticles contributed to the observed toxicity. The dissolution and toxicity of AgNPs were influenced by surface coating agents, particle size, and surface charge. Most point estimates for AgNPs were above AWQC for silver (4.1 µg L-1) and the lowest concentration (0.12 µg/L) at which Ag is expected to cause chronic adverse effects to freshwater aquatic life. Our study demonstrates that the current AWQC for silver, in general, is protective of freshwater aquatic life against AgNPs tested in the present study.


Asunto(s)
Anfípodos , Nanopartículas del Metal , Contaminantes Químicos del Agua , Animales , Agua Dulce , Nanopartículas del Metal/toxicidad , Plata/toxicidad , Contaminantes Químicos del Agua/toxicidad
13.
Environ Pollut ; 289: 117900, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34391048

RESUMEN

Given extensive use of pesticides in agriculture, there is concern for unintended consequences to non-target species. The non-target freshwater amphipod, Hyalella azteca has been found to show resistance to the organophosphate (OP) pesticide, chlorpyrifos, resulting from an amino acid substitution in acetylcholinesterase (AChE), suggesting a selective pressure of unintended pesticide exposure. Since resistant organisms can survive in contaminated habitats, there is potential for them to accumulate higher concentrations of insecticides, increasing the risk for trophic transfer. In the present study, we estimated the uptake and elimination of chlorpyrifos in non-resistant US Lab, and resistant Ulatis Creek (ULC Resistant), H. azteca populations by conducting 24-h uptake and 48-h elimination toxicokinetic experiments with 14C-chlorpyrifos. Our results indicated that non-resistant H. azteca had a larger uptake clearance coefficient (1467 mL g-1 h-1) than resistant animals (557 mL g-1 h-1). The half-life derived from the toxicokinetic models also estimated that steady state conditions were reached at 13.5 and 32.5 h for US Lab and ULC, respectively. Bioaccumulation was compared between non-resistant and resistant H. azteca by exposing animals to six different environmentally relevant concentrations for 28 h. Detection of chlorpyrifos in animal tissues indicated that resistant animals exposed to high concentrations of chlorpyrifos were capable of accumulating the insecticide up to 10-fold higher compared to non-resistant animals. Metabolite analysis from the 28-h concentration experiments showed that between 20 and 50 % parent compound was detected in H. azteca. These results imply that bioaccumulation potential can be more significant in chlorpyrifos resistant H. azteca and may be an essential factor in assessing the full impacts of toxicants on critical food webs, especially in the face of increasing pesticide and chemical runoff.


Asunto(s)
Anfípodos , Cloropirifos , Insecticidas , Contaminantes Químicos del Agua , Acetilcolinesterasa/metabolismo , Anfípodos/metabolismo , Animales , Bioacumulación , Cloropirifos/toxicidad , Insecticidas/análisis , Insecticidas/toxicidad , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
14.
Chemosphere ; 282: 131063, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34111636

RESUMEN

The complex chemistry of copper (Cu) in freshwater sediments at low concentrations is not well understood. We evaluated the transformation processes of Cu added to freshwater sediments under suboxic and anoxic conditions. Freshwater sediments from three sources in Michigan with different characteristics (Spring Creek, River Raisin, and Maple Lake) were spiked with 30 or 60 mg kg-1 Cu and incubated under a nitrogen atmosphere. After 28-d, each treatment subset was amended with organic matter (OM) to promote anoxic conditions and evaluate its effects on Cu speciation. OM addition triggered a shift from suboxic to anoxic conditions, and sequential extractions showed that Cu accordingly shifted from acid-soluble to oxidizable fractions. Extended X-ray absorption fine-structure (EXAFS) spectroscopy revealed that Cu sulfides dominated all anoxic samples except for Spring Creek 30 mg kg-1, where Cu(I) was predominantly complexed to thiol groups of OM. Covellite and chalcopyrite (CuFeS2) were the predominant Cu species in nearly all anoxic samples, as determined by Raman spectroscopy, scanning electron microscopy, and X-ray absorption near-edge structure (XANES) spectroscopy. Copper reduction also occurred under suboxic conditions: for two of three sediments, around 80% had been reduced to Cu(I), while the remaining 20% persisted as Cu(II) complexed to OM. However, in the third coarsest (i.e., Spring Creek), around 50% of the Cu had been reduced, forming Cu(I)-OM complexes, while the remainder was Cu(II)-OM complexes. Toxicity tests showed that survival of H. azteca and D. magna were significantly lower in suboxic treatments. Anoxic sediments triggered a near-complete transformation of Cu to sulfide minerals, reducing its toxicity.


Asunto(s)
Cobre , Minerales , Cobre/análisis , Agua Dulce , Sedimentos Geológicos , Sulfuros/análisis , Espectroscopía de Absorción de Rayos X
15.
Environ Pollut ; 284: 117158, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-33895574

RESUMEN

Chronic exposure to pyrethroid insecticides can result in strong selective pressures on non-target species in aquatic systems and drive the evolution of resistance and population-level changes. Characterizing the underlying mechanisms of resistance is essential to better understanding the potential consequences of contaminant-driven microevolution. The current study found that multiple mechanisms enhance the overall tolerance of Hyalella azteca to the pyrethroid permethrin. In H. azteca containing mutations in the voltage-gated sodium channel (VGSC), both adaptation and acclimation played a role in mitigating the adverse effects of pyrethroid exposures. Pyrethroid resistance is primarily attributed to the heritable mutation at a single locus of the VGSC, resulting in reduced target-site sensitivity. However, additional pyrethroid tolerance was conferred through enhanced enzyme-mediated detoxification. Cytochrome P450 monooxygenases (CYP450) and general esterases (GE) significantly contributed to the detoxification of permethrin in H. azteca. Over time, VGSC mutated H. azteca retained most of their pyrethroid resistance, though there was some increased sensitivity from parent to offspring when reared in the absence of pyrethroid exposure. Permethrin median lethal concentrations (LC50s) declined from 1809 ng/L in parent (P0) individuals to 1123 ng/L in the first filial (F1) generation, and this reduction in tolerance was likely related to alterations in acclimation mechanisms, rather than changes to target-site sensitivity. Enzyme bioassays indicated decreased CYP450 and GE activity from P0 to F1, whereas the VGSC mutation was retained. The permethrin LC50s in resistant H. azteca were still two orders-of-magnitude higher than non-resistant populations indicating that the largest proportion of resistance was maintained through the inherited VGSC mutation. Thus, the noted variation in tolerance in H. azteca is likely associated with inducible traits controlling enzyme pathways. A better understanding of the mechanistic and genomic basis of acclimation is necessary to more accurately predict the ecological and evolutionary consequences of contaminant-driven change in H. azteca.


Asunto(s)
Anfípodos , Insecticidas , Piretrinas , Contaminantes Químicos del Agua , Anfípodos/genética , Animales , Resistencia a los Insecticidas/genética , Insecticidas/análisis , Insecticidas/toxicidad , Permetrina/toxicidad , Piretrinas/toxicidad , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
16.
Ecotoxicology ; 30(3): 514-523, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33624205

RESUMEN

Wild-type Hyalella azteca are highly sensitive to pyrethroid insecticides and typically do not survive exposure; however, pyrethroid bioaccumulation by insecticide-resistant H. azteca is an important potential risk factor for the transfer of pyrethroids to higher trophic species in aquatic systems. In the current study, four populations of pyrethroid-resistant H. azteca with corresponding sediment samples were sampled throughout the year, and nine-current use pyrethroids (tefluthrin, fenpropathrin, bifenthrin, cyhalothrin, permethrin, cyfluthrin, cypermethrin, esfenvalerate and deltamethrin) were measured. Bifenthrin was detected in every pyrethroid-resistant H. azteca tissue sample, up to 813 ng/g lipid, while cyhalothrin and permethrin were detected in fewer (18 and 28%, respectively) samples. Concurrent sampling of the sediment showed total pyrethroid concentrations exceeding toxic unit thresholds for non-resistant H. azteca survival, and confirmed the ubiquitous presence of bifenthrin at each site and sampling event. Bifenthrin concentrations in H. azteca tended to be higher in samples collected in winter months, and seasonal factors, such as temperature and rainfall, may have contributed to the noted differences in bioaccumulation. Finally, the bifenthrin and permethrin biota-sediment accumulation factors (BSAF) for pyrethroid-resistant H. azteca were similar to the BSAF values for less sensitive invertebrates, and therefore the development of resistance may enable an additional pathway for trophic transfer of pyrethroids in species that would otherwise be too sensitive to survive the exposure.


Asunto(s)
Anfípodos , Insecticidas , Piretrinas , Contaminantes Químicos del Agua , Animales , Bioacumulación , Resistencia a los Insecticidas , Insecticidas/análisis , Insecticidas/toxicidad , Piretrinas/toxicidad , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
17.
Chemosphere ; 271: 129446, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33454661

RESUMEN

Agricultural, industrial and household chemicals are emitted in large rivers along populated areas, transported by water and deposited in sediments, posing (eco)toxicological risks. Sediments have received less attention than surface waters, likely because of the intrinsic complexity of interactions between sediment constituents complicating correct framing of exposures. Sadly, thorough assessment of the in situ behavior of sediment constituents in bioassays is often not practical. Alternatively, we related physicochemical properties of sediments from field testing to results from bioassays. The case study covers Flemish sediment (incl. Scheldt and Meuse) and mortality of Hyalella azteca, a sensitive bio-indicator. Though variable across Flanders' main water bodies, heavy metals and ammoniacal nitrogen dominate the observed toxicity according to toxic unit (TU) assessments. Depending on the water body we explain between 50 and 90% of the variance in the observed H. azteca mortality, substantially more than previous ecotoxicity studies. We attribute the remaining variance to potential incoherently documented biophysicochemical sediment properties and concentrations of non-target biocides, testing conditions/set-ups and/or species variabilities. We discuss the relative influence of heavy metals/metaloxides, nitrogen (e.g. fertilizer), polycyclic aromatics and organochlorides. We highlight both direct and indirect mortality mechanisms. We note potential synergetic mixture effects between ammoniacal nitrogen and chromium. Such synergy may be phenomenological of 'standard' aerobic bioassays, and prove a complementary method alongside the 'acid-volatile sulfide test' to more effectively link concentration to toxicity. Future study ought to include variation in biophysicochemical properties between sampling locations and batch bioassays. Our approach enables water managers to interpret their monitoring data by converting sediment concentrations to H. azteca mortality and prioritize substances that contribute most.


Asunto(s)
Anfípodos , Contaminantes Químicos del Agua , Amoníaco , Animales , Bioensayo , Cromatos , Sedimentos Geológicos , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
18.
Chemosphere ; 263: 127961, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32829223

RESUMEN

Standardized experimental approaches for the quantification of the bioaccumulation potential of nanomaterials in general and in (benthic) invertebrates in particular are currently lacking. We examined the suitability of the benthic freshwater amphipod Hyalella azteca for the examination of the bioaccumulation potential of nanomaterials. A flow-through test system that allows the generation of bioconcentration and biomagnification factors was applied. The feasibility of the system was confirmed in a 2-lab comparison study. By carrying out bioconcentration and biomagnification studies with gold, titanium dioxide and silver nanoparticles as well as dissolved silver (AgNO3) we were able to assess the bioaccumulation potential of different types of nanomaterials and their exposure pathways. For this, the animals were examined for their total metal body burden using inductively coupled mass spectroscopy (ICP-MS) and for the presence of nanoparticulate burdens using single-particle ICP-MS. The role of released ions was highlighted as being very important for the bioavailability and bioaccumulation of metals from nanoparticles for both examined uptake paths examined (bioconcentration and biomagnification). In 2018 a tiered testing strategy for engineered nanomaterials was proposed by Handy et al. that may allow a waiver of bioaccumulation fish studies using inter alia invertebrates. Data gained in studies carried out with invertebrates like the developed Hyalella azteca test may be included in this proposed tiered testing strategy.


Asunto(s)
Anfípodos/metabolismo , Nanopartículas del Metal/análisis , Contaminantes Químicos del Agua/metabolismo , Animales , Bioacumulación , Peces/metabolismo , Agua Dulce/química , Invertebrados/metabolismo , Plata/metabolismo , Titanio , Contaminantes Químicos del Agua/análisis
19.
Chemosphere ; 262: 127772, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32799140

RESUMEN

This study utilized the freshwater amphipod (Hyalella azteca) for the indication of contamination risk levels of sediment-associated contaminants in the Erren (ER1∼ER10) and Sanye Rivers (SY1∼SY5) which were contaminated by metal scrap and smelting industries for decades. Toxicity identification evaluations involving the manipulation of pore water and whole-sediment samples were conducted to identify causative pollutants. Impacts on the aquatic environment were then evaluated in order to explore how industrial development led to contaminant accumulation in sediments and resulted in biological effects. A whole-sediment TIE indicated that the major toxicant at sampling sites ER8 and SY5 was ammonia and that its toxicity was significantly reduced by the addition of zeolite. Toxicity at sampling sites ER4 and ER9 was induced by ammonia and heavy metals (Zn, Cd, Cr, As), whereas Cr was at toxic levels at ER6. ∑PAHs was another major class of contaminants at site ER2. Metals (Zn, Ni, Pb, Cd, Cr, and As) were identified as major toxic contaminants at three sites (ER3, SY1, and SY3). The application of TIEs confirmed that a causative toxicant can be identified and that its measured toxicity correlated with its concentration. In conclusion, a TIE approach was successful in demarcating most effective contaminant groups (ammonia, heavy metals, and non-polar organic compounds) in whole-sediment cores, their porewaters and potential toxicities from a highly polluted river after remediation in southern Taiwan to an invertebrate animal model H. azteca.


Asunto(s)
Anfípodos/efectos de los fármacos , Monitoreo del Ambiente/métodos , Sedimentos Geológicos/química , Ríos/química , Contaminantes Químicos del Agua/toxicidad , Amoníaco/análisis , Amoníaco/toxicidad , Animales , Agua Dulce/química , Metales Pesados/análisis , Metales Pesados/toxicidad , Hidrocarburos Policíclicos Aromáticos/análisis , Hidrocarburos Policíclicos Aromáticos/toxicidad , Taiwán , Clima Tropical , Contaminantes Químicos del Agua/análisis , Zeolitas/química
20.
Environ Pollut ; 266(Pt 1): 115074, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32629209

RESUMEN

Several populations of the amphipod, Hyalella azteca, have developed resistance to pyrethroid insecticides due to non-target exposure, but the dominance of the resistance trait is unknown. The current study investigated the dominance level of point mutations in natural populations of insecticide-resistant H. azteca and determined whether H. azteca from different clades with and without resistant alleles can hybridize and produce viable offspring. A parent generation (P0) of non-resistant homozygous wild type H. azteca was crossbred with pyrethroid-resistant homozygous mutant animals and the tolerance of the filial 1 (F1) generation to the pyrethroid insecticide, permethrin, was measured. Then the genotypes of the F1 generation was examined to assure heterozygosity. The resistant parents had permethrin LC50 values that ranged from 52 to 82 times higher than the non-resistant animals and both crossbreeding experiments produced heterozygous hybrid offspring that had LC50 values similar to the non-resistant H. azteca parent. Dominance levels calculated for each of the crosses showed values close to 0, confirming that the L925I and L925V mutations were completely recessive. The lack of reproduction by hybrids of the C x D breeding confirmed that these clades are reproductively isolated and therefore introgression of adaptive alleles across these clades is unlikely. Potential evolutionary consequences of this selection include development of population bottlenecks, which may arise leading to fitness costs and reduced genetic diversity of H. azteca.


Asunto(s)
Anfípodos , Insecticidas/análisis , Piretrinas , Contaminantes Químicos del Agua/análisis , Animales , Hibridación Genética , Resistencia a los Insecticidas , Permetrina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA