Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Contam Hydrol ; 265: 104386, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38908281

RESUMEN

The groundwater hydrodynamic and hydrochemical process of the multi-aquifer system will experience complicated and serious influence under deep coal mining disturbance. There is relatively little research that has integrated hydrodynamic and hydrochemical properties of groundwater to investigate the spatiotemporal distribution characteristics and evolution patterns of hydrogeochemistry and hydrodynamic information in deep multi-aquifer systems. The study of the groundwater hydrodynamic and hydrochemical spatiotemporal coupling response of multi-aquifer systems under the deep and special thick coal seam mining-motivated effect in ecologically fragile western mining areas is of great significance for the safe mining of coal resources and ecological environment protection. In this research, the hydrochemical analysis data composed of 218 groundwater samples from Tangjiahui coalfield, Northwest China with 1526 measurements and a 6-year (2016-2021) sampling period were collected for studying the hydrogeochemical spatiotemporal evolution process and governing mechanism of the multi-aquifer system using hierarchical cluster analysis, ion-ratio method, saturation index and multidimensional statistical analysis. Additionally, wavelet analysis and cross-wavelet coherence analysis were implemented to quantitatively recognize the spatiotemporal variation characteristics of hydrodynamic information and analyze the coherence relationships between time series. The results demonstrate that the hydrochemical characteristics exhibit significant spatial differences, while the temporal variation of hydrochemical characteristics in the Permian Shanxi Formation fractured sandstone aquifer (PSFFA), mine water (MW), and Ordovician karst limestone aquifer (OKA) is not significant. The water-rock interaction is the predominant control mechanism for the spatial evolution of hydrogeochemistry in the research area. Moreover, the large-scale mining of deep coal seams controls the type and degree of water-rock interactions by damaging the structure of aquifers and altering the hydrodynamic conditions of groundwater. The period from 2016 to 2021 exhibits multi-time scale characteristics in time series of precipitation, mine water discharge, and the water level of PSFFA and OKA. The mine water discharge has a positive correlation with the water level of PSFFA and OKA, whereas the significant period of precipitation and the water level of PSFFA coherence is not obvious. The research findings not only provide in-depth insights to protect the groundwater resources in water-shortage mining areas but also promote the secure mining of deep coal resources.


Asunto(s)
Minas de Carbón , Monitoreo del Ambiente , Agua Subterránea , Hidrodinámica , Agua Subterránea/química , Agua Subterránea/análisis , China , Monitoreo del Ambiente/métodos , Contaminantes Químicos del Agua/análisis
2.
Heliyon ; 10(11): e31963, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38873670

RESUMEN

The hydrochemical characteristics of acid mine drainage (AMD) were investigated in Wuma River Basin, China. AMD was sampled from nine closed coal mine (CCM) sites to study the temporal and spatial evolution of pH, dissolved oxygen (DO), electrical conductivity (ED), total hardness (THR), total dissolved salt (TDS), and trace elements. The surface water (river) and groundwater surrounding mine sites were sampled to evaluate the potential pollution derived from AMDs. The TDS content of AMD was higher than that of surface water and groundwater. The dominant factors influencing TDS were the pH, temperature, and wet or dry season (which played a role in controlling microbial activity), HCO3 - balance, and REDOX during the evolutionary process. The hydrochemical type of AMD was dependent on the evolutionary stage. From observations, most AMDs were in the form of the SO4 2--Ca2+•Mg2+ type that was characterized by a low pH, low [HCO3 -], high [SO4 2-], and high [Fe]. In addition, the AMD samples were undergoing stage I and II processes, in which SO4 2- and trace elements were generated. The surface water and groundwater were primarily classified as the HCO3 --Ca2+•Mg2+ type, which accounted for their self-cleaning capacity, as indicated by the high [HCO3 -]. The surface water and groundwater could be affected by the surrounding AMD depending on the geographical location. The surface water and groundwater sites that were located downstream of subsurface and surface runoff were obviously affected by AMD. After being polluted by AMD, surface water and groundwater contained higher levels of trace elements and emerged as the HCO3 -•SO4 2--Ca2+•Mg2+ type.

3.
Huan Jing Ke Xue ; 45(6): 3196-3204, 2024 Jun 08.
Artículo en Chino | MEDLINE | ID: mdl-38897743

RESUMEN

The Guohe River Basin in Anhui Province was selected as the research area for this study. By collecting surface water, shallow groundwater, and middle-deep groundwater samples, various hydrochemical parameters and stable isotopes of water in different water bodies were analyzed using methods such as the Gibbs diagram, ion ratios, and MixSIAR model to reveal and quantify the transformation relationships between these water bodies. The results indicated that both surface water and groundwater in the study area were predominantly neutral to weakly alkaline. The hydrochemical types of surface water were mainly characterized by Cl·SO4·HCO3-Na and Cl·SO4-Na types, whereas the shallow groundwater exhibited HCO3-Ca·Mg and HCO3-Mg·Na types, and the middle-deep groundwater was of the Cl·HCO3-Na type. The hydrochemical characteristics of various water bodies were influenced by multiple factors such as rock weathering, evaporation concentration, and positive cation exchange. The distribution characteristics of δ18O and δ2H values in surface water and groundwater indicated that atmospheric precipitation was the main water source. The δ18O and δ2H in groundwater were significantly correlated with K+, Na+, Cl-, SO42-, and NO3-. According to the analysis using the MixSIAR model, the contribution of atmospheric precipitation to surface water was 46.5 %, whereas the contribution from shallow groundwater was 53.5 %. The sources of shallow groundwater were identified as atmospheric precipitation (57.4 %) and surface water (42.6 %), and the main source of supply for middle-deep groundwater was lateral flow from upstream groundwater.

4.
Environ Monit Assess ; 196(6): 512, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38704803

RESUMEN

To gain a comprehensive understanding of the hydrochemical characteristics, controlling factors, and water quality of groundwater in the main stream area of Yishu River (MSYR), a study was conducted using water quality data collected during both the dry and wet seasons. Through statistical analysis, hydrochemical methods, fuzzy comprehensive evaluation, and health risk evaluation modeling, the water chemical characteristics of the main stream area of Yishu River were studied, and the water quality of the area was comprehensively evaluated. The findings indicate that HCO3- and Ca2+ are the predominant anions and cations in the MSYR during the dry and wet seasons, respectively. Moreover, anion concentration in groundwater follows HCO3- > SO42- > NO3- > Cl-, while cations are ranked as Ca2+ > Na+ > Mg2+ > K+. Overall, the groundwater manifests as weakly alkaline and is predominantly classified as hard-fresh water. During the wet season, there is greater groundwater leaching and filtration, with rock and soil materials more readily transferred to groundwater, and the concentrations of main chemical components in groundwater are higher than those during the dry season, and the hydrochemical types are primarily characterized as HCO3-Ca·Mg and SO4·Cl-Ca·Mg types. These results also suggest that the chemical composition of the groundwater in the MSYR is influenced mainly by water-rock interaction. The primary ions originate from the dissolution of silicate rock and carbonate rock minerals, while cation exchange plays a critical role in the hydrogeochemical process. Groundwater in the MSYR is classified mostly as class II water, indicating that it is generally of good quality. However, areas with high levels of class IV and V water are present locally, and NO3- concentration is a crucial factor affecting groundwater quality. In the wet season, more groundwater and stronger mobility lead to greater mobility of NO3- and wider diffusion. Therefore, the risk evaluation model shows that nitrate health risk index is higher in the wet season than it is in the dry season, with children being more vulnerable to health risks than adults. To study groundwater in this area, its hydrochemical characteristics, water quality, and health risk assessment are of great practical significance for ensuring water safety for residents and stable development of social economy.


Asunto(s)
Monitoreo del Ambiente , Agua Subterránea , Ríos , Contaminantes Químicos del Agua , Calidad del Agua , Agua Subterránea/química , Contaminantes Químicos del Agua/análisis , Ríos/química , China , Estaciones del Año
5.
Environ Sci Pollut Res Int ; 31(16): 24180-24196, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38438638

RESUMEN

Porous sandstone geothermal water is an important geothermal resource, which is a low-carbon and clean resource, but lacks systematic research on a regional scale. The northern part of Jinan City is rich in geothermal resources, specifically porous sandstone thermal reservoirs. However, there is still incomplete research on the mechanism of geothermal genesis and the hydrochemical characteristics of geothermal water in porous sandstone. This study aims to address this gap by collecting 21 groundwater samples from northern Jinan and comparing their conventional ion and isotope characteristics to investigate the hydrochemical characteristics during the formation of geothermal water and uncover the genesis mechanism of porous sandstone geothermal water. The results indicate that the geothermal water is classified as Na-Cl type and Na-SO4-Cl type. The hydrochemical characteristics of geothermal water are primarily influenced by water-rock interaction and groundwater mixing. The water source primarily comes from the atmospheric precipitation in the Taiyi mountains, with an altitude of 910.75-1542.2 m.s.a.l.. The estimated temperature of the thermal reservoir ranges from 51 to 78 °C, and the depth of geothermal water circulation is estimated to be between 1316 and 2216 m. Based on the characteristics of the geothermal field, including the "cap rock, water source, heat source, reservoir, and channel," a conceptual model of the porous sandstone geothermal water flow system is proposed. This model offers novel insights into the genesis mechanism of geothermal water under similar geological conditions.


Asunto(s)
Agua Subterránea , Contaminantes Químicos del Agua , Agua , Porosidad , Temperatura , Calor , China , Contaminantes Químicos del Agua/análisis
6.
Environ Monit Assess ; 196(4): 365, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38483634

RESUMEN

Identifying factors contributing to water salinity is paramount in efficiently managing limited water resources in arid environments. The primary objective of this study is to enhance understanding regarding the hydrochemistry, source, and mechanism of water salinity, as well as to assess the suitability of water for various uses in southern Iraq. The groundwater samples were collected from water wells and springs and analyzed for major cations and anions along with stable isotopes (δ18O and δ2H) to accomplish the objective. The analysis of major ion chemistry, hydrochemical techniques, principal component analysis (PCA), and isotope signatures were adopted to determine the primary factors contributing to water mineralization. The study inferred that evaporation and geological processes encompassing water-rock interactions, such as dissolution precipitation and ion exchange, were key processes. The stable isotope analysis revealed that the water originated from meteoric sources and underwent significant evaporation during or before infiltration. The utility assessment of water samples indicates that most samples are not appropriate for consumption and are significantly below the established standards for potable water. In contrast, a significant portion of the groundwater samples were found to meet the criteria for irrigation suitability by adopting Wilcox and the US Salinity Laboratory criteria. The groundwater could be considered for irrigation with proper salinity control management. Overall, this study has significantly improved the understanding of the hydrogeochemical regimes and acts as a first step toward the sustainable utilization of water resources.


Asunto(s)
Agua Potable , Agua Subterránea , Contaminantes Químicos del Agua , Monitoreo del Ambiente/métodos , Salinidad , Irak , Contaminantes Químicos del Agua/análisis , Agua Subterránea/química , Agua Potable/química , Isótopos/análisis
7.
Huan Jing Ke Xue ; 45(2): 802-812, 2024 Feb 08.
Artículo en Chino | MEDLINE | ID: mdl-38471919

RESUMEN

As an important water supply source in Beijing, karst groundwater has played an irreplaceable role in the security of urban water supply and ecological environment protection in the past 70 years. The Xishan karst groundwater system, located in the upper reaches of western Beijing, belongs to ecological conservation areas. There are several centralized water supply fields in this area. In this study, the Xishan karst groundwater system was taken as the research object. A total of 120 karst groundwater samples in this area were investigated by using statistical analysis, ion ratio, and principal component analysis (PCA) methods to explore the spatial distribution characteristics and formation mechanism of groundwater hydrochemistry. The research results showed that: ① the groundwater quality of the Xishan system was generally good, with the characteristics of neutral pH and low salinity. A total of 84.17% of the water samples were classified as hard water. The chemical type of groundwater was mainly HCO3-Ca·Mg. ② The chemical composition of groundwater was mainly affected by the water-rock interaction, and the weathering source of rock was mainly the dissolution of carbonate. ③ The results of principal component analysis showed that 34.41% of the chemistry formation of groundwater could be explained by carbonate dissolution, 27.33% by rock salt and evaporate dissolution, 11.76% by aquifer sediment dissolution, and 10.30% by domestic sewage discharge. From the recharge area to the runoff area and then to the discharge area, the TH and TDS gradually increased. Coal mining drainage and human activities were the main factors that caused groundwater degradation and variable hydrochemical types in the piedmont. In the future, it is necessary to further strengthen environmental governance, control point and non-point source pollution, and continuously monitor key areas to provide scientific support for ecological and environmental protection.

8.
Huan Jing Ke Xue ; 45(2): 813-825, 2024 Feb 08.
Artículo en Chino | MEDLINE | ID: mdl-38471920

RESUMEN

Chaohu lake is a key water body for water pollution prevention and treatment in our country. However, it has been at a higher eutrophication level recently. Here, the surface water and groundwater in the Dianbu River Basin, a secondary tributary of Chaohu Lake, were taken as the research object. In order to test the hydrochemical composition and hydrogen and oxygen isotope values of different water bodies, 30 groups of surface water samples, 36 groups of groundwater samples, 16 groups of hydrogen and oxygen stable isotope samples, and 18 groups of groundwater hydrogen and oxygen stable isotope samples were collected in August 2021 (wet season), November 2021 (normal season), and February 2022 (dry season). The seasonal and spatial variation characteristics were analyzed to explore the hydrochemical characteristics and formation mechanism of water bodies by means of mathematical statistics, Piper triangular diagram, Gibbs figures, and ion ratios. The following results were obtained: ① precipitation was the main source of surface water and groundwater in Dianbu River Basin, and the evaporation fractionation effect of surface water was more significant than that of groundwater. At different periods, the surface water was more enriched with stable isotopes of hydrogen and oxygen than groundwater. The stable isotopes of hydrogen and oxygen in water showed seasonal variation, relative enrichment in the wet season, and depletion in the dry season. ② Both surface water and groundwater in the Dianbu River Basin were weakly alkaline, and the concentration of ions in surface water was significantly lower than that in groundwater. Ca2+ and Na+ were the main cations in surface water, Ca2+ was the main cation in groundwater, and the dominant anion in all water was HCO3-. The hydrochemical typology of surface water was mainly HCO3·Cl-Na·Ca, and that of groundwater was mainly HCO3-Na·Ca. ③ The concentrations of the main hydrochemical indexes of surface water and groundwater showed certain seasonal and spatial differences. From the wet season to the dry season, the concentrations of TDS, K+, Na+, Ca2+, Mg2+, Cl-, and SO42- in surface water showed an increasing trend on the whole. The concentrations of Na+, Ca2+, and Mg2+ in groundwater showed little change but increased slightly, whereas the concentrations of Cl-, SO42-, and NO3- showed an increasing trend on the whole. The concentrations of Cl-, SO42-, and NO3- in the water showed relatively large seasonal fluctuations. From upstream to downstream, the concentrations of the main hydrochemical indexes in surface water first decreased and then increased, among which the concentration of NO3- increased the most. The concentrations of the main hydrochemical indexes of groundwater in the direction of runoff changed little overall, but the concentration in the discharge area was higher than that in the recharge area. ④ The formation of hydrochemical characteristics of the water was mainly controlled by water-rock interaction but was also influenced by human factors. The water-rock action was mainly the weathering dissolution of silicate rock, salt rock, and carbonate rock. Man-made pollutants such as sewage from a sewage treatment plant, domestic sewage, and feces had obviously changed the hydrochemical characteristics of the local water. ⑤ Compared with that in 2016, the concentration of NO3- in surface water showed a certain degree of reduction. The nitrogen pollution control work carried out by the local government had achieved certain results, but it was still necessary to strengthen the pollution prevention and control of sewage and feces in the downstream of the Dianbu River, some tributaries (such as the Dingguang River and Maqiao River), and some residential areas.

9.
Huan Jing Ke Xue ; 45(2): 826-836, 2024 Feb 08.
Artículo en Chino | MEDLINE | ID: mdl-38471921

RESUMEN

In order to better support the construction of the capital water conservation functional area and ecological environment support area, research on the chemical characteristics of groundwater and its formation mechanism in the dry period in the Zhangjiakou area can provide a great reference for the rational development and utilization of groundwater resources. A total of 41 groups of groundwater samples were collected, and the hydrochemical types, composition characteristics, and control factors of groundwater in the study area were analyzed by using the combined method of descriptive statistical analysis, Piper triplot, correlation analysis, Gibbs plot, and ion ratio. The results showed that the groundwater in the study area was weakly alkaline, with the total hardness and ρ(TDS) ranging from 105.00 mg·L-1 to 1 433.00 mg·L-1 and 137.00 mg·L-1 to 2 286.00 mg·L-1, respectively. The total hardness and TDS mass concentrations of groundwater in the Bashang area were higher than those in the Baxia area. HCO3- and Na+ were the main dominant anions and cations in the groundwater in the study area. The highest overstandard rate of the main components in groundwater was that of total hardness (36.59%). The overstandard rate and maximum excess multiple of each component in groundwater in the Bashang area were greater than those in the Baxia area. HCO3-Ca·Mg·Na was the main type of groundwater hydrochemistry in the study area, and there was little difference between the Bashang area and the Baxia area. SO42-, Cl-, HCO3-, Na+, and Mg2+ contributed the most to TDS. The chemical characteristics of groundwater were affected by weathering and filtration of rock minerals such as salt rock, albite, and dolomite; cation exchange; and human activities. Evaporative crystallization and atmospheric precipitation contributed to a small part of the main ion source of groundwater in the area. The effect of human activities on groundwater in the Bashang area was greater than that in the Baxia area, and NO3- mainly originated from agricultural activities.

10.
Environ Sci Pollut Res Int ; 31(10): 15716-15732, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38305969

RESUMEN

Tongling is a significant non-ferrous metal mining city in China, which produces waste that negatively impacts the area's water environment. It is essential to comprehend the hydrochemical properties and formation processes of groundwater to safeguard and utilize it efficiently. We explored major ions, strontium, and its isotopes in water and river-bottom samples from the northern (i.e., A-A' section) and southern (i.e., B-B' section) areas. The hydrochemical facies show the mining activities have a greater impact on surface water than on groundwater. Groundwater hydrochemical formation results from several factors, with water-rock interaction and ion exchange being primary. Additionally, the dissolution of calcite, dolomite, and feldspar, oxidation of pyrite, and hydrolysis of carbonate minerals also impact the formation of groundwater chemistry. Our analysis of strontium and its isotopes indicates that carbonate dissolution primarily occurred in the recharge area; the runoff from the recharge to the discharge area results in the dissolution of certain silicate rocks; calcite dissolution sources account for > 70% contribution in both surface water and groundwater water-rock interactions, whereas silicate rock dissolution sources and dolomite dissolution sources account for < 30%. Due to changed order of dissolved carbonate and silicate minerals during groundwater flow, the distribution of strontium and its isotopes in the A-A' section is opposite to that in the B-B' section. The findings provide a basis for developing, utilizing, managing, and protecting groundwater resources, especially in similar mining areas.


Asunto(s)
Agua Subterránea , Magnesio , Contaminantes Químicos del Agua , Monitoreo del Ambiente/métodos , Contaminantes Químicos del Agua/análisis , Carbonato de Calcio/análisis , Agua Subterránea/química , Minería , Isótopos de Estroncio/análisis , Minerales/análisis , Estroncio/análisis , Carbonatos/análisis , Isótopos/análisis , Silicatos/análisis , Agua/análisis
11.
Environ Sci Pollut Res Int ; 31(11): 16583-16600, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38321279

RESUMEN

The exploitation of coal resources has disturbed the equilibrium of the original groundwater system, resulting in a perturbation of the deep groundwater dynamic conditions and hydrochemical properties. Exploring the formation of mine water chemistry under the conditions of deep coal seam mining in the Ordos Basin provides a theoretical basis for the identification of sources of mine water intrusion and the development and utilization of water resources. This paper takes Longwanggou Coal Mine as the research area, collects a total of 106 groups of water samples from the main water-filled aquifers, comprehensively uses Piper trilinear diagram, Gibbs diagram, ion correlation, ion ratio coefficient and mineral saturation index analysis, and carries out inverse geochemical modeling with PHREEQC software, so as to analyze the hydrochemical characteristics and causes of the main water-filled aquifers in deep-buried coal seams in the research area. The results show that the main hydrochemical processes in the study area are leaching and cation exchange, and the groundwater is affected by carbonate (calcite, dolomite), silicate (gypsum) and evaporite. Calculations of mineral saturation indices and PHREEQC simulations have led to the conclusion that the dissolution of rock salt and gypsum in groundwater accounts for most of the ionic action. Na+, Cl- and SO42- are mainly derived from the dissolution of rock salt and gypsum minerals, while Ca2+ and Mg2+ are mostly derived from the dissolution of dolomite and calcite. The results of the inverse geochemical modeling are consistent with the theoretical analysis.


Asunto(s)
Agua Subterránea , Magnesio , Contaminantes Químicos del Agua , Monitoreo del Ambiente/métodos , Sulfato de Calcio/análisis , Contaminantes Químicos del Agua/análisis , Agua Subterránea/química , Carbonato de Calcio/análisis , Agua/análisis , Carbón Mineral/análisis
12.
Ecotoxicol Environ Saf ; 267: 115642, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37924799

RESUMEN

Heavy metals (HMs) in groundwater seriously threaten ecological safety and human health. To facilitate the effective management of groundwater contamination, priority control factors of HMs in groundwater need to be categorized. A total of 86 groundwater samples were collected from the Huangpi district of Wuhan city, China, during the dry and wet seasons. To determine priority control factors, a source-oriented health risk assessment model was applied to compare the pollution sources and health risks of seven HMs (Cu, Pb, Zn, Cr, Ni, As, and Fe). The results showed that the groundwater had higher As and Fe contents. The sources of HM pollution during the wet period were mainly industrial and agricultural activities and natural sources. During the dry period, origins were more complex due to the addition of domestic discharges, such as sewage wastewater. Industrial activities (74.10% during the wet period), agricultural activities (53.84% during the dry period), and As were identified as the priority control factors for groundwater HMs. The results provide valuable insights for policymakers to coordinate targeted management of HM pollution in groundwater and reduce the cost of HM pollution mitigation.


Asunto(s)
Agua Subterránea , Metales Pesados , Contaminantes del Suelo , Humanos , Monitoreo del Ambiente , Medición de Riesgo , Contaminación Ambiental/análisis , Ciudades , Metales Pesados/análisis , China , Contaminantes del Suelo/análisis
13.
Huan Jing Ke Xue ; 44(11): 6025-6037, 2023 Nov 08.
Artículo en Chino | MEDLINE | ID: mdl-37973087

RESUMEN

The Kuaize River is a small typical karst watershed in the source area of the Pearl River as well as an important coal mining area in Eastern Yunnan with a fragile ecological environment. Strengthening the research on the water environment in the region plays an important role in supporting the comprehensive management of the ecological environment and water resources in the source region of the Pearl River. Through the systematic collection of surface water, karst groundwater, and mine water samples, mathematical statistics analysis, correlation analysis, ion ratio analysis, absolute principal component scores multiple linear regression(APCS-MLR), and other methods were used to study the characteristics of hydrochemical evolution and control factors in Kuaize River Basin. The results showed that the average pH value of surface water in Kuaize River Basin was 7.8, which was weakly alkaline. The main cations were Ca2+ and Na+, showing the characteristics of Ca2+>Na+>Mg2+>K+. The main anions were HCO3- and SO42-, showing the characteristics of HCO3->SO42->NO3->Cl-. The variation coefficients of Na+, SO42-, and NO3- in surface water were high, showing strong spatial variability. The water chemical type of the trunk stream was mainly HCO3-Ca, whereas the water chemical type of the tributary was relatively complex, mainly HCO3-Ca, HCO3-Ca·Na, and HCO3·SO4-Ca·Na. The chemical composition of surface water was mainly affected by rock weathering, cation exchange, and human activities. Ca2+, Mg2+, Na+, and HCO3- in surface water mainly came from the weathering of carbonate rock and silicate rock; SO42- mainly came from the oxidation of sulfide, such as pyrite in coal seams; K+, Cl-, and NO3- mainly came from domestic sewage and agricultural activities. The APCS-MLR receptor model analysis results showed that the surface water in the Kuaize River Basin was mainly affected by sulfide oxidation, carbonate weathering, weathering of silicate rock in mine water, domestic sewage, agricultural activities, and unknown sources. In general, the contribution rate of human activities such as mining, domestic sewage, and agricultural activities to the surface water reached 47.17%, indicating that human activities were the key driving factor of surface water chemistry in the Kuaize River Basin.

14.
Huan Jing Ke Xue ; 44(11): 6050-6061, 2023 Nov 08.
Artículo en Chino | MEDLINE | ID: mdl-37973089

RESUMEN

Groundwater is an important water supply source for production and life in arid and semi-arid areas. This study revealed the hydrochemical characteristics of groundwater in the Barkol-Yiwu Basin of Xinjiang and analyzed the pollution sources, which is of great significance in the sustainable utilization of local groundwater. Four spring water samples, 20 unconfined groundwater samples, and 11 confined groundwater samples collected in August 2022 were analyzed using mathematical statistics, a graphic method, and the PCA-APCS-MLR model. The results showed that the chemical types of groundwater in the study area were complex and diverse. The spring water was mainly HCO3·SO4-Na·Ca type groundwater, the chemical types of unconfined groundwater were mainly HCO3·SO4-Na·Ca and HCO3·SO4-Ca, and the chemical types of confined groundwater were HCO3·SO4-Na·Ca and HCO3·Cl·SO4-Na·Ca. The hydrochemical type of confined water in unused land was single(Cl·SO4-Na·Ca), and the hydrochemical types of confined groundwater in cultivated land and urban and rural residential land were complex, indicating that groundwater was affected by human activities. The evolution process of groundwater was mainly affected by water-rock interactions and cationic exchange. The cation exchange from spring water to unconfined groundwater to confined groundwater was gradually enhanced, the weathering and dissolution of gypsum and anhydrite was gradually weakened, and the weathering and dissolution of rock salt was gradually strengthened. Leaching-enrichment(mainly the dissolution of evaporite), human activities(industrial, agricultural, and domestic pollution), and the primary geological environment were the main factors affecting groundwater in the study area.

15.
Environ Sci Pollut Res Int ; 30(51): 110204-110219, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37779121

RESUMEN

Groundwater is important for human survival and development, particularly in arid and semi-arid regions. This study aimed to analyze the hydrochemical characteristics, influencing factors, and the impact of human activities on groundwater in the semi-arid plains of western Jilin Province, northwest China. The study collected 88 and 151 phreatic and confined water samples, respectively, which were analyzed for 13 water quality indicators using statistical and graphical methods. In order to investigate the impact of anthropogenic activities on water quality and health risks, the improved combined weighted water quality index (ICWQI) based on the entropy weight, criteria importance though inter-criteria correlation (CRITIC), the coefficient of difference method, subjective weight based on quality grading criteria, and the water quality index (WQI) were proposed to evaluate the water quality of the study area. Meanwhile, the human health risk assessment (HHRA) model was used to assess the risks of nitrate to the health of humans in different ages and sex categories. The results indicated that the groundwater in the study area was weakly alkaline and the main hydrochemical types in the phreatic and confined water were HCO3-·Ca-Mg and HCO3--Na. Rock weathering was the dominant process responsible for the generation of groundwater ions, the ions in groundwater primarily originate from the dissolution of halite, gypsum, and feldspar, while dolomitization promotes an increase in Mg2+. Human activities lead to an increase in NO3- in groundwater and have an impact on water quality and human health risks. The ICWQI method was found to yield more precise and rational assessments of water quality. Groundwater quality is primarily affected by nitrate ions. The areas in which groundwater nitrate posed a higher risk to human health were found to be mainly in the saline-alkali lands of Qian'an, Tongyu, and Zhenlai. Fertilizers, pesticides, and livestock farming activities contribute to the pollution of surface water. This surface contamination then infiltrates abandoned confined wells, leading to contamination of the confined aquifers. This study can improve the understanding of groundwater hydrochemical characteristics and the impact of human activities on groundwater in the study area. This study can also contribute to the study of groundwater in semi-arid regions.


Asunto(s)
Agua Subterránea , Contaminantes Químicos del Agua , Humanos , Monitoreo del Ambiente/métodos , Nitratos/análisis , Contaminantes Químicos del Agua/análisis , Calidad del Agua , China , Actividades Humanas
16.
Environ Geochem Health ; 45(12): 9837-9853, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37864616

RESUMEN

South China Mountain Region has a well-developed water system with the most abundant water in China. Untreated natural water is the main source of drinking water for the local people. This study aimed to investigate the hydrochemical characteristics and trace element concentrations of natural water in the mountainous regions of South China. In this study, 116 water samples were collected. Traditional hydrochemical methods, water quality index (WQI), hazard index (HI), and nutrient speciation of trace elements (NSTE) were used for analysis. In general, the hydrochemical type was mainly Ca-HCO3- type. The hydrochemical characteristics were mainly influenced by the weathering of calcite and silicate rocks. Overall total dissolved solids (TDS) were low, indicating mainly soft and very soft water. The water that met the standards for mineral water had an average concentration of 59.69 mg/L for Sr (strontium) and an average concentration of 0.46 mg/L for H2SiO3 (silicic acid). Although the water quality index (WQI) indicated that 91.3% of the water samples in the study area were of good quality (WQI < 25), 2.58% of the water samples had significant non-carcinogenic risk (HI > 1) due to the high As and Pb concentrations. The water in the study area contributed significantly to human intake of Sr, Cr, and V, accounting for 8.4, 8.3, and 7.7% of the required daily intake for adults, respectively. It is recommended that a comprehensive water quality evaluation system be constructed to ensure that mountain water is managed for development and safe to drink.


Asunto(s)
Agua Subterránea , Oligoelementos , Contaminantes Químicos del Agua , Adulto , Humanos , Calidad del Agua , Monitoreo del Ambiente , Contaminantes Químicos del Agua/análisis , China , Oligoelementos/análisis
17.
Huan Jing Ke Xue ; 44(10): 5498-5510, 2023 Oct 08.
Artículo en Chino | MEDLINE | ID: mdl-37827767

RESUMEN

TheWudu River is a typical mining-type watershed in the karst mountainous area of western Guizhou Province. Based on the collection of the main stream, tributaries, spring water, and mine water samples in Wudu River Basin, the hydrochemical characteristics and control factors of Wudu River Basin were studied using Gibbs diagram, Piper diagram, and mathematical statistics analysis, and the solute contribution rate of different sources was calculated. The results revealed that the pH value of the water in the Wudu River Basin ranged from 7.87 to 8.52, with an average of 8.14. The TDS values ranged from 135 to 243 mg·L-1, with an average of 191.7 mg·L-1. The major cations in natural river and spring water were Ca2+ and Mg2+, the major anion was HCO3-, and the hydrochemical type was HCO3-Ca. However, owing to the influence of mining activities, the major cations in some tributaries were Ca2+ and Na+, and the hydrochemical types transitioned to HCO3·SO4-Ca and HCO3·SO4-Ca·Na. The ion components of river water in Wudu River Basin were affected by mine water discharge and cation exchange, carbonate rock weathering, silicate rock weathering, and agricultural fertilization. The high concentration of SO42- and Na+in mine water was the primary source of SO42- and Na+in the tributaries of the Wudu River. The method for calculating chemical material balance showed that the contribution rate of carbonate rock weathering ranged from 44.12% to 86.92%, with an average of 74.32%. The contribution rate of mining activities ranged from 3.28% to 37.07%, with an average of 11.61%. Carbonate rock weathering was the main controlling factor of hydrochemical components in the Wudu River Basin; meanwhile, mining activities also had a certain impact on river water chemistry but they showed spatial heterogeneity. The average contribution rates of atmospheric precipitation, silicate rock weathering, agricultural activities, and domestic sewage were 3.75%, 4.67%, 2.85%, and 2.81%, respectively, which had a limited impact on the hydrochemical components of the basin.

18.
Huan Jing Ke Xue ; 44(9): 4874-4883, 2023 Sep 08.
Artículo en Chino | MEDLINE | ID: mdl-37699806

RESUMEN

As one of the famous karst springs in Shanxi Province, the Gudui spring is the only medium-low temperature hot spring, with a long history of development and a rich cultural accumulation. The karst groundwater in the Gudui spring catchment was taken as the research object. Through systematic sample collection and isotope analysis, hydrochemistry (Durov map, ion ratio, Gibbs map, and hydrogen and oxygen isotope) methods were comprehensively used to analyze groundwater hydrochemistry and groundwater system runoff characteristics. The87Sr/86Sr value of karst groundwater in the Gudui spring catchment was 0.709 to 0.717, and the Mg/(Mg+Ca) value was 0.27 to 0.74. By analyzing the Sr isotope composition and Mg/(Mg+Ca) and 1/Sr variation characteristics, it was concluded that the karst groundwater in the Gudui spring catchment was a mixture of deep hot water and shallow cold water. The karst water subsystem of Nanliang spring presented the characteristics of carbonate stratum runoff. The karst water subsystem of Fuling Mountain Gaoxian Haitou spring and the deep circulation subsystem of Houma Basin exhibited the runoff characteristics of carbonate rock and igneous rock strata. The karst water subsystem of Taiershan Jiuyuanshan Gudui spring presented the runoff characteristics of carbonate rock and ancient silicoaluminate strata. The δ18O value in karst groundwater of Guodui spring area ranged from -11.46‰ to -7.81‰, and the average value was -10.08‰. The range of the δD value was -83.7‰ to -60.8‰, and the average value was -73.6‰. This showed that karst groundwater in the spring area was the result of mixing of various types of water. Through comparative analysis of hydrogen and oxygen isotopes of 2014 and 2021 sampling points at the same location, it was concluded that the change in water samples at the Guduiquan resulted from the gradual accumulation of water supplied by Sanquan Reservoir. The change in Sanquan Reservoir was due to the influence of Yellow River diversion. The karst groundwater in the spring area were characterized by large calcium ion, magnesium ion, and sodium ion values; a small potassium ion value; a large sulfate value; and a small chloride value. The hydrochemical types of karst groundwater in Gudui spring catchment could be divided into SO4-Na, SO4-Ca, HCO3-Na, HCO3-Mg, HCO3-Ca, and Cl-Na. The hydrochemical types of karst groundwater showed evident hydrochemical composition zoning from HCO3-Ca·Mg→HCO3·SO4-Ca·Mg→SO4·HCO3-Na·Ca→SO4·Cl-Na·Ca. According to the comprehensive analysis of hydrochemical isotope and hydrogeological conditions, the karst water subsystem of Nanliang spring was primarily recharged by rainfall infiltration in the exposed limestone area and river infiltration, and its karst groundwater was recharged by runoff from south to north to the karst water subsystem of Fuling Mountain Gaoxian Haitou spring and the deep circulation subsystem of Houma Basin. The karst water subsystem of Taier Jiuyuan Mountain Gudui spring received rainfall infiltration supplement and upstream runoff supplement from the exposed limestone area. Its karst groundwater flowed from north to south and received the supply of Sanquan Reservoir from Yellow River water in the natural discharge area of Gudui spring.

19.
Huan Jing Ke Xue ; 44(8): 4292-4303, 2023 Aug 08.
Artículo en Chino | MEDLINE | ID: mdl-37694624

RESUMEN

Surface runoff has dropped sharply in the mountainous area of the Hutuo River, posing a huge challenge to the sustainable use of groundwater in the North China Plain (NCP). The Taihang Mountain area is the main recharge source area of groundwater in the NCP. An in-depth study of spatial variation characteristics, influencing factors, and sources of hydrogeochemical characteristics of surface water and groundwater in the mountainous area of the Hutuo River can facilitate a comprehensive understanding of regional water resource status and sustainable utilization of water resources. Based on isotopic, hydrogeochemical, and mathematical statistics methods, this study analyzed spatial variation of hydrochemical characteristics in surface water and groundwater and its sources and main controlling factors. The results showed that the river water, well water, and spring water were all recharged by atmospheric precipitation in the mountainous areas of the Hutuo River. Under the combined influence of natural factors and human factors, the hydrogeochemical characteristics of river, well, and spring water showed large spatial differences. On the whole, the hydrochemical types of mainstreams were relatively concentrated. In the upper and lower mining reach areas, the mainstream water chemical type was dominated by Ca·Mg-SO4·HCO3, whereas that in the natural vegetation area (middle reach:between Qingshui River and Longhua River) was dominated by Ca·Mg-HCO3·SO4. In the upper stream, the main hydrochemical type of the Yukou River and Ehe River tributaries was Ca·Mg-SO4·HCO3, which was consistent with that of the main stream. The main hydrochemical types of the Muma River and Qingshui River tributaries were Ca-HCO3, Ca·Mg-HCO3, and Ca·Mg-HCO3·SO4 in the midstream. The main hydrochemical types of the Mianhe River and Yehe River tributaries were Ca-SO4, Ca·Mg-SO4, and Ca·Mg-SO4·HCO3. Mineral dissolution was still the main controlling factor for the hydrochemical characteristics of surface water and groundwater in the mountainous area of the Hutuo River. The contribution rates were 69.86% and 18.84% for mineral dissolution and human activities, respectively. Therefore, in the future, water resource utilization in the upper reaches of the Hutuo River should not only consider the issue of water quantity but also a series of water environment problems such as nitrate pollution and mining pollution caused by human activities.

20.
Sci Total Environ ; 904: 166699, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37660817

RESUMEN

Excess fluoride (F-) in groundwater can be hazardous to human health of local residents who rely upon it. Beside natural sources, anthropogenic input may be an additional source to be considered. Twenty surface water and 396 groundwater samples were collected from the Nansi Lake Basin, with hydrogeochemical and isotope techniques employed to clarify the spatial variability, source, and the natural and anthropogenic factors regulating the occurrence of high F- groundwater. The factors responsible for elevated F- levels in surface water and deep confined aquifers are discussed based on their hydraulic relationship. Also a conceptual model of F- enrichment with different aquifer systems is put forward based on the geomorphic units of the basin. The results show that F- concentration is between 0.1 and 6.9 mg/L in the west of Lake, while ranged from 0.03 to 1.74 mg/L in the east of Lake. The hydrogeological setting and lithology are the primary factor determining the provenance of high-fluoride groundwater in the basin. Fluoride mainly originated from the dissolution of fluorine-bearing minerals, and is affected by the alkaline groundwater environment, cation exchange, adsorption, and evaporation. The landforms on the east side of Nansi Lake are low hills and piedmont sedimentary plains, where the aquifers consist of karst fissure water and overlying porewater. High F- groundwater is not observed in this area due to its rapid flow and Ca2+-enriched hydrochemical characteristics. The anthropogenic input (such as fertilizer application on farms and illegal industrial pollutant discharge), contribute F- to groundwater in varying degrees, especially in the shallow aquifers east of the lake and in some parts west of the lake. This work is a clear example of how natural processes together with human activities can affect the chemical quality of groundwater, which is essential to safeguard the sustainable management of water resources in semi-arid areas.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA