Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.982
Filtrar
1.
Adv Gerontol ; 37(3): 259-265, 2024.
Artículo en Ruso | MEDLINE | ID: mdl-39139118

RESUMEN

The review describes the involvement of various hyaluronic acid receptors, including CD44, RHAMM, HARE, TLR, LYVE-1, in maintaining normal homeostasis and aging, as well as in the development of age-associated inflammatory processes (inflamaging) and malignant tumors. The association of CD44 receptor activation with immune cells and the development of coronary heart disease has been shown. In addition, a link between the CD44 receptor and osteoarthritis has been shown, via TLR2 and TLR4. The oncogenic potential of RHAMM in relation to breast, prostate, leukemia, pancreas, lung and glioblastoma cancers has been described, with the strongest expression observed in metastatic tumors. In vivo and in vitro experiments, it was found that fragments of hyaluronic acid with a length of 4 to 25 disaccharides can contribute to the proliferation of lymphatic endothelial cells and lymphangiogenesis. Thus, hyaluronic acid receptors play an important role in the aging process through the regulation of inflamaging and in the development of malignant neoplasms.


Asunto(s)
Envejecimiento , Receptores de Hialuranos , Neoplasias , Humanos , Envejecimiento/metabolismo , Envejecimiento/fisiología , Receptores de Hialuranos/metabolismo , Neoplasias/metabolismo , Neoplasias/patología , Ácido Hialurónico/metabolismo
2.
BMC Cancer ; 24(1): 974, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39118096

RESUMEN

The intricate interplay between cancer cells and their surrounding microenvironment has emerged as a critical factor driving the aggressive progression of various malignancies, including gliomas. Among the various components of this dynamic microenvironment, the extracellular matrix (ECM) holds particular significance. Gliomas, intrinsic brain tumors that originate from neuroglial progenitor cells, have the remarkable ability to actively reform the ECM, reshaping the structural and biochemical landscape to their advantage. This phenomenon underscores the adaptability and aggressiveness of gliomas, and highlights the intricate crosstalk between tumor cells and their surrounding matrix.In this review, we delve into how glioma actively regulates glioma ECM to organize a favorable microenvironment for its survival, invasion, progression and therapy resistance. By unraveling the intricacies of glioma-induced ECM remodeling, we gain valuable insights into potential therapeutic strategies aimed at disrupting this symbiotic relationship and curbing the relentless advance of gliomas within the brain.


Asunto(s)
Neoplasias Encefálicas , Progresión de la Enfermedad , Matriz Extracelular , Glioma , Recurrencia Local de Neoplasia , Microambiente Tumoral , Humanos , Glioma/patología , Glioma/metabolismo , Matriz Extracelular/metabolismo , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/metabolismo , Recurrencia Local de Neoplasia/patología , Animales
3.
Cells ; 13(15)2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39120264

RESUMEN

Adipose tissue beiging refers to the process by which beige adipocytes emerge in classical white adipose tissue depots. Beige adipocytes dissipate chemical energy and secrete adipokines, such as classical brown adipocytes, to improve systemic metabolism, which is beneficial for people with obesity and metabolic diseases. Cold exposure and ß3-adrenergic receptor (AR) agonist treatment are two commonly used stimuli for increasing beige adipocytes in mice; however, their underlying biological processes are different. Transcriptional analysis of inguinal white adipose tissue (iWAT) has revealed that changes in extracellular matrix (ECM) pathway genes are specific to cold exposure. Hyaluronic acid (HA), a non-sulfated linear polysaccharide produced by nearly all cells, is one of the most common components of ECM. We found that cold exposure significantly increased iWAT HA levels, whereas the ß3-AR agonist CL316,243 did not. Increasing HA levels in iWAT by Has2 overexpression significantly increases cold-induced adipose tissue beiging; in contrast, decreasing HA by Spam1 overexpression, which encodes a hyaluronidase that digests HA, significantly decreases cold-induced iWAT beiging. All these data implicate a role of HA in promoting adipose tissue beiging, which is unique to cold exposure. Given the failure of ß3-AR agonists in clinical trials for obesity and metabolic diseases, increasing HA could serve as a new approach for recruiting more beige adipocytes to combat metabolic diseases.


Asunto(s)
Tejido Adiposo Blanco , Frío , Ácido Hialurónico , Ácido Hialurónico/metabolismo , Animales , Ratones , Tejido Adiposo Blanco/metabolismo , Tejido Adiposo Blanco/efectos de los fármacos , Ratones Endogámicos C57BL , Masculino , Tejido Adiposo Beige/metabolismo , Adipocitos Beige/metabolismo , Adipocitos Beige/efectos de los fármacos , Matriz Extracelular/metabolismo , Dioxoles/farmacología , Receptores Adrenérgicos beta 3/metabolismo , Agonistas de Receptores Adrenérgicos beta 3/farmacología
4.
Endocr Regul ; 58(1): 174-180, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-39121477

RESUMEN

In preovulatory follicles, after the endogenous gonadotropin surge, the oocyte-cumulus complexes (OCCs) produce hyaluronan (HA) in a process called "cumulus expansion". During this process, the heavy chains (HCs) of the serum-derived inter-alpha-trypsin inhibitor (IαI) family bind covalently to synthesized HA and form a unique structure of the expanded cumulus HA-rich extracellular matrix. Understanding the biochemical mechanism of the covalent linkage between HA and the HCs of the IαI family is one of the most significant discoveries in reproductive biology, since it explains basis of the cumulus expansion process running in parallel with the oocyte maturation, both essential for ovulation. Two recent studies have supported the above-mentioned findings: in the first, seven components of the extracellular matrix were detected by proteomic, evolutionary, and experimental analyses, and in the second, the essential role of serum in the process of cumulus expansion in vitro was confirmed. We have previously demonstrated the formation of unique structure of the covalent linkage of HA to HCs of IαI in the expanded gonadotropin-stimulated OCC, as well as interactions with several proteins produced by the cumulus cells: tumor necrosis factor-alpha-induced protein 6, pentraxin 3, and versican. Importantly, deletion of these genes in the mice produces female infertility due to defects in the oocyte-cumulus structure.


Asunto(s)
Células del Cúmulo , Matriz Extracelular , Ácido Hialurónico , Oocitos , Folículo Ovárico , Ácido Hialurónico/metabolismo , Femenino , Matriz Extracelular/metabolismo , Animales , Folículo Ovárico/metabolismo , Células del Cúmulo/metabolismo , Oocitos/metabolismo , Humanos , alfa-Globulinas/metabolismo , Ratones , Componente Amiloide P Sérico/metabolismo , Componente Amiloide P Sérico/genética , Proteína C-Reactiva/metabolismo
5.
Arch Biochem Biophys ; 759: 110112, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39111613

RESUMEN

Inflammation is the body's response to injuries, which depends on numerous regulatory factors. Among them, miRNAs have gained much attention for their role in regulating inflammatory gene expression at multiple levels. In particular, miR-21 is up-regulated during the inflammatory response and reported to be involved in the resolution of inflammation by down-regulating pro-inflammatory mediators, including MyD88. Herein, we evaluated the regulatory effects of miR-21 on the TLR-4/MyD88 pathway in an in vitro model of 6-mer HA oligosaccharides-induced inflammation in human chondrocytes. The exposition of chondrocytes to 6-mer HA induced the activation of the TLR4/MyD88 pathway, which culminates in NF-kB activation. Changes in miR-21, TLR-4, MyD88, NLRP3 inflammasome, IL-29, Caspase1, MMP-9, iNOS, and COX-2 mRNA expression of 6-mer HA-stimulated chondrocytes were examined by qRT-PCR. Protein amounts of TLR-4, MyD88, NLRP3 inflammasome, p-ERK1/2, p-AKT, IL-29, caspase1, MMP-9, p-NK-kB p65 subunit, and IKB-a have been evaluated by ELISA kits. NO and PGE2 levels have been assayed by colorimetric and ELISA kits, respectively. HA oligosaccharides induced a significant increase in the expression of the above parameters, including NF-kB activity. The use of a miR-21 mimic attenuated MyD88 expression levels and the downstream effectors. On the contrary, treatment with a miR-21 inhibitor induced opposite effects. Interestingly, the use of a MyD88 siRNA confirmed MyD88 as the target of miR-21 action. Our results suggest that miR-21 expression could increase in an attempt to reduce the inflammatory response, targeting MyD88.


Asunto(s)
Condrocitos , Ácido Hialurónico , Inflamación , MicroARNs , Factor 88 de Diferenciación Mieloide , Oligosacáridos , Humanos , Factor 88 de Diferenciación Mieloide/metabolismo , Factor 88 de Diferenciación Mieloide/genética , MicroARNs/genética , MicroARNs/metabolismo , Condrocitos/metabolismo , Condrocitos/efectos de los fármacos , Ácido Hialurónico/farmacología , Ácido Hialurónico/metabolismo , Inflamación/metabolismo , Inflamación/genética , Oligosacáridos/farmacología , Receptor Toll-Like 4/metabolismo , Receptor Toll-Like 4/genética , Transducción de Señal/efectos de los fármacos , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , FN-kappa B/metabolismo , Células Cultivadas
6.
J Biol Chem ; : 107668, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39128716

RESUMEN

The glycosaminoglycan hyaluronan (HA) is a ubiquitous, non-sulfated polysaccharide with diverse biological roles mediated through its interactions with HA-binding proteins (HABPs). Most HABPs belong to the Link module superfamily, including the major HA receptor, CD44, and secreted protein TSG-6, which catalyzes the covalent transfer of Heavy Chains (HC) from inter-α-inhibitor (IαI) onto HA. The structures of the HA-binding domains (HABD) of CD44 (HABD_CD44) and TSG-6 (Link_TSG6) have been determined and their interactions with HA extensively characterized. The mechanisms of binding are different, with Link_TSG6 interacting with HA primarily via ionic and CH-π interactions, whereas HABD_CD44 binds solely via hydrogen bonds and van der Waals forces. Here we exploit these differences to generate HA oligosaccharides, chemically modified at their reducing ends, that bind specifically and differentially to these target HABPs. Hexasaccharides (HA6AN) modified with 2- or 3-aminobenzoic acid or 2-amino-4-methoxybenzoic acid (HA6-2AA, HA6-3AA, HA6-2A4MBA, respectively) had increased affinities for Link_TSG6 compared to unmodified HA6AN. These modifications did not increase the affinity for CD44_HABD. A model of HA6-2AA (derived from the solution dynamic 3D structure of HA4-2AA) was docked into the Link_TSG6 structure, providing evidence that the 2AA-carboxyl forms a salt bridge with Arginine-81. These modeling results informed a 2nd series of chemical modifications for HA oligosaccharides, which again showed differential binding to the two proteins. Several modifications to HA4 and HA6 were found to convert the oligosaccharide into substrates for HC-transfer, whereas unmodified HA4 and HA6 are not. This study has generated valuable research tools to further understand HA biology.

7.
Int J Biol Macromol ; 275(Pt 2): 133744, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38986990

RESUMEN

Hyaluronic acid is a major constituent of the extracellular matrix of vertebrate tissue that provides mechanical support to cells and acts as a mediator in regulation of necessary biochemical process essential for maintenance of tissue homeostasis. The variation in quantity of hyaluronic acid content in tissues is often associated with different pathological conditions. It is associated with tumor aggression and progression as it plays crucial role in regulating different aspects of tumorigenesis and several defined hallmarks of cancer. It assists in tumor progression by undergoing extracellular remodeling to establish tumor microenvironment which restricts the delivery of cytotoxic drugs to neoplastic cells due to increase in interstitial pressure. Hyaluronic acid catabolic and anabolic genes and low-molecular weight hyaluronic acid play significant role in the establishing tumor microenvironment by assisting in cell proliferation, metastasis and invasion. On the other hand, it is also used as an effective drug-delivery platform in cancer therapies as its biocompatibility and biodegradability lower the toxicity of chemotherapeutic drugs and increase drug retention. High-molecular weight hyaluronic acid-bioconjugates specifically bind with hyaladherins, facilitating targeted drug delivery and also exert anti-inflammatory properties. This review also highlights the market and patent trends in the development of effective chemotherapeutic hyaluronic acid formulations and the current scenario regarding clinical trials.


Asunto(s)
Antineoplásicos , Ácido Hialurónico , Neoplasias , Microambiente Tumoral , Ácido Hialurónico/química , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Neoplasias/metabolismo , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología , Antineoplásicos/química , Microambiente Tumoral/efectos de los fármacos , Animales , Progresión de la Enfermedad , Sistemas de Liberación de Medicamentos
8.
Pathol Res Pract ; 260: 155434, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38991455

RESUMEN

Hyaluronan (HA), as a component of extracellular matrix, has pivotal roles in both physiological and pathological condition. In breast cancer, while high molecular weight HA is produced by hyaluronan synthase, it is degraded by hyaluronidases (hyaluronidase-1 (HYAL1) and hyaluronidase-2 (HYAL2)) into low molecular weight HA (LMW HA), which is considered to have pro-tumorigenic effects in human malignancies. However, HA and HYAL2, the rate-limiting enzyme of HA degradation, have not been comprehensively examined in breast cancer and clinicopathological significance of LMW HA remains to be elucidated in breast cancer. We therefore histochemically localized HA as well as HYAL2 in 116 breast cancer tissues. In addition, we examined size-dependent function of HA on breast cancer cell proliferation and migration using MCF-7 and MDA-MB-231 breast cancer cell lines. HA was localized in both the stroma and breast carcinoma cells, while HYAL2 was predominantly localized in breast carcinoma cells. HA was significantly correlated with cell proliferation and invasion ability as well as increased risk of recurrence especially in HYAL2 positive group. On the other hand, HYAL2 was correlated with breast cancer cell proliferation and increased risk of recurrence. In addition, in vitro analyses revealed that lower molecular weight HA increased sphere forming ability and migration in MCF-7 and MDA-MB-231, whereas higher molecular weight HA inhibited them. It was concluded that HA needs to be degraded by HYAL2 to exert pro-tumorigenic effects and comprehensive HA/HYAL2 status serves as a potent prognostic factor in breast cancer.


Asunto(s)
Neoplasias de la Mama , Movimiento Celular , Proliferación Celular , Ácido Hialurónico , Hialuronoglucosaminidasa , Humanos , Hialuronoglucosaminidasa/metabolismo , Femenino , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/enzimología , Ácido Hialurónico/metabolismo , Persona de Mediana Edad , Adulto , Anciano , Proteínas Ligadas a GPI/metabolismo , Proteínas Ligadas a GPI/análisis , Línea Celular Tumoral , Moléculas de Adhesión Celular/metabolismo , Recurrencia Local de Neoplasia/patología
9.
J Neurosci Res ; 102(7): e25361, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39034899

RESUMEN

Central and peripheral nervous system (CNS/PNS) proteoglycans (PGs) have diverse functional roles, this study examined how these control cellular behavior and tissue function. The CNS/PNS extracellular matrix (ECM) is a dynamic, responsive, highly interactive, space-filling, cell supportive, stabilizing structure maintaining tissue compartments, ionic microenvironments, and microgradients that regulate neuronal activity and maintain the neuron in an optimal ionic microenvironment. The CNS/PNS contains a high glycosaminoglycan content (60% hyaluronan, HA) and a diverse range of stabilizing PGs. Immobilization of HA in brain tissues by HA interactive hyalectan PGs preserves tissue hydration and neuronal activity, a paucity of HA in brain tissues results in a pro-convulsant epileptic phenotype. Diverse CS, KS, and HSPGs stabilize the blood-brain barrier and neurovascular unit, provide smart gel neurotransmitter neuron vesicle storage and delivery, organize the neuromuscular junction basement membrane, and provide motor neuron synaptic plasticity, and photoreceptor and neuron synaptic functions. PG-HA networks maintain ionic fluxes and microgradients and tissue compartments that contribute to membrane polarization dynamics essential to neuronal activation and neurotransduction. Hyalectans form neuroprotective perineuronal nets contributing to synaptic plasticity, memory, and cognitive learning. Sialoglycoprotein associated with cones and rods (SPACRCAN), an HA binding CSPG, stabilizes the inter-photoreceptor ECM. HSPGs pikachurin and eyes shut stabilize the photoreceptor synapse aiding in phototransduction and neurotransduction with retinal bipolar neurons crucial to visual acuity. This is achieved through Laminin G motifs in pikachurin, eyes shut, and neurexins that interact with the dystroglycan-cytoskeleton-ECM-stabilizing synaptic interconnections, neuronal interactive specificity, and co-ordination of regulatory action potentials in neural networks.


Asunto(s)
Astrocitos , Neuronas , Proteoglicanos , Animales , Proteoglicanos/metabolismo , Neuronas/metabolismo , Astrocitos/metabolismo , Matriz Extracelular/metabolismo , Humanos , Microambiente Celular/fisiología , Sistema Nervioso Central/metabolismo , Plasticidad Neuronal/fisiología
11.
Cells ; 13(14)2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39056785

RESUMEN

Hyaluronan (HA) is a large polysaccharide that is broadly distributed and highly abundant in the soft connective tissues and embryos of vertebrates. The constitutive turnover of HA is very high, estimated at 5 g per day in an average (70 kg) adult human, but HA turnover must also be tightly regulated in some processes. Six genes encoding homologues to bee venom hyaluronidase (HYAL1, HYAL2, HYAL3, HYAL4, HYAL6P/HYALP1, SPAM1/PH20), as well as genes encoding two unrelated G8-domain-containing proteins demonstrated to be involved in HA degradation (CEMIP/KIAA1199, CEMIP2/TMEM2), have been identified in humans. Of these, only deficiencies in HYAL1, HYAL2, HYAL3 and CEMIP have been identified as the cause or putative cause of human genetic disorders. The phenotypes of these disorders have been vital in determining the biological roles of these enzymes but there is much that is still not understood. Deficiencies in these HA-degrading proteins have been created in mice and/or other model organisms where phenotypes could be analyzed and probed to expand our understanding of HA degradation and function. This review will describe what has been found in human and animal models of hyaluronidase deficiency and discuss how this has advanced our understanding of HA's role in health and disease.


Asunto(s)
Ácido Hialurónico , Hialuronoglucosaminidasa , Humanos , Ácido Hialurónico/metabolismo , Animales , Hialuronoglucosaminidasa/metabolismo , Hialuronoglucosaminidasa/genética
12.
Artículo en Inglés | MEDLINE | ID: mdl-39042016

RESUMEN

The pulmonary epithelial glycocalyx is rich in glycosaminoglycans such as hyaluronan and heparan sulfate. Despite their presence, the importance of these glycosaminoglycans in bacterial lung infections remains elusive. To address this, we intranasally inoculated mice with Streptococcus pneumoniae in the presence or absence of enzymes targeting pulmonary hyaluronan and heparan sulfate, followed by characterization of subsequent disease pathology, pulmonary inflammation, and lung barrier dysfunction. Enzymatic degradation of hyaluronan and heparan sulfate exacerbated pneumonia in mice, as evidenced by increased disease scores and alveolar neutrophil recruitment. However, targeting epithelial hyaluronan in combination with Streptococcus pneumoniae infection further exacerbated systemic disease, indicated by elevated splenic bacterial load and plasma levels of pro-inflammatory cytokines. In contrast, enzymatic cleavage of heparan sulfate resulted in increased bronchoalveolar bacterial burden, lung damage and pulmonary inflammation in mice infected with Streptococcus pneumoniae. Accordingly, heparinase-treated mice also exhibited disrupted lung barrier integrity as evidenced by higher alveolar edema scores and vascular protein leakage into the airways. This finding was corroborated in a human alveolus-on-a-chip platform, confirming that heparinase treatment also disrupts the human lung barrier during Streptococcus pneumoniae infection. Notably, enzymatic pre-treatment with either hyaluronidase or heparinase also rendered human epithelial cells more sensitive to pneumococcal-induced barrier disruption, as determined by transepithelial electrical resistance measurements, consistent with our findings in murine pneumonia. Taken together, these findings demonstrate the importance of intact hyaluronan and heparan sulfate in limiting pneumococci-induced damage, pulmonary inflammation, and epithelial barrier function and integrity.

13.
Plant Foods Hum Nutr ; 2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39001986

RESUMEN

Apple pomace is the residue left after apples are squeezed. The majority of pomace produced worldwide is produced by the apple manufacturing industry, however, most of the pomace produced by the industry is discarded. Apple pomace contains functional ingredients, such as polyphenols and triterpenoids, and exerts several beneficial effects on human health; however, studies on its cosmetic effects on the skin are lacking. Therefore, herein, we investigated the effects of apple pomace extract (APE) on human skin fibroblasts (HSFs) in vitro. When HSFs were cultured with the extract for 72 h, the number of HSFs increased at concentrations of 10 and 20 µg/mL. Transcriptome analysis and reverse transcription-quantitative PCR results revealed that the extract upregulated the expression of hyaluronan synthase (HAS) 1, HAS2, and HAS3 and downregulated the expression of HYAL1, a gene encoding the hyaluronan-degrading enzyme, in HSFs. Additionally, enzyme-linked immunosorbent assay revealed increased amounts of factors related to skin extracellular matrix, such as type I collagen and hyaluronic acid, secreted in the culture supernatant. The western blotting results suggested that the extract induced extracellular signal-regulated kinase and protein kinase B phosphorylation in HSFs. Additionally, several GO_Terms related to mitosis were detected in the Gene Ontology analysis. This is the first study to show that APE induces the proliferation of HSFs and production of factors related to skin anti-aging.

14.
Am J Vet Res ; : 1-10, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39013415

RESUMEN

OBJECTIVE: To describe changes in circulating hyaluronic acid (HA) concentration, a biomarker of endothelial glycocalyx degradation, after administration of fresh-frozen plasma (FFP) in critically ill dogs. ANIMALS: 12 client-owned dogs receiving an FFP transfusion due to underlying disease. METHODS: Plasma samples were collected for HA concentration measurement pre-FFP transfusion (T0) and 10 minutes (T10) and 90 minutes (T90) following completion of FFP transfusion of a minimum volume of 7 mL/kg. Hyaluronic acid was also measured in the transfused FFP units following in-house validation of a commercial HA assay on citrate phosphate dextrose-anticoagulated plasma. Potential associations of the difference between pre-FFP and post-FFP HA plasma concentrations with the volume of FFP transfused, the cumulative volume of IV fluids administered during the study period, and the HA concentration in the transfused unit were explored. RESULTS: Concentrations of HA were not significantly different between pre- and post-FFP transfusion measurements. The volume of FFP transfused, the cumulative volume of other IV fluids administered during the study time, and the concentration of HA in the FFP units had no significant effect on the change in HA concentration following FFP transfusion in this study. CLINICAL RELEVANCE: This pilot study did not demonstrate an association between FFP administration and changes in plasma HA concentration. The results of this study may serve to help design future research. A commercial assay was validated to measure HA in citrate phosphate dextrose-anticoagulated plasma.

15.
Sci Rep ; 14(1): 17582, 2024 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-39079959

RESUMEN

The endothelial glycocalyx is damaged in postcardiac arrest syndrome (PCAS), but the prognostic value is unknown. We aimed to observe the expression and prognostic value of glycocalyx shedding products, including syndecan-1 (SDC-1), hyaluronan (HA), and heparan sulfate (HS) in PCAS. Data on clinical and 28-day outcomes of seventy-one consecutive patients with out-of-hospital cardiac arrest (OHCA) after the return of spontaneous circulation (ROSC) were collected. SDC-1, HA, and HS were measured on days 0, 1, and 3 after ROSC. Thirty healthy individuals were controls. Glycocalyx shedding was observed in human umbilical vein endothelial cells (HUVECs) stimulated during hypoxia and reoxygenation in vitro. Within 4 h of ROSC, SDC-1 and HA levels, significantly increased. In the 28-day non-survivors, HA levels showed a gradual upward trend, SDC-1 remained at a high level, and HS levels first increased, then decreased. Kaplan-Meier curves and binary logistic regression analysis showed the prognostic value of SDC-1 levels on days 0, 1, and 3, HA levels on days 1 and 3, and HS levels on day 1. Only HS levels on day 1 showed a prognostic value for 28-day neurological outcomes. SDC-1 and HA levels were positively correlated with the no-flow time. In vitro, HUVECs showed shedding of SDC-1 and HS during a prolonged duration of hypoxia. After ROSC, SDC-1, HA, and HS levels may predict the 28-day survival after PCAS, and HS levels are associated with functional outcomes.


Asunto(s)
Biomarcadores , Glicocálix , Heparitina Sulfato , Células Endoteliales de la Vena Umbilical Humana , Paro Cardíaco Extrahospitalario , Sindecano-1 , Humanos , Paro Cardíaco Extrahospitalario/sangre , Glicocálix/metabolismo , Masculino , Femenino , Biomarcadores/sangre , Persona de Mediana Edad , Pronóstico , Sindecano-1/sangre , Sindecano-1/metabolismo , Anciano , Heparitina Sulfato/sangre , Heparitina Sulfato/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Retorno de la Circulación Espontánea , Ácido Hialurónico/sangre , Ácido Hialurónico/metabolismo
16.
Sci Rep ; 14(1): 16803, 2024 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-39039104

RESUMEN

The success of chemotherapy regimens in patients with non-small cell lung cancer (NSCLC) could be restricted at least in part by cancer stem cells (CSC) niches within the tumor microenvironment (TME). CSC express CD133, CD44, CD47, and SOX2, among other markers and factors. Analysis of public data revealed that high expression of hyaluronan (HA), the main glycosaminoglycan of TME, correlated positively with CSC phenotype and decreased disease-free interval in NSCLC patients. We aimed to cross-validate these findings on human and murine lung cancer cells and observed that CD133 + CSC differentially expressed higher levels of HA, HAS3, ABCC5, SOX2, and CD47 (p < 0.01). We modulated HA expression with 4-methylumbelliferone (4Mu) and detected an increase in sensitivity to paclitaxel (Pa). We evaluated the effect of 4Mu + chemotherapy on survival, HA metabolism, and CSC profile. The combination of 4Mu with Pa reduced the clonogenic and tumor-forming ability of CSC. Pa-induced HAS3, ABCC5, SOX2, and CD47 expression was mitigated by 4Mu. Pa + 4Mu combination significantly reduced in vivo tumor growth, enhancing animal survival and restoring the CSC profile in the TME to basal levels. Our results suggest that HA is involved in lung CSC phenotype and chemosensitivity, and its modulation by 4Mu improves treatment efficacy to inhibit tumor progression.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Resistencia a Antineoplásicos , Ácido Hialurónico , Himecromona , Neoplasias Pulmonares , Células Madre Neoplásicas , Paclitaxel , Microambiente Tumoral , Ácido Hialurónico/metabolismo , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/patología , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Animales , Ratones , Paclitaxel/farmacología , Paclitaxel/uso terapéutico , Himecromona/farmacología , Línea Celular Tumoral , Microambiente Tumoral/efectos de los fármacos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología
17.
Carbohydr Res ; 543: 109221, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39067181

RESUMEN

Hyaluronidases are a class of enzymes that can degrade hyaluronic acid and have a wide range of applications in the medical field. In this study, the marine bacterium Vibrio sp. ZG1, which can degrade HA, was isolated, leading to the discovery of two novel hyaluronan lyases, Vhylzx1 and Vhylzx2, through genome sequencing and bioinformatic analysis. These lyases belong to the polysaccharide lyase-8 family. Vhylzx1 and Vhylzx2 specifically degrade HA, with highest activity at 35 °C, pH 5.7 and 50 °C, pH 7.1. Vhylzx1 and Vhylzx2 are endo-type enzymes that can fully degrade HA into unsaturated disaccharides. Sequence homology assessment and site-directed mutagenesis revealed that the catalytic residues of Vhylzx1 are Asn231, His281, and Tyr290, and that the catalytic residues of Vhylzx2 are Asn227, His277, and Tyr286. Moreover, this study used consensus sequences to enhance the specific activity of Vhylzx2 mutants. Notably, the mutants V564I, N742D, L619F, and D658G increases the specific activity by 2.4, 2.2, 1.3, and 1.2-fold. These characteristics are useful for further basic research and applications, and have a promising application in the preparation of biologically active hyaluronic acid oligosaccharides.


Asunto(s)
Clonación Molecular , Ácido Hialurónico , Polisacárido Liasas , Vibrio , Vibrio/enzimología , Vibrio/genética , Polisacárido Liasas/metabolismo , Polisacárido Liasas/genética , Polisacárido Liasas/química , Ácido Hialurónico/química , Ácido Hialurónico/biosíntesis , Ácido Hialurónico/metabolismo , Secuencia de Aminoácidos , Especificidad por Sustrato
18.
Cells ; 13(14)2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-39056761

RESUMEN

Necrotizing enterocolitis (NEC) is a complex, multifactorial gastrointestinal disorder predominantly affecting preterm infants. The pathogenesis of this condition involves a complex interplay between intestinal barrier dysfunction, microbial dysbiosis, and an altered immune response. This study investigates the potential role of endogenous hyaluronan (HA) in both the early phases of intestinal development and in the context of NEC-like intestinal injury. We treated neonatal CD-1 mouse pups with PEP1, a peptide inhibiting HA receptor interactions, from postnatal days 8 to 12. We evaluated postnatal intestinal developmental indicators, such as villi length, crypt depth, epithelial cell proliferation, crypt fission, and differentiation of goblet and Paneth cells, in PEP1-treated animals compared with those treated with scrambled peptide. PEP1 treatment significantly impaired intestinal development, as evidenced by reductions in villi length, crypt depth, and epithelial cell proliferation, along with a decrease in crypt fission activity. These deficits in PEP1-treated animals correlated with increased susceptibility to NEC-like injuries, including higher mortality rates, and worsened histological intestinal injury. These findings highlight the role of endogenous HA in supporting intestinal development and protecting against NEC.


Asunto(s)
Enterocolitis Necrotizante , Homeostasis , Ácido Hialurónico , Intestinos , Animales , Ácido Hialurónico/farmacología , Ácido Hialurónico/metabolismo , Enterocolitis Necrotizante/patología , Enterocolitis Necrotizante/metabolismo , Enterocolitis Necrotizante/tratamiento farmacológico , Ratones , Homeostasis/efectos de los fármacos , Intestinos/patología , Intestinos/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Animales Recién Nacidos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Mucosa Intestinal/efectos de los fármacos , Modelos Animales de Enfermedad
19.
Bone ; 187: 117199, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38992453

RESUMEN

Cementum is a vital component of periodontium, yet its regeneration remains a challenge. Pentraxin 3 (PTX3) is a multifunctional glycoprotein involved in extracellular matrix remodeling and bone metabolism regulation. However, the role of PTX3 in cementum formation and cementoblast differentiation has not been elucidated. In this study, we initially observed an increase in PTX3 expression during cementum formation and cementoblast differentiation. Then, overexpression of PTX3 significantly enhanced the differentiation ability of cementoblasts. While conversely, PTX3 knockdown exerted an inhibitory effect. Moreover, in Ptx3-deficient mice, we found that cementum formation was hampered. Furthermore, we confirmed the presence of PTX3 within the hyaluronan (HA) matrix, thereby activating the ITGB1/FAK/YAP1 signaling pathway. Notably, inhibiting any component of this signaling pathway partially reduced the ability of PTX3 to promote cementoblast differentiation. In conclusion, our study indicated that PTX3 promotes cementum formation and cementoblast differentiation, which is partially dependent on the HA/ITGB1/FAK/YAP1 signaling pathway. This research will contribute to our understanding of cementum regeneration after destruction.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Diferenciación Celular , Cemento Dental , Transducción de Señal , Proteínas Señalizadoras YAP , Animales , Cemento Dental/metabolismo , Proteínas Señalizadoras YAP/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Ratones , Proteína C-Reactiva/metabolismo , Integrina beta1/metabolismo , Componente Amiloide P Sérico/metabolismo , Componente Amiloide P Sérico/genética , Ratones Endogámicos C57BL , Quinasa 1 de Adhesión Focal/metabolismo , Quinasa 1 de Adhesión Focal/genética , Cementogénesis
20.
Int J Mol Sci ; 25(14)2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-39062846

RESUMEN

Hyaluronan (HA) has gained significant attention in cancer research for its role in modulating chemoresistance. This review aims to elucidate the mechanisms by which HA contributes to chemoresistance, focusing on its interactions within the tumor microenvironment. HA is abundantly present in the extracellular matrix (ECM) and binds to cell-surface receptors such as CD44 and RHAMM. These interactions activate various signaling pathways, including PI3K/Akt, MAPK, and NF-κB, which are implicated in cell survival, proliferation, and drug resistance. HA also influences the physical properties of the tumor stroma, enhancing its density and reducing drug penetration. Additionally, HA-mediated signaling contributes to the epithelial-mesenchymal transition (EMT), a process associated with increased metastatic potential and resistance to apoptosis. Emerging therapeutic strategies aim to counteract HA-induced chemoresistance by targeting HA synthesis, degradation, metabolism, or its binding to CD44. This review underscores the complexity of HA's role in chemoresistance and highlights the potential for HA-targeted therapies to improve the efficacy of conventional chemotherapeutics.


Asunto(s)
Resistencia a Antineoplásicos , Transición Epitelial-Mesenquimal , Matriz Extracelular , Ácido Hialurónico , Neoplasias , Transducción de Señal , Microambiente Tumoral , Humanos , Ácido Hialurónico/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Neoplasias/patología , Transducción de Señal/efectos de los fármacos , Matriz Extracelular/metabolismo , Receptores de Hialuranos/metabolismo , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología , Animales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA