Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 164
Filtrar
Más filtros










Intervalo de año de publicación
1.
ACS Nano ; 18(23): 14954-14967, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38820368

RESUMEN

Chitin nanofibrils (ChNF) sourced from discarded marine biomass are shown as effective stabilizers of carbon nanomaterials in aqueous media. Such stabilization is evaluated for carbon nanotubes (CNT) considering spatial and temporal perspectives by using experimental (small-angle X-ray scattering, among others) and theoretical (atomistic simulation) approaches. We reveal that the coassembly of ChNF and CNT is governed by hydrophobic interactions, while electrostatic repulsion drives the colloidal stabilization of the hybrid ChNF/CNT system. Related effects are found to be transferable to multiwalled carbon nanotubes and graphene nanosheets. The observations explain the functionality of hybrid membranes obtained by aqueous phase processing, which benefit from an excellent areal mass distribution (correlated to piezoresistivity), also contributing to high electromechanical performance. The water resistance and flexibility of the ChNF/CNT membranes (along with its tensile strength at break of 190 MPa, conductivity of up to 426 S/cm, and piezoresistivity and light absorption properties) are conveniently combined in a device demonstration, a sunlight water evaporator. The latter is shown to present a high evaporation rate (as high as 1.425 kg water m-2 h-1 under one sun illumination) and recyclability.

2.
Angew Chem Int Ed Engl ; 63(23): e202402139, 2024 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-38563765

RESUMEN

The development of artificial receptors that combine ultrahigh-affinity binding and controllable release for active guests holds significant importance in biomedical applications. On one hand, a complex with an exceedingly high binding affinity can resist unwanted dissociation induced by dilution effect and complex interferents within physiological environments. On the other hand, stimulus-responsive release of the guest is essential for precisely activating its function. In this context, we expanded hydrophobic cavity surface of a hypoxia-responsive azocalix[4]arene, affording Naph-SAC4A. This modification significantly enhanced its aqueous binding affinity to 1013 M-1, akin to the naturally occurring strongest recognition pair, biotin/(strept-)avidin. Consequently, Naph-SAC4A emerges as the first artificial receptor to simultaneously integrate ultrahigh recognition affinity and actively controllable release. The markedly enhanced affinity not only improved Naph-SAC4A's sensitivity in detecting rocuronium bromide in serum, but also refined the precision of hypoxia-responsive doxorubicin delivery at the cellular level, demonstrating its immense potential for diverse practical applications.


Asunto(s)
Avidina , Biotina , Calixarenos , Interacciones Hidrofóbicas e Hidrofílicas , Calixarenos/química , Biotina/química , Avidina/química , Avidina/metabolismo , Humanos , Propiedades de Superficie , Doxorrubicina/química , Doxorrubicina/farmacología , Doxorrubicina/metabolismo , Preparaciones de Acción Retardada/química , Fenoles/química
3.
Molecules ; 29(7)2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38611701

RESUMEN

Amphiphilic fluorocarbon substances are a trending topic of research due to their wide range of applications accompanied by an alarming environmental and health impact. In order to predict their fate in the environment, use them more economically, develop new water treatment methods, etc., a better understanding of their physicochemical behavior is required. Their hydrophobicity in water/oil systems is particularly sensitive to one key thermodynamic parameter: the free energy of transfer of a perfluoromethylene group from oil to water. However, for the -CF2- moiety, the transfer energy values reported in the literature vary by more than ±25%. Due to the exponential relationship between this energy and the adsorption constants or the partition coefficients, such an uncertainty can lead to orders of magnitude error in the predicted distribution of fluorinated species. We address this problem by presenting an experimental determination of the hydrophobic effect of a -CF2- moiety with a greater certainty than currently available. The transfer energy is determined by measuring the interfacial tension of water|hexane for aqueous solutions of short-chained fluorotelomer alcohols. The obtained results for the free energy of transfer of a -CF2- moiety from oil to water are 1.68±0.02×RT0, 1.75±0.02×RT0, and 1.88±0.02×RT0 at 288.15 K, 293.15 K, and 303.15 K, respectively.

4.
Angew Chem Int Ed Engl ; 63(3): e202313974, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-37934010

RESUMEN

Water is a ubiquitous component in heterogeneous catalysis over zeolites and can significantly influence the catalyst performance. However, the detailed mechanism insights into zeolite-catalyzed reactions under microscale aqueous environment remain elusive. Here, using multiple dimensional solid-state NMR experiments coupled with ultrahigh magic angle spinning technique and theoretical simulations, we establish a fundamental understanding of the role of water in benzene methylation over ZSM-5 zeolite under water vapor conditions. We show that water competes with benzene for the active sites of zeolite and facilitates the bimolecular reaction mechanism. The growth of water clusters induces a micro-hydrophobic effect in zeolite pores, which reorients benzene molecules and drives their interactions with surface methoxy species (SMS) on zeolite. We identify the formation and evolution of active SMS-Benzene complexes in a microscale aqueous environment and demonstrate that their accumulation in zeolite pores boosts benzene conversion and methylation.

5.
Angew Chem Int Ed Engl ; 63(2): e202314962, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38032351

RESUMEN

An empirical model was developed to predict organic solvophobic effects using N-phenylimide molecular balances functionalized with non-polar alkyl groups. Solution studies and X-ray crystallography confirmed intramolecular alkyl-alkyl interactions in their folded conformers. The structural modularity of the balances allowed systematic variation of alkyl group lengths. Control balances were instrumental in isolating weak organic solvophobic effects by eliminating framework solvent-solute effects. A 19 F NMR label enabled analysis across 46 deuterated and non-deuterated solvent systems. Linear correlations were observed between organic solvophobic effects and solvent cohesive energy density (ced) as well as changes in solvent-accessible surface areas (SASA). Using these empirical relationships, a model was constructed to predict organic solvophobic interaction energy per unit area for any organic solvent with known ced values. The predicted interaction energies aligned with recent organic solvophobic measurements and literature values for the hydrophobic effect on non-polar surfaces confirmed the model's accuracy and utility.

6.
Adv Mater ; 36(5): e2311023, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38050947

RESUMEN

Electrocatalytic synthesis of amino acids provides a promising green and efficient pathway to manufacture the basic substances of life. Herein, reaction of 2,5-perfluroalkyl-terepthalohydrazide and tris(4-µ2 -O-carboxaldehyde-pyrazolato-N, N')-tricopper affords a crystalline trinuclear copper cluster-containing organic framework, named F-Cu3 -OF. Incorporation of abundant hydrophobic perfluroalkyl groups inside the channels of F-Cu3 -OF is revealed to successfully suppress the hydrogen evolution reaction via preventing H+ cation with large polarity from the framework of F-Cu3 -OF and in turn increasing the adsorption of other substrates with relatively small polarity like NO3 - and keto acids on the active sites. The copper atoms with short distance in the trinuclear copper clusters of F-Cu3 -OF enable simultaneous activization of NO3 - and keto acids, facilitating the following synergistic and efficient C─N coupling on the basis of in situ spectroscopic investigations together with theoretical calculation. Combination of these effects leads to efficient electroproduction of various amino acids including glycine, alanine, leucine, valine, and phenylalanine from NO3 - and keto acids with a Faraday efficiency of 42%-71% and a yield of 187-957 µmol cm-2 h-1 , representing the thus far best performance. This work shall be helpful for developing economical, eco-friendly, and high-efficiency strategy for the production of amino acids and other life substances.

7.
Angew Chem Int Ed Engl ; 63(4): e202315297, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-37945544

RESUMEN

Tailoring the hydrophobicity of supramolecular assembly building blocks enables the fabrication of well-defined functional materials. However, the selection of building blocks used in the assembly of metal-phenolic networks (MPNs), an emerging supramolecular assembly platform for particle engineering, has been essentially limited to hydrophilic molecules. Herein, we synthesized and applied biscatechol-functionalized hydrophobic polymers (poly(methyl acrylate) (PMA) and poly(butyl acrylate) (PBA)) as building blocks to engineer MPN particle systems (particles and capsules). Our method allowed control over the shell thickness (e.g., between 10 and 21 nm), stiffness (e.g., from 10 to 126 mN m-1 ), and permeability (e.g., 28-72 % capsules were permeable to 500 kDa fluorescein isothiocyanate-dextran) of the MPN capsules by selection of the hydrophobic polymer building blocks (PMA or PBA) and by controlling the polymer concentration in the MPN assembly solution (0.25-2.0 mM) without additional/engineered assembly processes. Molecular dynamics simulations provided insights into the structural states of the hydrophobic building blocks during assembly and mechanism of film formation. Furthermore, the hydrophobic MPNs facilitated the preparation of fluorescent-labeled and bioactive capsules through postfunctionalization and also particle-cell association engineering by controlling the hydrophobicity of the building blocks. Engineering MPN particle systems via building block hydrophobicity is expected to expand their use.

8.
Chemistry ; 29(68): e202302461, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-37702459

RESUMEN

Electrochemical carbon dioxide reduction (CO2 R) is a promising pathway for converting greenhouse gasses into valuable fuels and chemicals using intermittent renewable energy. Enormous efforts have been invested in developing and designing CO2 R electrocatalysts suitable for industrial applications at accelerated reaction rates. The microenvironment, specifically the local CO2 concentration (local [CO2 ]) as well as the water and ion transport at the CO2 -electrolyte-catalyst interface, also significantly impacts the current density, Faradaic efficiency (FE), and operation stability. In nature, hydrophobic surfaces of aquatic arachnids trap appreciable amounts of gases due to the "plastron effect", which could inspire the reliable design of CO2 R catalysts and devices to enrich gaseous CO2 . In this review, starting from the wettability modulation, we summarize CO2 enrichment strategies to enhance CO2 R. To begin, superwettability systems in nature and their inspiration for concentrating CO2 in CO2 R are described and discussed. Moreover, other CO2 enrichment strategies, compatible with the hydrophobicity modulation, are explored from the perspectives of catalysts, electrolytes, and electrolyzers, respectively. Finally, a perspective on the future development of CO2 enrichment strategies is provided. We envision that this review could provide new guidance for further developments of CO2 R toward practical applications.

9.
Macromol Rapid Commun ; 44(14): e2300118, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37128838

RESUMEN

The non-canonical photoisomerization-induced phase separation of an azobenzene-bearing polymer is found. The polymer composed of acrylate-based azobenzene (AzoAA) and N,N-dimethylacrylamide (DMA), namely poly(AzoAA-r-DMA), phase separates under visible light-induced cis-to-trans isomerization at high molecular weight, whereas the phase separation is realized under UV light-induced trans-to-cis isomerization at low molecular weight. Conventionally, the origin of photoisomerization-induced phase separation is believed to arise from the difference in polarity between the apolar trans and polar cis states; thereby the direction of phase changes, either to separate or dissolute, is uniquely determined by the polarity changes during the isomerization of azobenzene. Contrary to this common perception, the poly(AzoAA-r-DMA) in this study phase separates through both trans and cis isomerization, depending on the molecular weight. The non-canonical phase separation of poly(AzoAA-r-DMA) reported herein suggests that molecular weight plays a significant role in determining the phase behavior of azobenzene-bearing polymers. This study provides a platform for the development of spatial-temporally controlled delivery vehicles and microreactors.


Asunto(s)
Luz , Polímeros , Peso Molecular , Rayos Ultravioleta
10.
ACS Chem Neurosci ; 14(10): 1905-1920, 2023 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-37125909

RESUMEN

While several polyphenols were found to either inhibit or modulate the aggregation of proteins implicated in neurodegenerative diseases, such as Parkinson's disease (PD), discrepant action mechanisms have been reported. This, in addition to some polyphenols' pan-assay interference compounds' reputation, casts some doubts concerning their therapeutic relevance. Here, we studied, through molecular dynamics and enhanced sampling methods, the aggregation of 11-mer peptides from the non-amyloid-ß component, an aggregation-prone domain of α-synuclein (α-syn) implicated in PD and other synucleinopathies, in neat water and aqueous solutions of resveratrol (RSV) and gallic acid (GA). Further, simulations of the complete protein were carried out in aqueous urea, RSV, and GA solutions. Our results show that peptide aggregation is not disrupted by either phenolic compound. Thus, instead, intrusion of RSV and GA in the inter-peptide region induces a peptide-peptide re-orientation, favoring terminal interactions that manifest in the formation of barrierless solvent-separated configurations. Moreover, although the (poly)phenols induce a pronounced peptide dewetting at high concentrations, ß-sheet-rich regions, a hallmark of α-syn aggregation, are not disrupted. Thus, our results indicate that, if anything, RSV and GA delay or modulate peptide aggregation at high concentrations via the stabilization of solvent-separated conformations as opposed to aggregation inhibition. Structural analysis of the full protein, however, shows that the (poly)phenols induce more extended conformations of α-syn, similar to urea, possibly also influencing its aggregation propensity. However, opposite to urea, the (poly)phenols reduce α-syn's conformational space, likely due to steric effects and a slowdown of the solvent dynamics. These effects are concentration-dependent and possibly unattainable at therapeutic-relevant concentrations. These results suggest that the aggregation inhibition activity of RSV and GA in vitro should involve, instead, either the non-covalent binding to oligomeric intermediates or the stabilization of the monomer and/or oligomers through the formation of covalent bonds of the respective quinones with α-syn. In addition, the enhanced aggregation tendency of the peptides observed here could be associated with the formation of non-toxic oligomers, reported for some polyphenols.


Asunto(s)
Enfermedad de Parkinson , alfa-Sinucleína , Humanos , alfa-Sinucleína/metabolismo , Polifenoles/farmacología , Polifenoles/uso terapéutico , Agregado de Proteínas , Enfermedad de Parkinson/metabolismo , Péptidos/farmacología , Péptidos/uso terapéutico
11.
Anal Bioanal Chem ; 415(16): 3243-3253, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37083760

RESUMEN

Membrane environments affect protein structures and functions through protein-membrane interactions in a wide range of important biological processes. To better study the effects from the lipid's hydrophilic and hydrophobic interaction with protein on different membrane regions, we developed the lipid-coated nanoporous silver sheets to provide tunable supported lipid monolayer/bilayer environments for in situ surface-enhanced Raman vibrational spectroscopy (SERS) characterizations. Under the controllable surface pressure, lipid monolayer/bilayer was coated along the microscopic curved surface of nanoporous silver sheets to serve as a cell membrane mimic as well as a barrier to avoid protein denaturation while empowering the high SERS enhancements from the underlying metallic bases allowing detection sensitivity at low physiological concentrations. Moreover, we fine-tuned the lipid packing density and controlled the orientation of the deposited lipid bilayers and monolayers to directly monitor the protein structures upon interactions with various membrane parts/positions. Our results indicate that lysozyme adopted the α-helical structure in both hydrophilic and hydrophobic interaction with lipid membrane. Interestingly, alpha-synuclein folded into the α-helical structure on the negatively charged lipid heads, whereas the hydrophobic lipid tails induced the ß-sheet structural conversion of alpha-synuclein originated from its unstructured monomers. These direct observations on protein hydrophilic and hydrophobic interaction with lipid membrane might provide profound insights into the formation of the ß-sheet-containing alpha-synuclein oligomers for further membrane disruptions and amyloid genesis associated with Parkinson's disease. Hence, with the controllability and tunability of lipid environments, our platform holds great promise for more general applications in investigating the influences from membranes and the correlative structures of proteins under both hydrophilic and hydrophobic effects.


Asunto(s)
Nanoporos , Lípidos/química , Plata/química , Espectrometría Raman
12.
Molecules ; 28(7)2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-37049767

RESUMEN

The research on perylene diimide (PDI) aggregates effectively promotes their applications in organic photovoltaic solar cells and fluorescent sensors. In this paper, a PDI fabricated with three peripheral PDI units (N, N'-bis(6-undecyl) perylene-3,4,9,10-bis(dicarboximide)) is investigated. The trimer shows different absorption and fluorescence properties due to hydrophobicity when dissolved in the mixed solvent of tetrahydrofuran (THF) and water. Through comprehensive analysis of the fluorescence lifetime and transient absorption spectroscopic results, we concluded that the trimer underwent different excited state kinetic pathways with different concentrations of water in THF. When dissolved in pure THF solvent, both the intramolecular charge-transfer and excimer states are formed. When the water concentration increases from 0 to 50% (v/v), the formation time of the excimer state and its structural relaxation time are prolonged, illustrating the arising of the intermolecular excimer state. It is interesting to determine that the probability of the intramolecular charge-transfer pathway will first decrease and then increase as the speed of intermolecular excimer formation slows down. The two inflection points appear when the water concentration is above 10% and 40%. The results not only highlight the importance of hydrophobicity on the aggregate properties of PDI multimers but also guide the further design of PDI-based organic photovoltaic solar cells.

13.
Chemistry ; 29(34): e202300594, 2023 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-36974937

RESUMEN

Redox-responsive nanocarriers using disulfides or thiols have received considerable attention owing to the higher levels of glutathione (GSH) in cancer cells than those in extracellular fluids. Nevertheless, the normal-to-cancer-cell selectivity of these nanocarriers has not yet been clarified. Nanocarriers exhibit different cytotoxicities depending on the morphologies they adopt under the redox-active conditions typically existing in cancerous cells. Therefore, not only GSH levels but also reactive oxygen species (ROS) levels and other complex cancerous cell conditions must be considered for the development of smart drug delivery systems. In this article, we review the structural design of redox-responsive polymers that exhibit different morphological changes in environments akin to cancerous cells (e. g., GSH- and ROS-abundant conditions). In addition, we propose a molecular design for the spatiotemporal control of nanocarrier morphology depending on the levels of both GSH and ROS upon photoirradiation to increase the cytotoxicity difference between normal and cancer cells.


Asunto(s)
Nanopartículas , Especies Reactivas de Oxígeno , Línea Celular Tumoral , Nanopartículas/química , Sistemas de Liberación de Medicamentos , Polímeros/química , Oxidación-Reducción , Glutatión/química , Portadores de Fármacos/química
14.
Int J Mol Sci ; 24(3)2023 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-36768326

RESUMEN

Interactions between nanoparticles (NPs) determine their self-organization and dynamic processes. In these systems, a quantitative description of the interparticle forces is complicated by the presence of the hydrophobic effect (HE), treatable only qualitatively, and due to the competition between the hydrophobic and hydrophilic forces. Recently, instead, a sort of crossover of HE from hydrophilic to hydrophobic has been experimentally observed on a local scale, by increasing the temperature, in pure confined water and studying the occurrence of this crossover in different water-methanol solutions. Starting from these results, we then considered the idea of studying this process in different nanoparticle solutions. By using photon correlation spectroscopy (PCS) experiments on dendrimer with OH terminal groups (dissolved in water and methanol, respectively), we show the existence of this hydrophobic-hydrophilic crossover with a well defined temperature and nanoparticle volume fraction dependence. In this frame, we have used the mode coupling theory extended model to evaluate the measured time-dependent density correlation functions (ISFs). In this context we will, therefore, show how the measured spectra are strongly dependent on the specificity of the interactions between the particles in solution. The observed transition demonstrates that just the HE, depending sensitively on the system thermodynamics, determines the hydrophobic and hydrophilic interaction properties of the studied nanostructures surface.


Asunto(s)
Metanol , Agua , Suspensiones , Interacciones Hidrofóbicas e Hidrofílicas , Agua/química , Termodinámica
15.
Chempluschem ; 88(3): e202200392, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36775805

RESUMEN

Encapsulation of hydrophobic molecules in protein-based nanocages is a promising approach for dispersing these molecules in water. Here, we report a chemical modification approach to produce a protein nanocage with a hydrophobic interior surface based on our previously developed nanocage, TIP60. The large pores of TIP60 act as tunnels for small molecules, allowing modification of the interior surface by hydrophobic compounds without nanocage disassembly. We used four different hydrophobic compounds for modification. The largest modification group tested, pyrene, resulted in a modified TIP60 that could encapsulate aromatic photosensitizer zinc phthalocyanine (ZnPC) more efficiently than the other modification compounds. The encapsulated ZnPC generated singlet oxygen upon light activation in the aqueous phase, whereas ZnPC alone formed inert aggregates under the same experimental conditions. Given that chemical modification allows a wider diversity of modifications than mutagenesis, this approach could be used to develop more suitable nanocages for encapsulating hydrophobic molecules of interest.


Asunto(s)
Compuestos Organometálicos , Fotoquimioterapia , Compuestos Organometálicos/química , Fármacos Fotosensibilizantes/química , Oxígeno Singlete/química , Lisina Acetiltransferasa 5/química , Interacciones Hidrofóbicas e Hidrofílicas
16.
J Colloid Interface Sci ; 634: 983-994, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36571860

RESUMEN

HYPOTHESIS: Specific ion effects govern myriad biological phenomena, including protein-ligand interactions and enzyme activity. Despite recent advances, detailed understanding of the role of ion hydrophobicity in specific ion effects, and the intersection with hydrotropic effects, remains elusive. Short chain fatty acid sodium salts are simple amphiphiles which play an integral role in our gastrointestinal health. We hypothesise that increasing a fatty acid's hydrophobicity will manifest stronger salting-out behaviour. EXPERIMENTS: Here we study the effect of these amphiphiles on an exemplar thermoresponsive polymer brush system, conserving the carboxylate anion identity while varying anion hydrophobicity via the carbon chain length. Ellipsometry and quartz crystal microbalance with dissipation monitoring were used to characterise the thermoresponse and viscoelasticity of the brush, respectively, whilst neutron reflectometry was used to reveal the internal structure of the brush. Diffusion-ordered nuclear magnetic resonance spectroscopy and computational investigations provide insight into polymer-ion interactions. FINDINGS: Surface sensitive techniques unveiled a non-monotonic trend in salting-out ability with increasing anion hydrophobicity, revealing the bundle-like morphology of the ion-collapsed system. An intersection between ion-specific and hydrotropic effects was observed both experimentally and computationally; trending from good anti-hydrotrope towards hydrotropic behaviour with increasing anion hydrophobicity, accompanying a change in hydrophobic hydration.


Asunto(s)
Polímeros , Cloruro de Sodio , Polímeros/química , Aniones/química , Interacciones Hidrofóbicas e Hidrofílicas , Hidrocarburos
17.
Chemphyschem ; 24(2): e202200371, 2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36073234

RESUMEN

A clear case of relationship between the monomer molecular structure and the capability of tuning the morphology of electrodeposited gas bubbles template polymer thin films is shown. To this end, a series of fluorene-bridged dicarbazole derivatives containing either linear or terminally branched polyfluorinated side chains connected to the fluorene subunit were synthesized and their electrochemical properties were investigated. The new compounds underwent electrochemical polymerization over indium tin oxide electrodes to give hydrophobic films with nanostructural and morphological properties strongly dependent on the nature of the side chains. Gas bubbles templated electropolymerization was next achieved by the addition of tiny amounts of water to the monomer solutions, without using surfactants. Within the investigated set of molecules, the nanostructural properties of the soft-templated films obtained from monomers bearing linear side chains could be fine-tuned by adjusting electrochemical parameters, leading to superhydrophobic surfaces.


Asunto(s)
Nanoestructuras , Interacciones Hidrofóbicas e Hidrofílicas , Nanoestructuras/química , Agua , Fluorenos
18.
Biomimetics (Basel) ; 7(4)2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36546921

RESUMEN

Electronic absorption spectroscopy was used to study the ETR of surfactant-cobalt(III) complexes containing imidazo[4,5-f][1,10]phenanthroline, dipyrido[3,2-d:2'-3'-f]quinoxaline and dipyrido[3,2-a:2',4'-c](6,7,8,9-tetrahydro)phenazine ligands by using ferrocyanide ions in unilamellar vesicles of dipalmitoylphosphotidylcholine (DPPC) and 1-butyl-3-methylimidazolium bromide ((BMIM)Br), at different temperatures under pseudo-first-order conditions using an excess of the reductant. The reactions were found to be second-order and the electron transfer is postulated as occurring in the outer sphere. The rate constant for the electron transfer reactions was found to increase with increasing concentrations of ionic liquids. Besides these, the effects of surfactant complex ions on liposome vesicles in these same reactions have also been studied on the basis of hydrophobicity. We observed that, below the phase transition temperature, there is an increasing amount of surfactant-cobalt(III) complexes expelled from the interior of the vesicle membrane through hydrophobic effects, while above the phase transition temperature, the surfactant-cobalt(III) complexes are expelled from the interior to the exterior surface of the vesicle. Kinetic data and activation parameters are interpreted in respect of an outer-sphere electron transfer mechanism. By assuming the existence of an outer-sphere mechanism, the results have been clarified based on the presence of hydrophobicity, and the size of the ligand increases from an ip to dpqc ligand and the reactants become oppositely charged. In all these media, the ΔS# values are recognized as negative in their direction in all the concentrations of complexes employed, indicative of a more ordered structure of the transition state. This is compatible with a model in which these complexes and [Fe(CN)6]4- ions bind to the DPPC in the transition state. Thus, the results have been interpreted based on the self-aggregation, hydrophobicity, charge densities of the co-ligand and the reactants with opposite charges.

19.
Molecules ; 27(22)2022 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-36431770

RESUMEN

A spectrophotometric study of the solubilization and aggregation of the Nile red dye (NR) in premicellar and micellar aqueous solutions of sodium dodecyl sulfate (SDS) was carried out. The experiments were conducted both with saturated solutions of NR under conditions of thermodynamic equilibrium of the solution with a dye precipitate, and at a constant concentration of NR in a homogeneous solution. In the first case, it was proved theoretically and verified experimentally that with an increase in the SDS concentration, the NR concentration always increases, and at the limit of low concentrations, the dependence is linear. In both cases, the concentration of NR dimers as a function passes through a maximum in the premicellar region. There are no dimers in the micellar region. The extinction coefficients of NR monomers in SDS solutions were determined both below and above the critical micelle concentration (CMC) of SDS. A solubilization curve with branches for the premicellar and micellar regions was constructed, the intersection of which was used to find the CMC value in the system under study. The state of deep supersaturation of the NR solution in the metastable state upon dilution of the micellar system with water was studied. It was found that, in addition to dimers, molecular aggregates of higher orders were also formed.


Asunto(s)
Micelas , Oxazinas , Dodecil Sulfato de Sodio , Polímeros , Agua
20.
Proc Natl Acad Sci U S A ; 119(48): e2213170119, 2022 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-36409898

RESUMEN

Confining compartments are ubiquitous in biology, but there have been few experimental studies on the thermodynamics of protein folding in such environments. Recently, we reported that the stability of a model protein substrate in the GroEL/ES chaperonin cage is reduced dramatically by more than 5 kcal mol-1 compared to that in bulk solution, but the origin of this effect remained unclear. Here, we show that this destabilization is caused, at least in part, by a diminished hydrophobic effect in the GroEL/ES cavity. This reduced hydrophobic effect is probably caused by water ordering due to the small number of hydration shells between the cavity and protein substrate surfaces. Hence, encapsulated protein substrates can undergo a process similar to cold denaturation in which unfolding is promoted by ordered water molecules. Our findings are likely to be relevant to encapsulated substrates in chaperonin systems, in general, and are consistent with the iterative annealing mechanism of action proposed for GroEL/ES.


Asunto(s)
Chaperonina 60 , Pliegue de Proteína , Chaperonina 60/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Termodinámica , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA