Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28.536
Filtrar
1.
Quant Imaging Med Surg ; 14(5): 3489-3500, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38720866

RESUMEN

Background: Hypoxia is the bottleneck that affects the response of conventional photon radiotherapy, but it does not seem to have much effect on carbon ion radiotherapy (CIRT). This study aimed to evaluate the changes of hypoxia before and after CIRT in patients with non-small cell lung cancer (NSCLC) and whether 18F-fluoromisonidazole (18F-FMISO) positron emission tomography/computed tomography (PET/CT) imaging could predict the response to CIRT in NSCLC patients. Methods: A total of 29 patients with NSCLC who received CIRT were retrospectively included. 18F-FMISO PET/CT imaging was performed before and after treatment, and chest CT was performed after radiotherapy. Radiation response within 1 week after radiotherapy and at the initial follow-up were defined as the immediate response (IR) and early response (ER), respectively. The tumor-to-muscle ratio (TMR), hypoxia volume (HV), and the ΔTMR and ΔHV values of 18F-FMISO uptake were collected. Fisher's exact test, Mann-Whitney U test, Wilcoxon signed-rank test, and binary logistic regression were used to analyze data. Results: (I) Baseline TMR could predict the IR to CIRT with a baseline TMR cut-off value of 2.35, an area under the curve (AUC) of 0.85 [95% confidence interval (CI): 0.62-1.00], a sensitivity of 80.0%, a specificity of 87.5%, and an accuracy of 85.7%. Taking the baseline TMR =2.35 as the cut-off value of high-hypoxia and low-hypoxia group, the IR rate of the high-hypoxia group [66.7% (4/6)] and the low-hypoxia group [6.7% (1/15)] was statistically different (P=0.01). (II) ΔTMR could predict early treatment response after CIRT at initial follow-up, with a cut-off value of ΔTMR =36.6%, AUC of 0.80 (95% CI: 0.61-1.00), sensitivity of 72.7%, specificity of 90.0% and accuracy of 71.4%. Conclusions: A higher degree of tumor hypoxia may be associated with a better IR to CIRT. ΔTMR could predict early treatment response after CIRT.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38722751

RESUMEN

Acute Intermittent Hypoxia (AIH) can induce sustained facilitation of motor output in people with spinal cord injury (SCI). Most studies of corticospinal tract excitability in humans have used 9% FiO2 AIH (AIH-9%), with inconsistent outcomes. We investigated the effect of single sessions of 9% FiO2 and 12% FiO2 AIH (AIH-12%) on corticospinal excitability of a hand and leg muscle in able-bodied adults. Ten naïve participants without SCI completed three sessions comprising 15 cycles of one minute of AIH-9%, AIH-12% or sham (SHAM-21%) followed by one minute of room air (21% FiO2) in a randomised crossover design. Motor evoked potentials (MEPs, n=30, ~1mV) elicited at rest by transcranial magnetic stimulation and maximal M-waves (Mmax) evoked by peripheral nerve stimulation were measured from the first dorsal interosseous (FDI) and tibialis anterior (TA) muscles at baseline and at ~0, 20, 40, and 60 minutes post-intervention. AIH-9% induced the greatest reduction in SpO2 (to 85% vs 93% and 100% in AIH-12% and SHAM-21%, respectively; p < 0.001) and the greatest increase in ventilation (by 22% vs 12% and -3% in AIH-12% and SHAM-21%, respectively (p<0.001)). There was no difference in MEP amplitudes (%Mmax) after any of the three conditions (AIH-9%, AIH-12%, SHAM-21%) for both FDI (p=0.399) and TA (p=0.582). Despite greater cardiorespiratory changes during AIH-9%, there was no evidence of corticospinal facilitation (tested with MEPs) in this study. Further studies could explore variability in response to AIH between individuals and other methods to measure motor facilitation in people with and without spinal cord injuries.

3.
Integr Zool ; 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724481

RESUMEN

Rattus species are thought to live only at altitudes less than 2500 m, but the Asian house rat (R. tanezumi) (RT) has recently expanded to altitudes greater than 3500 m in China. Other Rattus species, especially brown rats (R. norvegicus) (RN), still reach only low altitudes on the Tibetan Plateau. Comparative genomics revealed the positive selection of hypoxia-inducible transcription factors 1 and 2 (HIFs) in RT, with the rapid evolution of HIF pathway genes in RT and Mus musculus (MM) but not RN or R. rattus. Population genomics revealed that genes associated with energy metabolism and oxygen transport were positively selected in RT compared with the other four Rattus species, and two specific substitutions (arginine 31 serine and leucine 33 methionine) were identified in the hemoglobin subunit beta (HBB) in RT. The above results suggested that RT possesses unique genetic adaptations to hypoxia, which was further confirmed by behavioral experiments on RT and RN. Normobaric hypoxia significantly reduced locomotion in RN but not in RT. Moreover, through intraspecific transcriptome analysis, the expression of Hbb and genes related to angiogenesis, oxygen transport, and glycolysis was upregulated, and the expression of genes associated with immunological functions in the liver, lungs, and/or sperm was downregulated in RT compared to those in RN. Interspecific transcriptome analysis further revealed that HIF-1α plays a role in modulating the hypoxic adaptation of RT rather than RN. Our work provides genomic, behavioral, and physiological insights into why RT, but not other Rattus species, could invade the Tibetan Plateau.

4.
High Alt Med Biol ; 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38743636

RESUMEN

Xiaoying Zhou, Wenting Su, Quanwei Bao, Yu Cui, Xiaoxu Li, Yidong Yang, Chengzhong Yang, Chengyuan Wang, Li Jiao, Dewei Chen, and Jian Huang. Nitric oxide ameliorates the effects of hypoxia in mice by regulating oxygen transport by hemoglobin. High Alt Med Biol. 00:00-00, 2024.-Hypoxia is a common pathological and physiological phenomenon in ischemia, cancer, and strenuous exercise. Nitric oxide (NO) acts as an endothelium-derived relaxing factor in hypoxic vasodilation and serves as an allosteric regulator of hemoglobin (Hb). However, the ultimate effects of NO on the hematological system in vivo remain unknown, especially in extreme environmental hypoxia. Whether NO regulation of the structure of Hb improves oxygen transport remains unclear. Hence, we examined whether NO altered the oxygen affinity of Hb (Hb-O2 affinity) to protect extremely hypoxic mice. Mice were exposed to severe hypoxia with various concentrations of NO, and the survival time, exercise capacity, and other physical indexes were recorded. The survival time was prolonged in the 5 ppm NO (6.09 ± 1.29 minutes) and 10 ppm NO (6.39 ± 1.58 minutes) groups compared with the 0 ppm group (4.98 ± 1.23 minutes). Hypoxia of the brain was relieved, and the exercise exhaustion time was prolonged when mice inhaled 20 ppm NO (24.70 ± 6.87 minutes vs. 20.23 ± 6.51 minutes). In addition, the differences in arterial oxygen saturation (SO2%) (49.64 ± 7.29% vs. 42.90 ± 4.30%) and arteriovenous SO2% difference (25.14 ± 8.95% vs. 18.10 ± 6.90%) obviously increased. In ex vivo experiments, the oxygen equilibrium curve (OEC) left shifted as P50 decreased from 43.77 ± 2.49 mmHg (0 ppm NO) to 40.97 ± 1.40 mmHg (100 ppm NO) and 38.36 ± 2.78 mmHg (200 ppm NO). Furthermore, the Bohr effect of Hb was enhanced by the introduction of 200 ppm NO (-0.72 ± 0.062 vs.-0.65 ± 0.051), possibly allowing Hb to more easily offload oxygen in tissue at lower pH. The crystal structure reveals a greater distance between Asp94ß-His146ß in nitrosyl -Hb(NO-Hb), NO-HbßCSO93, and S-NitrosoHb(SNO-Hb) compared to tense Hb(T-Hb, 3.7 Å, 4.3 Å, and 5.8 Å respectively, versus 3.5 Å for T-Hb). Moreover, hydrogen bonds were less likely to form, representing a key limitation of relaxed Hb (R-Hb). Upon NO interaction with Hb, hydrogen bonds and salt bridges were less favored, facilitating relaxation. We speculated that NO ameliorated the effects of hypoxia in mice by promoting erythrocyte oxygen loading in the lung and offloading in tissues.

5.
Placenta ; 152: 9-16, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38744037

RESUMEN

Placental abnormalities can precipitate preterm birth (PTB), a principal contributor to neonatal morbidity and mortality. This study targets understanding placental variations among different gestational age-based categories of PTB. METHODS: A three-year retrospective study conducted a detailed clinicopathological analysis of PTB placentas categorized by gestational age: extremely preterm (EPTB,<28 weeks), very preterm (VPTB, 28 to 31 + 6 weeks), moderate preterm (MPTB, 32 to 33 + 6 weeks), and late preterm (LPTB, 34 to 36 + 6 weeks). Macroscopic parameters sourced from pathology records and microscopic examination assessed for maternal and fetal stromal-vascular lesions, inflammatory and hypoxic lesions and others. Stillbirths/intrauterine demise and multifetal gestation were excluded. Clinical data were gathered from medical records. RESULTS: A total of 645 preterm placentas were received and 538 were included. The majority were LPTB(46.3 %), while EPTB, VPTB and MPTB accounted for 5.8 %, 28.4 % and 19.5 % respectively. Low birth weight and low Apgar were prevalent in EPTB(p < 0.001), while obstetric complications were higher in other PTB categories. Placental infarction was higher in VPTB and MPTB(p = 0.006). On microscopy, maternal (48.4 %), fetal (29 %) inflammatory response and villous edema (48.4 %) was higher in EPTB(p = 0.04 & p < 0.001 respectively), while maternal stromal-vascular lesions were higher in VPTB and MPTB(67.3 % & 64.8 %, p < 0.001). Delayed villous maturation (17.7 %,p = 0.02), chronic chorioamnionitis (11.3 %,p = 0.02), membrane hypoxia (38.6 %,p = 0.007), and massive fibrin deposition (10.8 %,p < 0.001) featured higher in LPTB. DISCUSSION: Acute inflammatory pathology was common in EPTB, strongly suggesting inflammation in triggering parturition. Frequent obstetric complications and maternal stromal-vascular lesions in VPTB and MPTB may underscore maternal vascular compromise in this group. Villous maturation defects, chronic chorioamnionitis, massive fibrin deposition and membrane hypoxia in LPTB, likely contribute to long-term neonatal morbidity.

6.
Circ Res ; 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38747151

RESUMEN

BACKGROUND: Coronary artery disease (CAD), the leading cause of death worldwide, is influenced by both environmental and genetic factors. Although over 250 genetic risk loci have been identified through genome-wide association studies, the specific causal variants and their regulatory mechanisms are still largely unknown, particularly in disease-relevant cell types like macrophages. METHODS: We utilized single-cell RNA-seq and single-cell multiomics approaches in primary human monocyte-derived macrophages to explore the transcriptional regulatory network involved in a critical pathogenic event of coronary atherosclerosis-the formation of lipid-laden foam cells. The relative genetic contribution to CAD was assessed by partitioning disease heritability across different macrophage subpopulations. Meta-analysis of single-cell RNA-seq data sets from 38 human atherosclerotic samples was conducted to provide high-resolution cross-referencing to macrophage subpopulations in vivo. RESULTS: We identified 18 782 cis-regulatory elements by jointly profiling the gene expression and chromatin accessibility of >5000 macrophages. Integration with CAD genome-wide association study data prioritized 121 CAD-related genetic variants and 56 candidate causal genes. We showed that CAD heritability was not uniformly distributed and was particularly enriched in the gene programs of a novel CD52-hi lipid-handling macrophage subpopulation. These CD52-hi macrophages displayed significantly less lipoprotein accumulation and were also found in human atherosclerotic plaques. We investigated the cis-regulatory effect of a risk variant rs10488763 on FDX1, implicating the recruitment of AP-1 and C/EBP-ß in the causal mechanisms at this locus. CONCLUSIONS: Our results provide genetic evidence of the divergent roles of macrophage subsets in atherogenesis and highlight lipid-handling macrophages as a key subpopulation through which genetic variants operate to influence disease. These findings provide an unbiased framework for functional fine-mapping of genome-wide association study results using single-cell multiomics and offer new insights into the genotype-environment interactions underlying atherosclerotic disease.

7.
Mol Biotechnol ; 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38748072

RESUMEN

Climate change-induced alterations in temperature variation, ozone exposure, water salinity and acidification, and hypoxia might influence immunity and thus survival in diverse groups of animals from fish to mammals. Pyroptosis is a type of lytic pro-inflammatory programmed cell death, which participates in the innate immune response, and is involved in multiple diseases characterized by inflammation and cell death, mostly studied in human cells. Diverse extrinsic factors can induce pyroptosis, leading to the extracellular release of pro-inflammatory molecules such as IL-18. Climate change-related factors, either directly or indirectly, can also promote animal cell death via different regulated mechanisms, impacting organismal fitness. However, pyroptosis has been relatively less studied in this context compared to another cell death process, apoptosis. This review covers previous research pointing to the potential impact of climate change, through various abiotic stressors, on pyroptotic cell death in different animal cells in various contexts. It was proposed that temperature, ozone exposure, water salinity, water acidification and hypoxia have the potential to induce pyroptotic cell death in animal cells and promote inflammation, and that these pyroptotic events should be better understood to be able to mitigate the adverse effects of climate change on animal physiology and health. This is of high importance considering the increasing frequency, intensity and duration of climate-based changes in these environmental parameters, and the critical function of pyroptosis in immune responses of animals and in their predisposition to multiple diseases including cancer. Furthermore, the need for further mechanistic studies showing the more direct impact of climate change-induced environmental alterations on pyroptotic cell death in animals at the organismal level was highlighted. A complete picture of the association between climate change and pyroptosis in animals will be also highly valuable in terms of ecological and clinical applications, and it requires an interdisciplinary approach. SIGNIFICANCE: Climate change-induced alterations might influence animal physiology. Pyroptosis is a form of cell death with pro-inflammatory characteristics. Previous research suggests that temperature variation, ozone exposure, water salinity and acidification, and hypoxia might have the potential to contribute to pyroptotic cell death in certain cell types and contexts. Climate change-induced pyroptotic cell death should be better understood to be able to mitigate the adverse effects of climate change on animal health.

8.
J Neurophysiol ; 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38748407

RESUMEN

The apolipoprotein (APOE) gene has been studied due to its influence on Alzheimer's disease (AD) development and work in an APOE mouse model recently demonstrated impaired respiratory motor plasticity following spinal cord injury (SCI). Individuals with AD often co-present with obstructive sleep apnea (OSA) characterized by cessations in breathing during sleep. Despite the prominence of APOE genotype and sex as factors in AD progression, little is known about the impact of these variables on respiratory control. Ventilation is tightly regulated across many systems, with respiratory rhythm formation occurring in the brainstem but modulated in response to chemoreception. Alterations within these modulatory systems may result in disruptions of appropriate respiratory control and ultimately, disease. Using mice expressing two different humanized APOE alleles, we characterized how sex and the presence of APOE3 or APOE4 influences ventilation during baseline breathing (normoxia) and during respiratory challenge. We show that sex and APOE genotype influence breathing during hypoxic challenge, which may have clinical implications in the context of AD and OSA. Additionally, female mice, while responding robustly to hypoxia, were unable to recover to baseline respiratory levels, emphasizing sex differences in disordered breathing.

9.
J Clin Med ; 13(9)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38730997

RESUMEN

Acute pulmonary embolism (PE) may manifest with mild nonspecific symptoms or progress to a more severe hemodynamic collapse and sudden cardiac arrest. A substantial thrombotic burden can precipitate sudden right ventricular strain and failure. Traditionally, systemic thrombolytics have been employed in such scenarios; however, patients often present with contraindications, or these interventions may prove ineffective. Outcomes for this medically complex patient population are unfavorable, necessitating a compelling argument for advanced therapeutic modalities or alternative approaches. Moreover, patients frequently experience complications beyond hemodynamic instability, such as profound hypoxia and multiorgan failure, necessitating assertive early interventions to avert catastrophic consequences. The existing data on the utilization of mechanical circulatory support (MCS) devices are not exhaustive. Various options for percutaneous MCS devices exist, each possessing distinct advantages and disadvantages. There is an imminent imperative to develop a tailored approach for this high-risk patient cohort to enhance their overall outcomes.

10.
J Clin Med ; 13(9)2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38731137

RESUMEN

Drusen are one of the most characteristic pathologies of precursor lesion of age-related macular degeneration (AMD). Drusen comprise a yellowish white substance that accumulates typically under the retinal pigment epithelium (RPE), and their constituents are lipids, complement, amyloid, crystallin, and others. In the past, many researchers have focused on drusen and tried to elucidate the pathophysiology of AMD because they believed that disease progression from early AMD to advanced AMD might be based on drusen or drusen might cause AMD. In fact, it is well established that drusen are the hallmark of precursor lesion of AMD and a major risk factor for AMD progression mainly based on their size and number. However, the existence of advanced AMD without drusen has long been recognized. For example, polypoidal choroidal vasculopathy (PCV), which comprises the majority of AMD cases in Asians, often lacks drusen. Thus, there is the possibility that drusen might be no more than a biomarker of AMD and not a cause of AMD. Now is the time to reconsider the relationship between AMD and drusen. In this review, we focus on early AMD pathogenesis based on basic research from the perspective of cholesterol metabolism and hypoxic response in the retina, and we discuss the role of drusen.

11.
J Neuroinflammation ; 21(1): 126, 2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38734662

RESUMEN

Myasthenia gravis (MG) is an immune-mediated disease frequently associated with thymic changes. Increased T helper 17 (Th17) cell activity and dysfunctional regulatory T (Treg) cells have been demonstrated in subgroups of MG. On the other hand, hypoxia-inducible factor 1 (HIF-1) has been shown to regulate the Th17/Treg balance by inducing Th17 differentiation while attenuating Treg development. To identify the underlying mechanisms of different thymic pathologies in MG development, we evaluated thymic samples from thymoma-associated myasthenia gravis (TAMG), MG with hyperplasia (TFH-MG) and thymoma without MG (TOMA) patients. Differential gene expression analysis revealed that TAMG and TFH-MG cells are associated with different functional pathways. A higher RORC/FOXP3 ratio provided evidence for Th17/Treg imbalance in TAMG potentially related to increased HIF1A. The hypoxic microenvironment in thymoma may be a driver of TAMG by increasing HIF1A. These findings may lead to new therapeutic approaches targeting HIF1A in the development of TAMG.


Asunto(s)
Subunidad alfa del Factor 1 Inducible por Hipoxia , Miastenia Gravis , Linfocitos T Reguladores , Células Th17 , Timoma , Timo , Neoplasias del Timo , Miastenia Gravis/genética , Miastenia Gravis/inmunología , Miastenia Gravis/patología , Timoma/complicaciones , Timoma/genética , Timoma/inmunología , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Linfocitos T Reguladores/metabolismo , Linfocitos T Reguladores/inmunología , Células Th17/metabolismo , Células Th17/inmunología , Timo/patología , Masculino , Femenino , Neoplasias del Timo/complicaciones , Neoplasias del Timo/genética , Adulto , Persona de Mediana Edad , Anciano
12.
Artículo en Inglés | MEDLINE | ID: mdl-38736647

RESUMEN

We report the development of a high-sensitivity and high-resolution PET subsystem for a next-generation preclinical PET/EPR hybrid scanner for investigating and improving hypoxia imaging with PET. The PET subsystem consists of 14 detector modules (DM) installed within a cylindrical supporting frame whose outer and inner diameters are 115mm and 60mm, respectively. Each DM contains eight detector units (DU) in a row and each DU is made of a 12×12 array of 1×1×10mm3 LYSO crystals (with a 1.05mm pitch) coupled to a 4×4 silicon photomultiplier (SiPM) array that has a 3.2mm pitch (Hamamatsu multi-pixel photon counter (MPPC) array 14161-3050HS-04). The PET subsystem has a 104mm axial field-of-view (AFOV) that is sufficient for full-body mouse imaging, therefore enabling temporal and spatial correlation studies of tumor hypoxia between PET and EPR. It employs 1mm-width crystals to support sub-millimeter image resolution that is desired for mouse imaging. Al-though a DM contains 1,152 LYSO crystals, by use of a newly devised signal readout method only six outputs are produced. Recently a partial prototype of this subsystem consisting of four DMs is built. In this paper, we present performance measurement results obtained for the developed DMs and initial imaging results obtained by the prototype. The developed DMs show uniformly superior performance in identifying the hit crystal and detector unit, in energy resolution, and in coincidence time resolution. The images obtained for a 22Na point source and a 18F-filled U-shaped tube source show an image resolution of about 1.1mm and 1.2mm FWHM in the transverse and axial directions respectively, and demonstrate successful imaging over the entire 104mm AFOV of the prototype. This estimated image resolution however includes the contribution by the source size.

13.
Conserv Physiol ; 12(1): coae024, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38737128

RESUMEN

This paper describes an optocoupler-based regulation apparatus for saturation manipulation of oxygen in water (OptoReg). This system enables control of solenoid valves for oxygen and nitrogen gases using a FireSting-O2 meter, an optocoupler box and an electronic switch box. The hardware components connect to a computer through Universal Serial Bus (USB) cables. The control software is free and has a graphical user interface, making it easy to use. With the OptoReg system, any lab with a computer running Microsoft Windows operating system and a 4-channel FireSting-O2 meter can easily and cheaply set up four independently controlled systems for regulating water oxygen levels. Here, we describe how to assemble and run the OptoReg system and present a data set demonstrating the high precision and stability of the OptoReg system during static acclimation experiments and dynamic warming trials.

14.
Heliyon ; 10(9): e30433, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38737233

RESUMEN

Salidroside (SAL), belonging to a kind of the main active ingredient of Rhodiola rosea, is extensively utilized for anti-hypoxia and prevention of altitude sickness in the plateau region of China. However, the research on the systemic changes induced by SAL at intracellular protein level is still limited, especially at protein phosphorylation level. These limitations hinder a comprehensive understanding of the regulatory mechanisms of SAL. This study aimed to investigate the potential molecular mechanism of SAL in ameliorating the acute myocardial hypoxia induced by cobalt chloride using integrated proteomics and phosphoproteomics. We successfully identified 165 differentially expressed proteins and 266 differentially expressed phosphosites in H9c2 cells following SAL treatment under hypoxic conditions. Bioinformatics analysis and biological experiment validation revealed that SAL significantly antagonized CoCl2-mediated cell cycle arrest by downregulating CCND1 expression and upregulating AURKA, AURKAB, CCND3 and PLK1 expression. Additionally, SAL can stabilize the cytoskeleton through upregulating the Kinesin Family (KIF) members expression. Our study systematically revealed that SAL had the ability to protect myocardial cells against CoCl2-induced hypoxia through multiple biological pathways, including enhancing the spindle stability, maintaining the cell cycle, relieving DNA damage, and antagonizing cell apoptosis. This study supplies a comprehension perspective on the alterations at protein and protein phosphorylation levels induced by SAL treatment, thereby expanded our knowledge of the anti-hypoxic mechanisms of SAL. Moreover, this study provides a valuable resource for further investigating the effects of SAL.

15.
Heliyon ; 10(9): e30207, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38737275

RESUMEN

P-glycoprotein (P-gp) and Breast Cancer Resistance Protein (BCRP) multidrug resistance (MDR) transporters are localized at the luminal surface of the blood-brain barrier (BBB). They confer fetal brain protection against harmful compounds that may be circulating in the peripheral blood. The fetus develops in low oxygen levels; however, some obstetric pathologies such as pre-eclampsia, placenta accreta/previa may result in even greater fetal hypoxic states. We investigated how hypoxia impacts MDR transporters in human fetal brain endothelial cells (hfBECs) derived from early and mid-stages of pregnancy. Hypoxia decreased BCRP protein and activity in hfBECs derived in early pregnancy. In contrast, in hfBECs derived in mid-pregnancy there was an increase in P-gp and BCRP activity following hypoxia. Results suggest a hypoxia-induced reduction in fetal brain protection in early pregnancy, but a potential increase in transporter-mediated protection at the BBB during mid-gestation. This would modify accumulation of various key physiological and pharmacological substrates of P-gp and BCRP in the developing fetal brain and potentially contribute to the pathogenesis of neurodevelopmental disorders commonly associated with in utero hypoxia.

16.
Front Endocrinol (Lausanne) ; 15: 1371220, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38737551

RESUMEN

Background and objective: Aberrant epigenetic regulation and increased oxidative stress in the placenta play a significant role in placental pathophysiology and fetal programming in preeclampsia, a hypertensive disorder in human pregnancy. The purpose of the study is to investigate if hypermethylation of histone H3K9 occurs in placental trophoblasts from preeclampsia. Methods: Trophoblasts were isolated and cultured from 14 placentas, 7 from normotensive pregnant women and 7 from preeclamptic pregnancies. Methylated H3K9 expression and antioxidant superoxide dismutase expression were determined by Western blot. We also examined consequences of oxidative stress and the downstream effects of histone methyltransferase inhibition on H3K9 expression associated with antioxidant CuZn-SOD and Mn-SOD expression in placental trophoblasts. Results: We found that expression of mono-, di-, and tri-methylation of histone H3 lysine 9 (H3K9me1, H3K9me2 and H3K9me3) was significantly increased, p<0.01, which correlated with downregulation of antioxidant superoxide dismutase CuZn-SOD and Mn-SOD expression, in trophoblasts from preeclamptic placentas compared to those from uncomplicated control placentas. We further demonstrated hypoxia could promote histone H3K9 methylation in placental trophoblasts, and hypoxia-induced upregulation of H3K9me1, H3K9me2 and H3K9me3 expression was reversible when hypoxic condition was removed. In addition, we also uncovered that inhibition of methyltransferase not only prevented hypoxia-induced upregulation of H3K9me1, H3K9me2 and H3K9me3 expression, but also abolished hypoxia-induced downregulation of CuZn-SOD and Mn-SOD expression in placental trophoblasts. Conclusions: These findings are noteworthy and provide further evidence that increased oxidative stress in the intrauterine environment is likely a mechanism to induce aberrant histone modification in placental trophoblasts in preeclampsia. Moreover, CuZn-SOD and Mn-SOD expression/activity are possibly H3K9 methylation-dependent in placental trophoblasts, which further suggest that oxidative stress and aberrant histone modification have significant impact on placental trophoblasts/fetal programming in preeclampsia.


Asunto(s)
Histonas , Estrés Oxidativo , Placenta , Preeclampsia , Trofoblastos , Humanos , Femenino , Preeclampsia/metabolismo , Preeclampsia/genética , Preeclampsia/patología , Embarazo , Trofoblastos/metabolismo , Histonas/metabolismo , Adulto , Placenta/metabolismo , Metilación , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa/genética , Metilación de ADN , Células Cultivadas , Lisina/metabolismo
17.
J Thorac Dis ; 16(4): 2460-2471, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38738224

RESUMEN

Background: A hallmark feature of pulmonary arterial hypertension (PAH) is the excessive proliferation of pulmonary artery smooth muscle cells (PASMCs) in the pulmonary arteries. The exact role of C-X-C motif chemokine ligand 12 (CXCL12)/chemokine receptor type 7 (CXCR7) in the PASMCs remains unknown. This study was conducted to investigate CXCR7's role in p38/MMP2 pathway and its effect on PASMCs. Methods: In this study, we examined the expression profile of CXCL12/CXCR7 in both hypoxic rats and PASMCs. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) was used to measure the level of proliferation in PASMCs. Enzyme-linked immunosorbent assay (ELISA) and western blotting assays were applied to investigate the protein expression of the related molecules. Results: We found that a high level of CXCR7 was correlated with remodeled pulmonary arterioles in hypoxic rats. Moreover, CXCR7 protein levels were significantly increased by the induction of CXCL12, indicating that the CXCL12-CXCR7 axis participates in PAH. During hypoxia-PAH, CXCR7 inhibition reduces right ventricular systolic pressure (RVSP), the Fulton index, and pulmonary arteriosclerosis remodeling. Further study indicated inhibition CXCR7 reduced PASMCs by downregulating MMP2, via p38 MAPK pathway. It was additionally found that CXCL12/CXCR7 stimulated the phosphorylation of the p38 MAPK pathway, which was a contributing factor to the decrease in MMP2 expression following preconditioning with SB203580, which inhibited p38 MAPK. Conclusions: In summary, these findings suggest that CXCL12/CXCR7 plays a critical role in PAH, the therapy of which can be developed further by targeting its potential targets.

18.
J Cell Mol Med ; 28(9): e18361, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38722283

RESUMEN

Hypoxia and Ferroptosis are associated with the malignant behaviour of cervical cancer. Endothelial PAS domain-containing protein 1 (EPAS1) contributes to the progression of cervical cancer. EPAS1 plays important roles in hypoxia and ferroptosis. Using the GEO dataset, machine-learning algorithms were used to screen for hypoxia- and ferroptosis-related genes (HFRGs) in cervical cancer. EPAS1 was identified as the hub gene. qPCR and WB were used to investigate the expression of EPAS1 in normal and cervical cancer tissues. The proliferation, invasion and migration of EPAS1 cells in HeLa and SiHa cell lines were detected using CCK8, transwell and wound healing assays, respectively. Apoptosis was detected by flow cytometry. A dual-luciferase assay was used to analyse the MALAT1-miR-182-5P-EPAS1 mRNA axis and core promoter elements of the super-enhancer. EPAS1 was significantly overexpressed in cervical cancer tissues. EPAS1 could increase the proliferation, invasion, migration of HeLa and SiHa cells and reduce the apoptosis of HeLa and SiHa cell. According to the double-luciferase assay, EPAS1 expression was regulated by the MALAT1-Mir-182-5p-EPAS1 mRNA axis. EPAS1 is associated with super-enhancers. Double-luciferase assay showed that the core elements of the super-enhancer were E1 and E3. EPAS1, an HFRG, is significantly overexpressed in cervical cancer. EPAS1 promotes malignant behaviour of cervical cancer cells. EPAS1 expression is regulated by super-enhancers and the MALAT1-miR-182-5P- EPAS1 mRNA axis. EPAS1 may be a target for the diagnosis and treatment of cervical cancer.


Asunto(s)
Apoptosis , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Movimiento Celular , Proliferación Celular , Ferroptosis , Regulación Neoplásica de la Expresión Génica , Neoplasias del Cuello Uterino , Humanos , Neoplasias del Cuello Uterino/genética , Neoplasias del Cuello Uterino/patología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Femenino , Ferroptosis/genética , Proliferación Celular/genética , Movimiento Celular/genética , Apoptosis/genética , MicroARNs/genética , MicroARNs/metabolismo , Línea Celular Tumoral , Células HeLa , ARN Largo no Codificante/genética , ARN Endógeno Competitivo
19.
Front Genet ; 15: 1315677, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38725483

RESUMEN

To cope with the damage from oxidative stress caused by hypoxia, mammals have evolved a series of physiological and biochemical traits, including antioxidant ability. Although numerous research studies about the mechanisms of hypoxia evolution have been reported, the molecular mechanisms of antioxidase-related genes in mammals living in different environments are yet to be completely understood. In this study, we constructed a dataset comprising 7 antioxidase-related genes (CAT, SOD1, SOD2, SOD3, GPX1, GPX2, and GPX3) from 43 mammalian species to implement evolutionary analysis. The results showed that six genes (CAT, SOD1, SOD2, SOD3, GPX1, and GPX3) have undergone divergent evolution based on the free-ratio (M1) model. Furthermore, multi-ratio model analyses uncovered the divergent evolution between hypoxic and non-hypoxic lineages, as well as various hypoxic lineages. In addition, the branch-site model identified 9 positively selected branches in 6 genes (CAT, SOD1, SOD2, SOD3, GPX2, and GPX3) that contained 35 positively selected sites, among which 31 positively selected sites were identified in hypoxia-tolerant branches, accounting for 89% of the total number of positively selected sites. Interestingly, 65 parallel/convergent sites were identified in the 7 genes. In summary, antioxidase-related genes are subjected to different selective pressures among hypoxia-tolerant species living in different habitats. This study provides a valuable insight into the molecular evolution of antioxidase-related genes in hypoxia evolution in mammals.

20.
Front Physiol ; 15: 1408750, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38725568

RESUMEN

Oxygen (O2) supply is constantly maintained by the vascular network for a proper tissue oxygenation. Hypoxia is the result of an increased O2 demand and/or decreased supply and is common in both physiological conditions and human diseases. Angiogenesis is one of the adaptive responses to hypoxia and is mainly regulated by the hypoxia-inducible factors, HIFs. These heterodimeric transcription factors are composed of one of three O2-dependent α subunits (HIF-1, HIF-2, and HIF-3) and a constitutively expressed O2-insensitive subunit (HIF-1ß). Among them HIF-1α is the most characterized and its activity is tightly controlled. Under hypoxia, its intracellular accumulation triggers the transcription of several genes, involved in cell survival/proliferation, autophagy, apoptosis, cell metabolism, and angiogenesis. HIF pathway is also modulated by specific microRNAs (miRNAs), thus resulting in the variation of several cellular responses, including alteration of the angiogenic process. The pro-angiogenic activity of HIF-1α is not restricted to endothelial cells, as it also affects the behavior of other cell types, including tumor and inflammatory/immune cells. In this context, exosomes play a crucial role in cell-cell communication by transferring bio-active cargos such as mRNAs, miRNAs, and proteins (e.g., VEGFA mRNA, miR210, HIF-1α). This minireview will provide a synopsis of the multiple factors able to modulate hypoxia-induced angiogenesis especially in the tumor microenvironment context. Targeting hypoxia signaling pathways by up-to-date approaches may be relevant in the design of therapeutic strategies in those pathologies where angiogenesis is dysregulated.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...