Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Eur J Case Rep Intern Med ; 11(4): 004379, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38584907

RESUMEN

Background: Hyperargininemia is a rare inherited metabolic disorder of the urea cycle with an autosomal recessive transmission. It occurs due to a deficiency of the enzyme arginase I and causes progressive neurological damage. Very few cases are diagnosed in adulthood, with the majority being diagnosed before the age of 4. Currently, this condition is diagnosed by a mass spectrometry technique in neonatal screening, which has been implemented in Portugal since 2007; births before that were not screened for this entity. Case description: We present a case of a 23-year-old woman referred to the internal medicine and neurology departments with a history of two hospital admissions for rhabdomyolysis at the age of 18, consanguineous parents, learning difficulties and multiple falls since the age of 8. In addition, the patient also had behavioural changes so she had psychological counselling at school, but lacked family support. Neurological examination showed mild proximal paraparesis, and spastic and paraparetic gait. The aetiological study revealed a pathological variant in homozygosity ARG1 and increased blood levels of arginine. Therefore, the diagnosis of hyperargininemia was confirmed. Conclusions: Compared to other urea cycle disorders, hyperargininemia is the rarest one. It is important to recognise the characteristic clinical features and diagnose it early because a favourable outcome can be achieved with appropriate treatment. This case shows a delayed diagnosis of hyperargininemia and highlights the importance of the internist's role in diagnosing rare diseases. LEARNING POINTS: Hyperargininemia is a rare hereditary metabolic disease of the urea cycle and the rarest of the disorders affecting this cycle.The diagnosis is almost always made within the first four years of life and very few are diagnosed in adulthood.Early diagnosis is essential to reduce the progression of neurological damage, through appropriate treatment.

2.
Mov Disord Clin Pract ; 10(1): 109-114, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36698992

RESUMEN

Background: Arginase 1 Deficiency (ARG1-D) is a rare autosomal recessive urea cycle disorder (UCD) characterized by pathologic elevation of plasma arginine and debilitating manifestations. Based on clinical commonalities and low disease awareness, ARG1-D can be diagnosed as hereditary spastic paraplegia (HSP), leading to treatment delays. Cases: A Hispanic woman with unremarkable medical history experienced progressive lower-limb spasticity in her 20s and received a diagnosis of HSP. She developed significant gait abnormalities and is unable to walk without assistance. More recently, two Hispanic brothers with childhood-onset manifestations including lower-limb spasticity, developmental delays, and seizures presented with suspected HSP. All three patients were ultimately diagnosed with ARG1-D based on plasma arginine several-fold above normal levels and loss-of-function ARG1 variants. Disease progression occurred before ARG1-D was correctly diagnosed. Literature Review: Retrospective analyses demonstrate that diagnostic delays in ARG1-D are common and can be lengthy. Because of clinical similarities between ARG1-D and HSP, such as insidious onset and progressive spasticity, accurate diagnosis of ARG1-D is challenging. Timely ARG1-D diagnosis is critical because this UCD is a treatable genetic cause of progressive lower-limb spasticity. Conclusions: Arginase 1 Deficiency should be considered in HSP differential diagnosis until biochemically/genetically excluded, and should be routinely included in HSP gene panels.

3.
J Inherit Metab Dis ; 46(1): 3-14, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36175366

RESUMEN

Arginase 1 Deficiency (ARG1-D) is a rare urea cycle disorder that results in persistent hyperargininemia and a distinct, progressive neurologic phenotype involving developmental delay, intellectual disability, and spasticity, predominantly affecting the lower limbs and leading to mobility impairment. Unlike the typical presentation of other urea cycle disorders, individuals with ARG1-D usually appear healthy at birth and hyperammonemia is comparatively less severe and less common. Clinical manifestations typically begin to develop in early childhood in association with high plasma arginine levels, with hyperargininemia (and not hyperammonemia) considered to be the primary driver of disease sequelae. Nearly five decades of clinical experience with ARG1-D and empirical studies in genetically manipulated models have generated a large body of evidence that, when considered in aggregate, implicates arginine directly in disease pathophysiology. Severe dietary protein restriction to minimize arginine intake and diversion of ammonia from the urea cycle are the mainstay of care. Although this approach does reduce plasma arginine and improve patients' cognitive and motor/mobility manifestations, it is inadequate to achieve and maintain sufficiently low arginine levels and prevent progression in the long term. This review presents a comprehensive discussion of the clinical and scientific literature, the effects and limitations of the current standard of care, and the authors' perspectives regarding the past, current, and future management of ARG1-D.


Asunto(s)
Hiperamonemia , Hiperargininemia , Trastornos Innatos del Ciclo de la Urea , Preescolar , Humanos , Arginasa/genética , Arginina , Hiperamonemia/metabolismo
4.
JIMD Rep ; 63(6): 563-567, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36341162

RESUMEN

Individuals suspected of or diagnosed with a rare disorder, including inherited metabolic disorders (IMD), often need frequent and/or urgent vascular access for blood draws and treatment, making central indwelling catheters commonly used devices in this patient population. These indwelling catheters are prone to thrombosis, limiting vascular access. This complication is frequently resolved with the use of altepase, a recombinant tissue plasminogen activator (tPA). This report describes two individuals, one with a known IMD and one undergoing evaluation for an IMD, who were found to have hyperargininemia (>500 µM; reference 10-140 µM) by plasma amino acid (PAA) analysis of a specimen collected ~1.5-3 h after clearance of an indwelling catheter with tPA. In both cases, hyperargininemia resolved with repeat testing, suggesting pseudo-hyperargininemia secondary to tPA administration. Quantitative amino acid analysis of the administered tPA demonstrated an arginine level of ~200 mM, supporting tPA as the cause of pseudo-hyperargininemia. Certain formulations of tPA contain high concentrations of arginine, which if not cleared properly can result in marked elevations of arginine, mimicking arginase deficiency or suggesting arginine supplementation. Thus, the possibility of pseudohyperargininemia due to tPA administration should be considered when obtaining PAAs from an indwelling catheter in any individual being evaluated or managed for an IMD.

5.
Mol Genet Metab ; 137(1-2): 153-163, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36049366

RESUMEN

BACKGROUND: Arginase 1 Deficiency (ARG1-D) is a rare, progressive, metabolic disorder that is characterized by devastating manifestations driven by elevated plasma arginine levels. It typically presents in early childhood with spasticity (predominately affecting the lower limbs), mobility impairment, seizures, developmental delay, and intellectual disability. This systematic review aims to identify and describe the published evidence outlining the epidemiology, diagnosis methods, measures of disease progression, clinical management, and outcomes for ARG1-D patients. METHODS: A comprehensive literature search across multiple databases such as MEDLINE, Embase, and a review of clinical studies in ClinicalTrials.gov (with results reported) was carried out per PRISMA guidelines on 20 April 2020 with no date restriction. Pre-defined eligibility criteria were used to identify studies with data specific to patients with ARG1-D. Two independent reviewers screened records and extracted data from included studies. Quality was assessed using the modified Newcastle-Ottawa Scale for non-comparative studies. RESULTS: Overall, 55 records reporting 40 completed studies and 3 ongoing studies were included. Ten studies reported the prevalence of ARG1-D in the general population, with a median of 1 in 1,000,000. Frequently reported diagnostic methods included genetic testing, plasma arginine levels, and red blood cell arginase activity. However, routine newborn screening is not universally available, and lack of disease awareness may prevent early diagnosis or lead to misdiagnosis, as the disease has overlapping symptomology with other diseases, such as cerebral palsy. Common manifestations reported at time of diagnosis and assessed for disease progression included spasticity (predominately affecting the lower limbs), mobility impairment, developmental delay, intellectual disability, and seizures. Severe dietary protein restriction, essential amino acid supplementation, and nitrogen scavenger administration were the most commonly reported treatments among patients with ARG1-D. Only a few studies reported meaningful clinical outcomes of these interventions on intellectual disability, motor function and adaptive behavior assessment, hospitalization, or death. The overall quality of included studies was assessed as good according to the Newcastle-Ottawa Scale. CONCLUSIONS: Although ARG1-D is a rare disease, published evidence demonstrates a high burden of disease for patients. The current standard of care is ineffective at preventing disease progression. There remains a clear need for new treatment options as well as improved access to diagnostics and disease awareness to detect and initiate treatment before the onset of clinical manifestations to potentially enable more normal development, improve symptomatology, or prevent disease progression.


Asunto(s)
Hiperargininemia , Discapacidad Intelectual , Recién Nacido , Humanos , Preescolar , Arginasa/genética , Hiperargininemia/diagnóstico , Hiperargininemia/epidemiología , Hiperargininemia/genética , Convulsiones/diagnóstico , Convulsiones/epidemiología , Convulsiones/etiología , Espasticidad Muscular/diagnóstico , Espasticidad Muscular/epidemiología , Espasticidad Muscular/genética , Arginina/uso terapéutico , Aminoácidos Esenciales , Progresión de la Enfermedad , Nitrógeno
6.
JIMD Rep ; 63(4): 330-340, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35822089

RESUMEN

Background: Arginase 1 deficiency (ARG1-D) is a rare, progressive and debilitating urea cycle disorder characterized by clinical manifestations including spasticity, seizures, developmental delay, and intellectual disability. The aim of this systematic review was to identify and summarize the natural history of ARG1-D and the unmet needs of patients. Methods: A comprehensive search of published case reports was undertaken to identify patients with ARG1-D regardless of interventions, comparisons, or outcomes. MEDLINE, EMBASE, Cochrane Central Register of Controlled Trials, and other evidence-based medicine literature databases were searched on 20 April 2020. Quality was assessed using the Joanna Briggs Institute (JBI) Critical Appraisal Checklist. (PROSPERO registration: CRD42020212142.). Results: One hundred and fifty seven ARG1-D patients were included from 111 publications (good overall quality based on JBI's Checklist); 84 (53.5%) were males. Motor deficits (including spasticity), intellectual disability, and seizures were reported in >50% of the cases. Mean age (SD) at diagnosis was 6.4 years and the laboratory findings most commonly reported to support diagnosis included elevated plasma arginine (81.5%), mutation in ARG1 gene through genetic testing (60%), and absence/reduction of red blood cell arginase activity (51%). Reported management approaches mainly included dietary protein restriction (68%), nitrogen scavengers (45%), and essential amino acid supplements (21%). Author-reported clinical improvement was documented for 26% of patients, 15% deteriorated, and 19% had limited or no change; notably, no indication of clinical outcome was reported for 40% cases. Conclusion: This review illustrates a significant burden of disease and highlights a considerable unmet need for clinically effective treatment options for patients with ARG1-D.

7.
J Med Econ ; 25(1): 848-856, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35695271

RESUMEN

BACKGROUND: Arginase 1 Deficiency (ARG1-D) is an inherited metabolic disease that leads to significant morbidity. AIMS: Despite the recognized burden of disease, information on health care resource utilization (HCRU) among patients with ARG1-D is lacking. We, therefore, sought to evaluate HCRU in ARG1-D relative to non-ARG1-D cohort. MATERIALS AND METHODS: Patients with ≥2 ICD-10-CM diagnosis codes for ARG1-D were identified (first diagnosis code = index date) using professional fee claims linked with prescription claims. Patients with ARG1-D were matched 1:1 to a comparator cohort of patients with other medical conditions. Matching variables included age, sex, index year, payer type (Medicare, Medicaid, third party) and geographic region. RESULTS: A total of 77 patients met the inclusion criteria for the ARG1-D cohort, with a median age of 15 years, 52% <18 years, and 52% male. Several concurrent diagnoses were recorded at a higher frequency in the ARG1-D cohort versus the matched comparator (spasticity 7 times higher; developmental delay ∼2 times higher; intellectual disability 5 times higher; and seizures 8 times higher). Emergency room visits occurred twice as often, laboratory tests were performed 1.5 times more often, hospitalization was required 3 times more often, and mean length of stay was longer for patients with ARG1-D than the comparator cohort (2.4 days vs. 0.3 days). LIMITATIONS: A relatively short study period while the burden of ARG1-D increases over a lifetime due to disease progression. CONCLUSIONS: Patients with ARG1-D had significantly greater HCRU compared with those without the disease; they presented with a more extensive comorbidity profile, accessed the health care system more frequently, required more intense monitoring and management, and had more frequent and longer hospitalizations relative to the comparator group. These findings demonstrate a high health burden in ARG1-D that is not mitigated by standard-of-care measures and emphasize the need for improved treatment options.


Asunto(s)
Arginasa , Medicare , Adolescente , Anciano , Atención a la Salud , Femenino , Costos de la Atención en Salud , Humanos , Masculino , Aceptación de la Atención de Salud , Estudios Retrospectivos , Estados Unidos
8.
Clin Pathol ; 15: 2632010X221093274, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35465134

RESUMEN

Objective: Hyperargininemia due to Arginase 1 deficiency is a rare inborn error of the urea cycle with an incidence estimated at 1:950 000. It has typical severe and progressive abnormal neurological features with biochemical findings of hyperargininemia and hyperexcretion of orotic acid. The aim of our study is to review the clinical and biochemical presentations of 4 children diagnosed with Arginase 1 deficiency in Malaysia and compare with the literature review. Design and Methods: We retrospectively reviewed the medical records of 4 patients with molecularly confirmed Arginase 1 deficiency. Patients were identified from a selective high-risk screening of 51 682 symptomatic patients from January 2006 to December 2020. Results: Our patients exhibited heterogeneous clinical presentations with acute and progressive neurological abnormalities and varying degrees of plasma arginine and urine orotic acid excretions. Interestingly, an unusual hyperexcretion of homocitrulline was found in 3 patients. Conclusions: Hyperargininemia due to Arginase 1 deficiency can present acutely and hyperexcretion of homocitrulline can be an additional biochemical feature of Arginase 1 deficiency.

9.
Ann Indian Acad Neurol ; 25(6): 1104-1108, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36911443

RESUMEN

Background: Arginase deficiency is considered a masquerader of diplegic cerebral palsy. The rarity of hyperammonemic crisis and the slowly progressive course has made it a unique entity among the urea cycle defects. Objectives: The aim of our study is to describe the varied phenotypic spectrum of children with arginase deficiency. Methodology: This retrospective study included children and adolescents aged <18 years with a biochemical or genetic diagnosis of arginase deficiency from May 2011 to May 2022. Data were collected from the hospital's electronic database. The clinical presentation, laboratory parameters at baseline and during metabolic decompensation, neuroimaging, electroencephalography findings, and molecular studies were analyzed. Results: About 11 children from nine families with biochemically or genetically proven arginase deficiency were analyzed. The male: female ratio was 2.7:1. Consanguineous parentage was observed in all children. The median age at presentation was 36 months (Range: 5 months-18 years). All children with onset of symptoms in early childhood had a predominant delay in motor milestones of varying severity. Metabolic decompensation with encephalopathy occurred in all except two children (n = 9, 81.8%). Pyramidal signs were present in all patients and additional extrapyramidal signs in two children. Positive family history was present in four probands. Seizures occurred in all children. Epilepsy with electrical status in slow wave sleep and West syndrome was noted in three children. All children had elevated ammonia and arginine at the time of metabolic crisis. The spectrum of neuroimaging findings includes periventricular, subcortical, and deep white matter signal changes and diffusion restriction. The mean duration of follow-up was 38.6 ± 34.08 months. All patients were managed with an arginine-restricted diet and sodium benzoate with or without ornithine supplementation. Conclusion: Spastic diparesis, recurrent encephalopathy, presence of family history, and elevated serum arginine levels must alert the clinician to suspect arginase deficiency. Atypical presentations in our cohort include frequent metabolic crises and epileptic encephalopathy. Early identification and management will ensure a better neurodevelopmental outcome.

10.
Mol Genet Metab Rep ; 29: 100805, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34646736

RESUMEN

Arginase 1 (ARG1) deficiency is a rare urea cycle disorder (UCD), with an estimated frequency of 1 per 2,200,000 births in Japan. Patients with ARG1 deficiency develop symptoms in late infancy or pre-school age with progressive neurological manifestations and sometimes present with severe hepatic disease. We previously investigated the status of UCDs in Japan; however, only one patient was identified as having ARG1 deficiency. Therefore, we aimed to investigate the current status of patients with ARG1 deficiency in 2018-2021 because almost 10 years have passed since the previous study. We present the disease history, clinical outcome, and treatment of five surviving patients with ARG1 deficiency and discuss the features of ARG1 deficiency in Japan. We found that clinicians often face difficulty in diagnosing ARG1 deficiency at the early stage of onset because of interpatient variability in onset time and clinical manifestations. Blood L-arginine and guanidino compounds were considered to be the major factors causing adverse neurodevelopmental outcomes. Therefore, early detection and intervention of ARG1 deficiency is essential for improved neurodevelopmental outcomes. Liver transplantation has been considered an effective treatment option that can dramatically improve the quality of life of patients, prior to the neurological manifestation of symptoms caused by ARG1 deficiency.

11.
Clin Neurol Neurosurg ; 208: 106895, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34419780

RESUMEN

Hyperargininemia is an autosomal recessive disorder caused by a defect in the arginase I enzyme. We present a case of a 20-year-old male with severe spastic gait, intellectual disability and seizures. Metabolic tests revealed high levels of arginine in blood serum. Hyperargininemia was attributed to a likely pathogenic rare mutation of ARG1 gene [Chr6: g131905002_131905002 G>A (p.Arg308Gln) homozygous] detected in Whole Exome Sequencing resulting in deficiency in arginase I enzyme. Following the diagnosis, the patient has been treated with low protein diet, aminoacid and vitamin supplements. The accumulation of arginine, may contribute to the pathogenesis of severe neurological manifestations, however, low protein intake diet may lead to a favorable outcome. Therefore, clinicians should screen for hyperargininemia in early childhood in case of strong clinical suspicion.


Asunto(s)
Trastornos Neurológicos de la Marcha/genética , Hiperargininemia/genética , Discapacidad Intelectual/genética , Mutación , Convulsiones/genética , Arginina/sangre , Trastornos Neurológicos de la Marcha/sangre , Humanos , Hiperargininemia/sangre , Discapacidad Intelectual/sangre , Masculino , Convulsiones/sangre , Secuenciación del Exoma , Adulto Joven
12.
Neurochem Int ; 145: 104984, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33561495

RESUMEN

Arginase-1 (Arg1) is an enzyme controlling the final step of the urea cycle, with highest expression in the liver and lower expression in the lungs, pancreas, kidney, and some blood cells. Arg1 deficiency is an inherited urea cycle disorder presenting with neurological dysfunction including spastic diplegia, intellectual and growth retardation, and encephalopathy. The contribution of Arg1 expression in the central and peripheral nervous system to the development of neurological phenotypes remains largely unknown. Previous studies have shown prominent arginase-1 expression in the nervous system and post-peripheral nerve injury in mice, but very low levels in the naïve state. To investigate neurobiological roles of Arg1, we created a conditional neural (n)Arg1 knockout (KO) mouse strain, with expression eliminated in neuronal and glial precursors, and compared them to littermate controls. Long-term analysis did not reveal any major differences in blood amino acid levels, body weight, or stride gait cycle from 8 to 26-weeks of age. Brain structure measured by magnetic resonance imaging at 16-weeks of age observed only a significant decrease in the volume of the mammillary bodies. We also assessed whether nArg1, which is expressed by sensory neurons after injury, may play a role in regeneration following sciatic nerve crush. Only subtle differences were observed in locomotor and sensory recovery between nArg1 KO and control mice. These results suggest that arginase-1 expression in central and peripheral neural cells does not contribute substantially to the phenotypes of this urea cycle disorder, nor is it likely crucial for post-injury regeneration in this mouse model.


Asunto(s)
Arginasa/metabolismo , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Neuronas/metabolismo , Recuperación de la Función/fisiología , Neuropatía Ciática/metabolismo , Animales , Arginasa/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuropatía Ciática/genética
13.
J Inherit Metab Dis ; 44(4): 847-856, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33325055

RESUMEN

Hyperargininemia in patients with arginase 1 deficiency (ARG1-D) is considered a key driver of disease manifestations, including spasticity, developmental delay, and seizures. Pegzilarginase (AEB1102) is an investigational enzyme therapy which is being developed as a novel arginine lowering approach. We report the safety and efficacy of intravenously (IV) administered pegzilarginase in pediatric and adult ARG1-D patients (n = 16) from a Phase 1/2 study (101A) and the first 12 weeks of an open-label extension study (102A). Substantial disease burden at baseline included lower-limb spasticity, developmental delay, and previous hyperammonemic episodes in 75%, 56%, and 44% of patients, respectively. Baseline plasma arginine (pArg) was elevated (median 389 µM, range 238-566) on standard disease management. Once weekly repeat dosing resulted in a median decrease of pArg of 277 µM after 20 cumulative doses (n = 14) with pArg in the normal range (40 to 115 µM) in 50% of patients at 168 hours post dose (mean pegzilarginase dose 0.10 mg/kg). Lowering pArg was accompanied by improvements in one or more key mobility assessments (6MWT, GMFM-D & E) in 79% of patients. In 101A, seven hypersensitivity reactions occurred in four patients (out of 162 infusions administered). Other common treatment-related adverse events (AEs) included vomiting, hyperammonemia, pruritus, and abdominal pain. Treatment-related serious AEs that occurred in five patients were all observed in 101A. Pegzilarginase was effective in lowering pArg levels with an accompanying clinical response in patients with ARG1-D. The improvements with pegzilarginase occurred in patients receiving standard treatment approaches, which suggests that pegzilarginase could offer benefit over existing disease management.


Asunto(s)
Arginasa/genética , Arginasa/uso terapéutico , Arginina/sangre , Hiperargininemia/tratamiento farmacológico , Adolescente , Adulto , Arginasa/efectos adversos , Arginasa/sangre , Arginina/metabolismo , Niño , Preescolar , Manejo de la Enfermedad , Femenino , Humanos , Hiperamonemia/etiología , Hiperargininemia/sangre , Hiperargininemia/genética , Hiperargininemia/metabolismo , Masculino , Proteínas Recombinantes/efectos adversos , Proteínas Recombinantes/uso terapéutico , Estados Unidos , Vómitos/etiología , Adulto Joven
14.
Front Neurol ; 11: 569996, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33193012

RESUMEN

Background: Arginases catalyze the last step in the urea cycle. Hyperargininemia, a rare autosomal-recessive disorder of the urea cycle, presents after the first year of age with regression of milestones and evolves gradually into progressive spastic quadriplegia and cognitive dysfunction. Genetic studies reported various mutations in the ARG1 gene that resulted in hyperargininemia due to a complete or partial loss of arginase activity. Case Presentation: Five patients from an extended highly consanguineous Sudanese family presented with regression of the acquired milestones, spastic quadriplegia, and mental retardation. The disease onset ranged from 1 to 3 years of age. Two patients had epileptic seizures and one patient had stereotypic clapping. Genetic testing using whole-exome sequencing, done for the patients and a healthy parent, confirmed the presence of a homozygous novel missense variant in the ARG1 gene [GRCh37 (NM_001244438.1): exon 4: g.131902487T>A, c.458T>A, p.(Val153Glu)]. The variant was predicted pathogenic by five algorithms and affected a highly conserved amino acid located in the protein domain ureohydrolase, arginase subgroup. Sanger sequencing of 13 sampled family members revealed complete co-segregation between the variant and the disease distribution in the family in line with an autosomal-recessive mode of inheritance. Biochemical analysis confirmed hyperargininemia in five patients. Conclusion: This study reports the first Sudanese family with ARG1 mutation. The reported variant is a loss-of-function missense mutation. Its pathogenicity is strongly supported by the clinical phenotype, the computational functional impact prediction, the complete co-segregation with the disease, and the biochemical assessment.

15.
J Genet Genomics ; 47(3): 145-156, 2020 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-32305173

RESUMEN

Arginine catabolism involves enzyme-dependent reactions in both mitochondria and the cytosol, defects in which may lead to hyperargininemia, a devastating developmental disorder. It is largely unknown if defective arginine catabolism has any effects on mitochondria. Here we report that normal arginine catabolism is essential for mitochondrial homeostasis in Caenorhabditiselegans. Mutations of the arginase gene argn-1 lead to abnormal mitochondrial enlargement and reduced adenosine triphosphate (ATP) production in C. elegans hypodermal cells. ARGN-1 localizes to mitochondria and its loss causes arginine accumulation, which disrupts mitochondrial dynamics. Heterologous expression of human ARG1 or ARG2 rescued the mitochondrial defects of argn-1 mutants. Importantly, genetic inactivation of the mitochondrial basic amino acid transporter SLC-25A29 or the mitochondrial glutamate transporter SLC-25A18.1 fully suppressed the mitochondrial defects caused by argn-1 mutations. These findings suggest that mitochondrial damage probably contributes to the pathogenesis of hyperargininemia and provide clues for developing therapeutic treatments for hyperargininemia.


Asunto(s)
Arginasa/genética , Arginina/metabolismo , Mitocondrias/genética , Adenosina Trifosfato/genética , Animales , Arginina/genética , Caenorhabditis elegans/genética , Citosol/enzimología , Modelos Animales de Enfermedad , Homeostasis/genética , Humanos , Hiperargininemia/genética , Hiperargininemia/metabolismo , Mutación
16.
Brain Dev ; 42(2): 231-235, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31604595

RESUMEN

An adult female patient was diagnosed with arginase 1 deficiency (ARG1-D) at 4 years of age, and had been managed with protein restriction combined with sodium benzoate therapy. Though the treatment was successful in ameliorating hyperammonemia, hyperargininemia persisted. After being under control with a strict restriction of dietary protein, severe fall of serum albumin levels appeared and her condition became strikingly worsened. However, after sodium phenylbutyrate (NaPB) therapy was initiated, the clinical condition and metabolic stability was greatly improved. Current management of ARG1-D is aimed at lowering plasma arginine levels. The nitrogen scavengers, such as NaPB can excrete the waste nitrogen not through the urea cycle but via the alternative pathway. The removal of nitrogen via alternative pathway lowers the flux of arginine in the urea cycle. Thereby, the clinical complications due to insufficient amount of protein intake can be prevented. Thus, NaPB therapy can be expected as a useful therapeutic option, particularly in patients with ARG1-D.


Asunto(s)
Arginasa/genética , Hiperargininemia/tratamiento farmacológico , Fenilbutiratos/uso terapéutico , Adulto , Arginasa/metabolismo , Arginina/metabolismo , Femenino , Humanos , Hiperamonemia/sangre , Hiperargininemia/sangre , Hiperargininemia/genética , Fenilbutiratos/metabolismo
17.
Proc Natl Acad Sci U S A ; 116(42): 21150-21159, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31501335

RESUMEN

Arginase deficiency is caused by biallelic mutations in arginase 1 (ARG1), the final step of the urea cycle, and results biochemically in hyperargininemia and the presence of guanidino compounds, while it is clinically notable for developmental delays, spastic diplegia, psychomotor function loss, and (uncommonly) death. There is currently no completely effective medical treatment available. While preclinical strategies have been demonstrated, disadvantages with viral-based episomal-expressing gene therapy vectors include the risk of insertional mutagenesis and limited efficacy due to hepatocellular division. Recent advances in messenger RNA (mRNA) codon optimization, synthesis, and encapsulation within biodegradable liver-targeted lipid nanoparticles (LNPs) have potentially enabled a new generation of safer, albeit temporary, treatments to restore liver metabolic function in patients with urea cycle disorders, including ARG1 deficiency. In this study, we applied such technologies to successfully treat an ARG1-deficient murine model. Mice were administered LNPs encapsulating human codon-optimized ARG1 mRNA every 3 d. Mice demonstrated 100% survival with no signs of hyperammonemia or weight loss to beyond 11 wk, compared with controls that perished by day 22. Plasma ammonia, arginine, and glutamine demonstrated good control without elevation of guanidinoacetic acid, a guanidino compound. Evidence of urea cycle activity restoration was demonstrated by the ability to fully metabolize an ammonium challenge and by achieving near-normal ureagenesis; liver arginase activity achieved 54% of wild type. Biochemical and microscopic data showed no evidence of hepatotoxicity. These results suggest that delivery of ARG1 mRNA by liver-targeted nanoparticles may be a viable gene-based therapeutic for the treatment of arginase deficiency.


Asunto(s)
Hiperargininemia/tratamiento farmacológico , Lípidos/farmacología , Hepatopatías/tratamiento farmacológico , Hígado/efectos de los fármacos , Nanopartículas/administración & dosificación , ARN Mensajero/metabolismo , Amoníaco/metabolismo , Animales , Arginasa/metabolismo , Arginina/metabolismo , Codón/metabolismo , Modelos Animales de Enfermedad , Glutamina/metabolismo , Hiperamonemia/tratamiento farmacológico , Hiperamonemia/metabolismo , Hiperargininemia/metabolismo , Hígado/metabolismo , Hepatopatías/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Urea/metabolismo
18.
J Pediatr Neurosci ; 14(1): 2-6, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31316636

RESUMEN

CONTEXT: Several Enzymes carry out chemical reactions for the production of energy and carrying out normal functioning of the organism. Disorders of these functions can result in permanent damage to the child affecting multiple systems. Most metabolic disorders are at least controllable and therefore it is important to recognize them early for ensuring optimum growth and development. This involves proper pattern recognition by the clinician. AIMS: In this study we are discussing a rare treatable metabolic disorder namely Hyperargininemia seen by the authors in the last seven years. SETTINGS AND DESIGN: Various parameters of confirmed hyperargininemia patients were analysed. METHODS AND MATERIAL: It is a descriptive study where all patients were confirmed cases with red blood cell arginase levels <10. STATISTICAL ANALYSIS USED: Descriptive statistical analysis, Mann-whitney test, spearman's rho. RESULTS: In this study we found consanguinity in 30 % of patients. At least one sibling was affected in 13 % of patients. Females were more in this group though the pattern remains AR. Symptom onset showed variability from less than 1 year to up to 17 years. Commonest clinical feature was cognitive dysfunction, spasticity, seizures, microcephaly and lesser number with extrapyramidal and cerebellar features. Failure to thrive and dysmorphic features were also seen. CONCLUSION: Hyperargininemia commonly manifests as regression, failure to thrive, spasticity, seizures with or without microcephaly. When the above phenotype is seen, it is mandatory to screen for urea cycle disorders.

19.
J Inherit Metab Dis ; 42(3): 407-413, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30671984

RESUMEN

PURPOSE: We report a patient with a human cationic amino acid transporter 2 (CAT-2) defect discovered due to a suspected arginase 1 deficiency observed in newborn screening (NBS). METHODS: A NBS sample was analyzed using tandem mass spectrometry. Screen results were confirmed by plasma and urine amino acid quantification. Molecular diagnosis was done using clinical exome sequencing. Dimethylated arginines were determined by HPLC and nitrate/nitrite levels by a colorimetric assay. The metabolomic profile was analyzed using 1D nuclear magnetic resonance spectroscopy. RESULTS: A Spanish boy of nonconsanguineous parents had high arginine levels in a NBS blood sample. Plasma and urinary cationic amino acids were high. Arginase enzyme activity in erythrocytes was normal and no pathogenic mutations were identified in the ARG1 gene. Massive parallel sequencing detected two loss-of-function mutations in the SLC7A2 gene. Currently, the child receives a protein-controlled diet of 1.2 g/kg/day with protein-and amino-acid free infant formula, 30 g/day, and is asymptomatic. CONCLUSION: We identified a novel defect in human CAT-2 due to biallelic pathogenic variants in the SLC7A2 gene. The characteristic biochemical profile includes high plasma and urine arginine, ornithine, and lysine levels. NBS centers should know of this disorder since it can be detected in arginase 1 deficiency screening.


Asunto(s)
Sistemas de Transporte de Aminoácidos Básicos/genética , Transportador de Aminoácidos Catiônicos 2/deficiencia , Enfermedades Metabólicas/genética , Arginasa/genética , Dieta con Restricción de Proteínas , Humanos , Hiperargininemia/genética , Recién Nacido , Masculino , Enfermedades Metabólicas/dietoterapia , Mutación , Tamizaje Neonatal
20.
JA Clin Rep ; 5(1): 56, 2019 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-32025996

RESUMEN

BACKGROUND: Urea cycle disorders are rare; arginase-1 deficiency is one of those extremely rare autosomal recessive metabolic disorders. Arginase-1 is one among the enzymes involved in the production of urea from ammonia in the liver, and its deficiency produces the characteristic feature, hyperargininemia. CASE PRESENTATION: We report a case of a girl, aged 5 years and 10 months presenting with arginase-1 deficiency. The patient was scheduled to undergo strabismus surgery for intermittent exotropia under general anesthesia. Preoperative blood tests showed high serum arginine levels, but ammonia levels were within the normal range. Anesthesia was induced with sevoflurane and nitrous oxide via face mask and maintained with sevoflurane, fentanyl, and rocuronium. Vital signs were stable throughout the surgery. There was an intraoperative decrease in blood glucose levels (from 82 mg/dL to 42 mg/dL) that was treated with intravenous glucose. Arginine levels remained high after surgery; however, hyperammonemia did not develop. There were no complications and the patient was discharged on the following day. CONCLUSIONS: We successfully performed general anesthesia in a child with hyperargininemia. Only a few cases of arginase-1 deficiency had been reported and much remains unknown about its pathology. Therefore, information sharing among medical professionals is essential to customize the plan for the management of this disorder in patients.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA