Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 194
Filtrar
1.
Biomedicines ; 12(8)2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39200365

RESUMEN

BACKGROUND: The importance of identifying mortality biomarkers in chronic kidney disease (CKD), and especially in patients treated with hemodialysis (HD), has become evident. In addition to being a marker of tubulointerstitial injury, plasma kidney injury molecule-1 (KIM-1) has been mentioned in regard to HD patients as a risk marker for cardiovascular (CV) mortality and coronary artery calcification. The aim of this study was to assess the level of plasma KIM-1 as a marker of cardiovascular disease (CVD) and mortality in CKD5-HD patients (patients with CKD stage G5D treated with hemodialysis). METHODS: We conducted a prospective case-control study that included 63 CKD5-HD patients (HD for 1-5 years) followed up for 48 months and a control group consisting of 52 non-dialysis patients diagnosed with CKD stages G1-G5 (ND-CKD). All patients had a CVD baseline assessment including medical history, echocardiography, and electrocardiography (ECG). Circulating plasma KIM-1 levels were determined with single-molecule counting immunoassay technology using an enzyme-linked immunosorbent assay. We obtained the following parameters: serum creatinine and urea; the inflammation markers CRP (C-reactive protein) and IL-6 (interleukin-6); and the anemia markers complete blood count, serum ferritin, and transferrin saturation (TSAT). RESULTS: The mean plasma KIM-1 level was 403.8 ± 546.8 pg/mL, showing a statistically significant correlation with inflammation (CRP, R = 0.28, p = 0.02; IL-6, R = 0.36, p = 0.005) and with anemia (hematocrit, R = -0.5, p = -0.0316; hemoglobin (Hb), R = -0.5, p = 0.02). We found that patients with left ventricular hypertrophy (LVH) on echocardiography (59.7%) had significantly lower mean levels of plasma KIM-1 than patients from the control group (155.51 vs. 432.12 pg/mL; p = 0.026). Regarding the patients' follow-up, we assessed all-cause mortality as an endpoint. After 24 months of follow-up, we found a mortality rate of 22.23%, while after 48 months, the mortality rate was 50.73%. A plasma KIM-1 level < 82.98 pg/mL was significantly associated with decreased survival in hemodialysis patients (p < 0.001). CONCLUSIONS: In patients treated with hemodialysis, low levels of plasma KIM-1 were associated with cardiovascular changes and an increased risk of mortality. Plasma KIM-1 levels were significantly higher in HD patients compared to ND-CKD patients.

2.
Hematology ; 29(1): 2296809, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38149670

RESUMEN

Venetoclax is a selective inhibitor of the anti-apoptotic protein B-cell lymphoma 2 (BCL2), as a targeted therapy for multiple myeloma (MM) patients. It was initially approved by the United States Food and Drug Administration for the treatment of chronic lymphocytic leukemia in April 2016 and later for acute myeloid leukemia in October 2020. However, venetoclax is used as an off-label in a subset group of relapsed and refractory multiple myeloma (RRMM) patients with the presence of translocation t(11;14). Preclinical and clinical studies have highlighted the potential of venetoclax in the management of MM patients, with a specific focus on t(11;14) as a predictive biomarker for initiating venetoclax-based treatment. Later, several studies in RRMM patients that used venetoclax in combination with dexamethasone or/and proteasome inhibitors have shown promising results, in which management guidelines have included venetoclax as one of the options to treat MM patients. Hence, this review focuses on the use of venetoclax in RRMM, clinical efficacy, safety, dosing strategies, and predictive biomarkers for initiating venetoclax. Additionally, we discuss ongoing studies that are investigating different combination of venetoclax regimens in MM patients.


Asunto(s)
Leucemia Linfocítica Crónica de Células B , Mieloma Múltiple , Humanos , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/genética , Compuestos Bicíclicos Heterocíclicos con Puentes/uso terapéutico , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Sulfonamidas/uso terapéutico , Sulfonamidas/farmacología , Leucemia Linfocítica Crónica de Células B/tratamiento farmacológico , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos
3.
J Med Life ; 16(9): 1388-1392, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38107701

RESUMEN

This study aimed to investigate the role of inflammatory processes in benign prostatic enlargement among men with elevated prostate-specific antigen (PSA) levels without a history of prostatic disease. Additionally, we aimed to examine the influence of serum zinc levels on prostate volume. We investigated the associations between systemic inflammatory markers, serum PSA, and serum zinc levels in 48 men without a history of prostatic disease, aged between 60-72 years, and 30 healthy men in the same age range. Data collection occurred between 1/2/2022 to 1/10/2022. The results are presented as mean values ± standard error (SE), and statistical significance was determined at p≤0.05. The levels of sIL-8 (P: 44.295±1.002, C: 1.404±0.2562), IL-6 (P: 7.406±0.5632, C: 4.468±0.830), CRP (P: 14.765±0.565, C: 6.267±0.538), increased significantly in patients with high PSA, while zinc levels (P: 92.305±2.8235, C: 114.565±8.861) decreased in the patient group. Regarding white blood cell (WBC) parameters, patients exhibited a significant increase in WBC total count (P: 12995.00±488.47, C: 7713.333±777.778), neutrophil % (P: 69.450±1.619, C: 51.200±1.826), lymphocyte % (P: 39.50±2.024, C: 30.867±1.268), and NLR (2.013±0.105). Conversely, there were no significant differences in eosinophil % (P: 3.450±0.4558, C: 3.267±0.5297), basophil % (P: 0.300±0.105, C: 0.267±1182), or monocyte % (P: 3.450±0.4558, C: 3.267±0.5297) between the two groups. In men without known prostatic illness, increased PSA was linked to markers of systemic inflammation. The results indicate the role of inflammatory processes in increasing the size of the prostate gland, as evidenced by the increased levels of immune markers like white blood cells and interleukins, along with the influence of zinc. Future research is required to determine how these markers relate to the development and incidence of prostate cancer.


Asunto(s)
Hiperplasia Prostática , Neoplasias de la Próstata , Masculino , Humanos , Persona de Mediana Edad , Anciano , Antígeno Prostático Específico , Irak , Recuento de Leucocitos
4.
J Med Life ; 16(7): 1105-1110, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37900069

RESUMEN

Sepsis, a life-threatening condition arising from infection, often results in multi-organ failure, including cardiac dysfunction. This study investigated Xanthohumol, a natural compound, and its potential mechanism of action to enhance heart function following sepsis. A total of twenty-four adult male Swiss albino mice were allocated randomly to one of four equal groups (n=6): sham, CLP, vehicle Xanthohumol the same amount of DMSO injected IP 10 minutes before the CLP, and Xanthohumol group (0.4 mg/kg of Xanthohumol administered IP before the CLP process). Toll-like receptor 4, pro-inflammatory mediators, anti-inflammatory markers, oxidative stress indicators, apoptosis markers, and serum cardiac damage biomarkers were measured in the cardiac tissue using ELISA. Data with normal distribution were analyzed using t-test and ANOVA tests (p<0.05). In comparison to the sham group, the sepsis group had significantly higher levels of TLR-4, IL-6, TNF-α, MIF, F2-isoprostane, caspase-3, cTn-I, and CK-MB, while the pre-treated group with Xanthohumol had significantly lower levels (p<0.05) of these markers than the sepsis group. Bcl-2 showed no significant difference in Xanthohumol pre-treated group relative to the sepsis group, while IL-10 was significantly elevated. Xanthohumol dramatically reduced cardiac tissue injury (p<0.05) relative to the CLP group. By blocking the downstream signal transduction pathways of TLR-4 and NF-kB, Xanthohumol was shown to lessen cardiac damage in male mice during CLP-induced polymicrobial sepsis.


Asunto(s)
Sepsis , Receptor Toll-Like 4 , Ratones , Masculino , Animales , Receptor Toll-Like 4/metabolismo , Transducción de Señal , FN-kappa B/metabolismo , Sepsis/complicaciones , Sepsis/tratamiento farmacológico
5.
J Med Life ; 16(7): 1120-1126, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37900081

RESUMEN

As sepsis is associated with a 50% increase in mortality, sepsis-induced cardiomyopathy has become a critical topic. A multidisciplinary approach is required for the diagnosis and treatment of septic cardiomyopathy. This study looked at Sulforaphane, a natural product that aims to evaluate cardiac function after sepsis, and its likely mechanism of action. Twenty-four adult male Swiss albino mice were randomly divided into 4 equal groups (n=6): sham, CLP, vehicle Sulforaphane (the same amount of DMSO injected IP one hour before the CLP), and Sulforaphane group (one hour before the CLP, a 5mg/kg dose of Sulforaphane was injected). Cardiac tissue levels of toll-like receptor 4 (TLR-4), pro-inflammatory mediators, anti-inflammatory markers, oxidative stress markers, apoptosis markers, and serum cardiac damage biomarkers were assessed using ELISA. Statistical analyses, including t-tests and ANOVA tests, were performed with a significance level of 0.05 for normally distributed data. Compared to the sham group, the sepsis group had significantly elevated levels of TLR-4, IL-6, TNF-α, MIF, F2-isoprostane, caspase-3, cTn-I, and CK-MB (p<0.05). In contrast, the Sulforaphane pre-treated group demonstrated significantly lower levels of these markers (p<0.05). Additionally, Bcl-2 levels were significantly reduced (p<0.05) in the Sulforaphane group. Sulforaphane administration also significantly attenuated cardiac tissue injury (p<0.05). The findings suggest that Sulforaphane can decrease heart damage in male mice during CLP-induced polymicrobial sepsis by suppressing TLR-4/NF-kB downstream signal transduction pathways.


Asunto(s)
Cardiomiopatías , Lesiones Cardíacas , Sepsis , Ratones , Masculino , Animales , Receptor Toll-Like 4/metabolismo , Receptor Toll-Like 4/uso terapéutico , Cardiomiopatías/etiología , Cardiomiopatías/complicaciones , Lesiones Cardíacas/complicaciones , Sepsis/complicaciones , Sepsis/tratamiento farmacológico
6.
J Nutr Sci ; 12: e103, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37771507

RESUMEN

This review discusses epigenetic mechanisms and the relationship of infertility in men and women in relation to parameters pertaining to nutrition. The prevalence of infertility worldwide is 8-12 %, and one out of every eight couples receives medical treatment. Epigenetic mechanisms, aging, environmental factors, dietary energy and nutrients and non-nutrient compounds; more or less energy intake, and methionine come into play in the occurrence of infertility. It also interacts with vitamins B12, D and B6, biotin, choline, selenium, zinc, folic acid, resveratrol, quercetin and similar factors. To understand the molecular mechanisms regulating the expression of genes that affect infertility, the environment, the role of genotype, age, health, nutrition and changes in the individual's epigenotype must first be considered. This will pave the way for the identification of the unknown causes of infertility. Insufficient or excessive intake of energy and certain macro and micronutrients may contribute to the occurrence of infertility as well. In addition, it is reported that 5-10 % of body weight loss, moderate physical activity and nutritional interventions for improvement in insulin sensitivity contribute to the development of fertility. Processes that pertain to epigenetics carry alterations which are inherited yet not encoded via the DNA sequence. Nutrition is believed to have an impact over the epigenetic mechanisms which are effective in the pathogenesis of several diseases like infertility. Epigenetic mechanisms of individuals with infertility are different from healthy individuals. Infertility is associated with epigenetic mechanisms, nutrients, bioactive components and numerous other factors.


Asunto(s)
Infertilidad Femenina , Humanos , Masculino , Femenino , Infertilidad Femenina/genética , Epigénesis Genética , Genotipo
7.
Front Endocrinol (Lausanne) ; 14: 1120364, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37124732

RESUMEN

Introduction: Increased triglycerides (TGs) are a major risk factor for cardiovascular disease. Furthermore, hypertriglyceridemia is commonly associated with a reduction of high-density lipoprotein cholesterol (HDL-C) and an increase in atherogenic small-dense low-density lipoprotein (LDL-C) levels. Studies provide support that polyunsaturated omega-3 fatty acids (ω3-LCPUFAs) are cardioprotective and have antithrombotic and anti-inflammatory effects. The potential effects of ω3-LCPUFAs on cardiometabolic factors and anti-inflammatory actions in children with acute lymphoblastic leukemia (ALL) are limited. This is a secondary analysis of a previous clinical trial registered at clinical trials.gov (# NCT01051154) that was conducted to analyze the effect of ω3-LCPUFAs in pediatric patients with ALL who were receiving treatment.Objective: To examine the effect of supplementation with ω3-LCPUFAs on cardiometabolic factors in children with ALL undergoing treatment. Methods: Thirty-four children (placebo group: 20 patients; ω3-LCPUFAs group: 14 patients) aged 6.7 ± 2.7 years who were newly diagnosed with ALL were evaluated. Children were randomized to receive either ω3-LCPUFAs or placebo capsules (sunflower oil). ω3-LCPUFAs were administered in the form of 500-mg soft capsules. The ω3-LCPUFA capsules contained 225 mg of DHA, 45 mg of EPA, and 20 mg of another ω3-LCPUFAs. The omega-3 dose was administered at a rate of 0.100 g/kg of body weight/day for three months. Main outcomes: Fasting cholesterol, HDL-C, very-low-density lipoprotein (VLDL-C), TGs, atherogenic index of plasma (AIP), android/gynoid ratio (A/GR), IL-6, TNF-α, and percentage of fat mass (DXA) were measured in all patients. Fatty acid analyses in red blood cells were performed with gas chromatography. Results: We found significantly lower levels of TGs (p=0.043), VLDL-C (p=0.039), IL-6 (p=0.025), and AIP (p=0.042) in the ω3-LCPUFAs group than in the placebo group at three months. In contrast, the total cholesterol concentration was higher at 3 months in the ω3-LCPUFAs group than in the placebo group (155 mg/dl vs. 129 mg/dl, p=0.009). The number of children with hypertriglyceridemia (85% vs. 50%; p=0.054) tended to be lower between the time of diagnosis and after 3 months of supplementation with ω3-LCPUFAs. Conclusion: These findings support the use of ω3-LCPUFAs to reduce some adverse cardiometabolic and inflammatory risk factors in children with ALL. Clinical trial registration: ClinicalTrials.gov, identifier NCT01051154.


Asunto(s)
Ácidos Grasos Omega-3 , Hipertrigliceridemia , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Masculino , Femenino , Niño , Preescolar , Ácidos Grasos Omega-3/administración & dosificación , Ácidos Grasos Omega-3/uso terapéutico , Hipertrigliceridemia/tratamiento farmacológico , Hipertrigliceridemia/epidemiología , Leucemia-Linfoma Linfoblástico de Células Precursoras/complicaciones , Leucemia-Linfoma Linfoblástico de Células Precursoras/epidemiología , Resultado del Tratamiento
8.
Front Immunol ; 14: 964660, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37081894

RESUMEN

Background: Chronic systemic inflammation reduces the bioavailability of circulating endothelial progenitor cells (EPCs). Indoleamine 2,3-dioxygenase 1 (IDO1), a key enzyme of immune tolerance catalyzing the initial step of tryptophan degradation along the so-called l-kynurenine (l-kyn) pathway, that is induced by inflammatory stimuli and exerts anti-inflammatory effects. A specific relationship between IDO1 activity and circulating EPC numbers has not yet been investigated. Methods: In this study, circulating EPCs were examined in mice treated with low doses of lipopolysaccharide (LPS) to mimic low-grade inflammation. Moreover, the association between IDO1 activity and circulating EPCs was studied in a cohort of 277 patients with variable systemic low-grade inflammation. Results: Repeated low doses of LPS caused a decrease in circulating EPCs and l-kyn supplementation, mimicking IDO1 activation, significantly increased EPC numbers under homeostatic conditions preventing EPC decline in low-grade endotoxemia. Accordingly, in patients with variable systemic low-grade inflammation, there was a significant interaction between IDO1 activity and high-sensitivity C-reactive protein (hs-CRP) in predicting circulating EPCs, with high hs-CRP associated with significantly lower EPCs at low IDO1 activity but not at high IDO1 activity. Interpretation: Overall, these findings demonstrate that systemic low-grade inflammation reduces circulating EPCs. However, high IDO1 activity and l-kyn supplementation limit circulating EPC loss in low-grade inflammation.


Asunto(s)
Células Progenitoras Endoteliales , Triptófano , Animales , Ratones , Triptófano/metabolismo , Células Progenitoras Endoteliales/metabolismo , Proteína C-Reactiva , Lipopolisacáridos , Inflamación , Quinurenina/metabolismo
9.
Food Chem (Oxf) ; 6: 100165, 2023 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-36891454

RESUMEN

Water-soluble protein (WSP) from fish meat is abundant in the waste effluent generated via the surimi manufacturing process. This study investigated the anti-inflammatory effects and mechanisms of fish WSP using primary macrophages (MΦ) and animal ingestion. MΦ were treated with digested-WSP (d-WSP, 500 µg/mL) with or without lipopolysaccharide (LPS) stimulation. For the ingestion study, male ICR mice (5 weeks old) were fed 4% WSP for 14 days following LPS administration (4 mg/kg body weight). d-WSP decreased the expression of Tlr4, an LPS receptor. Additionally, d-WSP significantly suppressed the secretion of inflammatory cytokines, phagocytic ability, and Myd88 and Il1b expressions of LPS-stimulated macrophages. Furthermore, the ingestion of 4% WSP attenuated not only LPS-induced IL-1ß secretion in the blood but also Myd88 and Il1b expressions in the liver. Thus, fish WSP decreases the expressions of the genes involved in the TLR4-MyD88 pathway in MΦ and the liver, thereby suppressing inflammation.

10.
J Transl Autoimmun ; 6: 100192, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36860771

RESUMEN

Melatonin is the main neuroendocrine product in the pineal gland. Melatonin can regulate circadian rhythm-related physiological processes. Evidence indicates an important role of melatonin in hair follicles, skin, and gut. There appears to be a close association between melatonin and skin disorders. In this review, we focus on the latest research of the biochemical activities of melatonin (especially in the skin) and its promising clinical applications.

11.
IBRO Neurosci Rep ; 14: 202-209, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36852215

RESUMEN

Objectives: Pravastatin sodium is reported to have multiple beneficial effects in cerebral atherosclerosis and neuronal injury; however, the preventive effects on cerebral venous ischemia are still unknown. Herein, we aimed to examine the neuroprotective effects of transoral prior administration of pravastatin sodium against cerebral cortical venous ischemia with suppression of apoptosis. Methods: Thirty 8-week-old male Wistar rats were divided equally into two study groups (n = 15 vs. n = 15); the pravastatin group was fed 1% pravastatin sodium with their usual diet for 2 weeks, while the control group only received the usual diet. Two-vein occlusion (2VO) model was applied for this study, and two adjacent cortical veins in each animal were permanently occluded photochemically with rose bengal dye. During photo-thrombosis, regional changes of the cerebral blood flow (CBF) in area of the venous ischemia were recorded. At 48-h after 2VO, animals were euthanized using perfusion fixation, and we histologically measured ratios of infarcted area to contralateral hemisphere, and counted Bax- and Bcl-2-positive cells in the penumbra to investigate the implications for apoptosis. Results: The ratio of infarcted area was significantly decreased in the pravastatin group compared to the control group (P < 0.01). The number of Bax-positive cells also decreased significantly in the pravastatin group (P < 0.01). In contrast, immunolabeling for Bcl-2 was essentially negative in all areas in both groups. There were also no significant differences in regional CBF changes after 2VO between the two groups (P = 0.13). Conclusions: Pre-emptive administration of pravastatin sodium mixed in the food has neuroprotective effects against cerebral cortical venous ischemia with suppression of apoptosis associated with inhibition of Bax expression but has little influence on regional CBF.

12.
J Clin Exp Hepatol ; 13(1): 116-126, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36647403

RESUMEN

The incidence of alcoholic-associated hepatitis (AH) is increasing. The treatment options for severe AH (sAH) are scarce and limited to corticosteroid therapy which showed limited mortality benefit in short-term use only. Therefore, there is a dire need for developing safe and effective therapies for patients with sAH and to improve their high mortality rates.This review article focuses on the current novel therapeutics targeting various mechanisms in the pathogenesis of alcohol-related hepatitis. Anti-inflammatory agents such as IL-1 inhibitor, Pan-caspase inhibitor, Apoptosis signal-regulating kinase-1, and CCL2 inhibitors are under investigation. Other group of agents include gut-liver axis modulators, hepatic regeneration, antioxidants, and Epigenic modulators. We describe the ongoing clinical trials of some of the new agents for alcohol-related hepatitis. Conclusion: A combination of therapies was investigated, possibly providing a synergistic effect of drugs with different mechanisms. Multiple clinical trials of novel therapies in AH remain ongoing. Their result could potentially make a difference in the clinical course of the disease. DUR-928 and granulocyte colony-stimulating factor had promising results and further trials are ongoing to evaluate their efficacy in the large patient sample.

13.
J Clin Exp Hepatol ; 13(1): 162-177, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36647414

RESUMEN

Cirrhosis predisposes to abnormalities in energy, hormonal, and immunological homeostasis. Disturbances in these metabolic processes create susceptibility to sarcopenia or pathological muscle wasting. Sarcopenia is prevalent in cirrhosis and its presence portends significant adverse outcomes including the length of hospital stay, infectious complications, and mortality. This highlights the importance of identification of at-risk individuals with early nutritional, therapeutic and physical therapy intervention. This manuscript summarizes literature relevant to sarcopenia in cirrhosis, describes current knowledge, and elucidates possible future directions.

14.
J Orthop Translat ; 38: 241-255, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36514714

RESUMEN

Objective: Knee osteoarthritis (KOA) is a highly prevalent musculoskeletal disorder characterized by degeneration of cartilage and abnormal remodeling of subchondral bone (SCB). Teriparatide (PTH (1-34)) is an effective anabolic drug for osteoporosis (OP) and regulates osteoprotegerin (OPG)/receptor activator of nuclear factor ligand (RANKL)/RANK signaling, which also has a therapeutic effect on KOA by ameliorating cartilage degradation and inhibiting aberrant remodeling of SCB. However, the mechanisms of PTH (1-34) in treating KOA are still uncertain and remain to be explored. Therefore, we compared the effect of PTH (1-34) on the post-traumatic KOA mouse model to explore the potential therapeutic effect and mechanisms. Methods: In vivo study, eight-week-old male mice including wild-type (WT) (n â€‹= â€‹54) and OPG-/- (n â€‹= â€‹54) were investigated and compared. Post-traumatic KOA model was created by destabilization of medial meniscus (DMM). WT mice were randomly assigned into three groups: the sham group (WT-sham; n â€‹= â€‹18), the DMM group (WT-DMM; n â€‹= â€‹18), and the PTH (1-34)-treated group (WT-DMM â€‹+ â€‹PTH (1-34); n â€‹= â€‹18). Similarly, the OPG-/- mice were randomly allocated into three groups as well. The designed mice were executed at the 4th, 8th, and 12th weeks to evaluate KOA progression. To further explore the chondro-protective of PTH (1-34), the ATDC5 chondrocytes were stimulated with different concentrations of PTH (1-34) in vitro. Results: Compared with the WT-sham mice, significant wear of cartilage in terms of reduced cartilage thickness and glycosaminoglycan (GAG) loss was detected in the WT-DMM mice. PTH (1-34) exhibited cartilage-protective by alleviating wear, retaining the thickness and GAG contents. Moreover, the deterioration of the SCB was alleviated and the expression of PTH1R/OPG/RANKL/RANK were found to increase after PTH (1-34) treatment. Among the OPG-/- mice, the cartilage of the DMM mice displayed typical KOA change with higher OARSI score and thinner cartilage. The damage of the cartilage was alleviated but the abnormal remodeling of SCB didn't show any response to the PTH (1-34) treatment. Compared with the WT-DMM mice, the OPG-/--DMM mice caught more aggressive KOA with thinner cartilage, sever cartilage damage, and more abnormal remodeling of SCB. Moreover, both the damaged cartilage from the WT-DMM mice and the OPG-/--DMM mice were alleviated but only the deterioration of SCB in WT-DMM mice was alleviated after the administration of PTH (1-34). In vitro study, PTH (1-34) could promote the viability of chondrocytes, enhance the synthesis of extracellular matrix (ECM) (AGC, COLII, and SOX9) at the mRNA and protein level, but inhibit the secretion of inflammatory cytokines (TNF-α and IL-6). Conclusion: Both wear of the cartilage was alleviated and aberrant remodeling of the SCB was inhibited in the WT mice, but only the cartilage-protective effect was observed in the OPG-/- mice. PTH (1-34) exhibited chondro-protective effect by decelerating cartilage degeneration in vivo as well as by promoting the proliferation and enhancing ECM synthesis of chondrocytes in vitro. The current investigation implied that the rescue of the disturbed SCB is dependent on the regulation of OPG while the chondro-protective effect is independent of modulation of OPG, which provides proof for the treatment of KOA. The translational potential of this article: Systemic administration of PTH (1-34) could exert a therapeutic effect on both cartilage and SCB in different mechanisms to alleviate KOA progression, which might be a novel therapy for KOA.

15.
Bioact Mater ; 21: 547-565, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36185749

RESUMEN

The disability, mortality and costs due to ionizing radiation (IR)-induced osteoporotic bone fractures are substantial and no effective therapy exists. Ionizing radiation increases cellular oxidative damage, causing an imbalance in bone turnover that is primarily driven via heightened activity of the bone-resorbing osteoclast. We demonstrate that rats exposed to sublethal levels of IR develop fragile, osteoporotic bone. At reactive surface sites, cerium ions have the ability to easily undergo redox cycling: drastically adjusting their electronic configurations and versatile catalytic activities. These properties make cerium oxide nanomaterials fascinating. We show that an engineered artificial nanozyme composed of cerium oxide, and designed to possess a higher fraction of trivalent (Ce3+) surface sites, mitigates the IR-induced loss in bone area, bone architecture, and strength. These investigations also demonstrate that our nanozyme furnishes several mechanistic avenues of protection and selectively targets highly damaging reactive oxygen species, protecting the rats against IR-induced DNA damage, cellular senescence, and elevated osteoclastic activity in vitro and in vivo. Further, we reveal that our nanozyme is a previously unreported key regulator of osteoclast formation derived from macrophages while also directly targeting bone progenitor cells, favoring new bone formation despite its exposure to harmful levels of IR in vitro. These findings open a new approach for the specific prevention of IR-induced bone loss using synthesis-mediated designer multifunctional nanomaterials.

16.
J Med Life ; 16(11): 1628-1632, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38406792

RESUMEN

Ifosfamide (IFO), an alkylating chemotherapy agent, is known for its association with neurotoxicity and encephalopathy. This trial was designed to evaluate the protective action of daidzein (DZN) against IFO-induced neurotoxicity in male rats by determining the difference in certain inflammatory and apoptotic markers in the brain tissue of rats. Twenty-eight Wistar rats, weighing 120-150 g, were divided into four groups of seven rats: Group 1 (Control) received no treatment; Group 2 was orally administered DZN (100 mg/kg/day) for seven days; Group 3 received a single intraperitoneal (IP) dose of IFO (500 mg/kg); Group 4 received oral DZN (100 mg/kg/day) for one week prior to a single IP dose of IFO on the seventh day. Twenty-four hours post-treatment, serum and brain tissue samples were collected for analysis. The results indicated a significant increase in serum inflammatory markers (TNF-alpha, IL-6, and iNOS) and the anti-inflammatory marker (IL-10), along with elevated caspase-3 enzyme activity in the brain tissue of the IFO-treated group compared to the control group. Conversely, pre-treatment with DZN significantly reduced serum inflammatory markers and caspase-3 levels in tissue. The findings suggest that daidzein has anti-inflammatory and anti-apoptotic properties, potentially offering protection against IFO-induced neurotoxicity in rats.


Asunto(s)
Síndrome de Fanconi , Isoflavonas , Fármacos Neuroprotectores , Ratas , Masculino , Animales , Ifosfamida/toxicidad , Ratas Wistar , Fármacos Neuroprotectores/farmacología , Caspasa 3 , Antineoplásicos Alquilantes/toxicidad , Síndrome de Fanconi/inducido químicamente , Síndrome de Fanconi/prevención & control , Antiinflamatorios
17.
J Med Life ; 16(10): 1482-1487, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38313184

RESUMEN

The novel Coronavirus disease (COVID-19) is associated with an increased risk of cerebrovascular events. About 1,228 cases of severe COVID-19 were hospitalized in the West Kazakhstan Medical University Hospital, in Aktobe, Kazakhstan, 1.22% (N=15) of whom were clinically diagnosed with acute cerebrovascular events and were included in the current study. COVID-19 was diagnosed using a nasopharyngeal polymerase chain reaction (PCR) test, blood count, inflammatory markers, and chest computerized tomography. The diagnosis of acute cerebrovascular events was based on the clinical manifestation. The participants' data were reviewed to detect the prevalence of acute cerebrovascular events and the inflammatory markers associated with COVID-19 infection. The mean age of the participants was 66.9 years (±11.07), 53% (N=8) of them were male, while 47% (N=7) were female. Moreover, 13% (N=2) presented a history of cerebrovascular events, 87% (N=13) of the participants had hypertension, 47% (N=7) had coronary heart disease, 33% (N=5) had diabetes mellitus (DM), 13% (N=2) had cardiac arrhythmia, and 13% (N=2) had chronic obstructive pulmonary disease (COPD). The C-reactive protein was high in 100% (N=15) of participants, D-dimer in 87% (N=13) of them, and both the ferritin and interleukin-6 were high in 60% (N=9) of the participants. SARS-CoV-2 causes a systemic inflammatory response, and the presence of comorbidities increases the risk of acute cerebrovascular events in COVID-19-infected individuals. The elevated inflammatory markers in severely COVID-19-infected individuals support the inflammatory "cytokine storm" response theory.


Asunto(s)
COVID-19 , Diabetes Mellitus , Hipertensión , Anciano , Femenino , Humanos , Masculino , Comorbilidad , SARS-CoV-2 , Persona de Mediana Edad
18.
Ophthalmol Sci ; 2(4): 100212, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36531590

RESUMEN

Objective: The objective of the study was to reveal the presence of cellular interplay through extracellular vesicle (EV) microRNAs (miRs), to dampen the vicious cycle to degenerate human corneal endothelium (HCE) tissues. Design: Prospective, comparative, observational study. Methods: The miR levels in neonate-derived corneal tissues, in the aqueous humor (AqH) of bullous keratoplasty and cataract patients, as well as in the culture supernatant (CS) and EV of cultured human corneal endothelial cells (hCECs), were determined using 3D-Gene human miR chips and then validated using the real-time polymerase chain reaction. The extracellularly released miRs were profiled after the forced downregulation of cellular miR-34a, either by an miR-34a inhibitor or exposure to H2O2. The senescence-associated secretory phenotypes and mitochondrial membrane potential (MMP) were assessed to determine the functional features of the released miRs. Main Outcome Measures: Identification of functional miRs attenuating HCE degeneration. Results: The miRs in AqH were classified into 2 groups: expression in 1 group was significantly reduced in neonate-derived tissues, whereas that in the other group remained almost constant, independent of aging. The miR-34a and -29 families were typical in the former group, whereas miR-184 and -24-3p were typical in the latter. Additionally, a larger amount of the latter miRs was detected in AqH compared with those of the former miRs. There was also a greater abundance of miR-184 and -24-3p in hCECs, EV, and CS in fully mature CD44-/dull hCEC, leading to sufficient clinical tissue regenerative capacity in cell injection therapy. The repression of cellular miR-34a, either due to miR-34a inhibitors or exposure to oxidative stress, unexpectedly resulted in the elevated release of miR-184 and -24-3p. Secretions of VEGF, interleukin 6, monocyte chemotactic protein-1, and MMP were all repressed in both mature CD44-/dull and degenerated CD44+++ hCEC, transfected with an miR-184 mimic. Conclusions: The elevated release of miR-184 into AqH may constitute cellular interplay that prevents the aggravation of HCE degeneration induced by oxidative stress, thereby sustaining tissue homeostasis in HCE.

19.
Toxicol Rep ; 9: 1484-1490, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36518450

RESUMEN

Significance: Electronic cigarettes (e-cigarettes) have become a popular way to smoke all over the world. Chronic exposure to e-cigarette aerosol may influence lung health. This study uses an animal model to explore the time course of the effect of exposure to e-cigarette aerosols on the lung. Methods: Lung samples were collected after exposure of Balb/c mice to e-cigarette aerosols for 1 h/day (6 times/week) for 1, 2 and 4 weeks and compared to sham-exposed controls. Examined biomarkers including inflammatory cells, tumor necrosis factor α (TNFα), interleukin-6 (IL-6), interleukin-10 (IL-10), reduced glutathione (GSH), oxidized glutathione (GSSG), glutathione peroxidase (GPx), catalase, superoxide dismutase (SOD), and Thiobarbituric acid reactive substances (TBARS). Results: Exposure of animals to e-cigarette aerosols induced significant increases (P < 0.05) in total inflammatory cells, eosinophils, macrophages and TNFα in the lung tissue after 1, 2 and 4 weeks of exposure. Furthermore, level of IL-10 significantly decreased, whereas levels of neutrophils and basophils significantly increased (P < 0.05) after 1 week of exposure. Exposure of animals to e-cigarette aerosol also induced significant decreases (P < 0.05) in the GSH/GSSG ratio, and GPx levels after 2 and 4 weeks of exposures. The activity of catalase was also reduced (P < 0.05) after 4 weeks of exposure. Level of TBARS showed a trend of elevation with time and it reached a significant elevation after 4 weeks (P < 0.01). Conclusion: Current results indicate that inhalation of unflavored e-cigarette aerosol might be associated with inflammation in lung tissue that worsen as the duration of exposure increases. Further experiments including more time points, histopathology and pulmonary physiology experiments are needed to confirm the current results.

20.
Toxicol Rep ; 9: 1655-1665, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36518482

RESUMEN

Cardiovascular disease is the most common disease in the world and the first among the causes of human death. Its morbidity and mortality increase annually, but no effective treatment is available. Therefore, new drugs should be developed to treat cardiovascular disease. Gentianella acuta (Michx.) Hulten (G. acuta) is an important Mongolian medicine in China and elicits protective effects on cardiovascular health. In this study, liquid chromatography-mass spectrometry (LC-MS) combined with network pharmacology was used to screen the main active ingredients and confirm that bellidifolin was one of the main components for the treatment of ischemic heart disease. Then, rat myocardial (H9c2) cells injury model induced by hydrogen peroxide (H2O2) in vitro was established to verify the effect of bellidifolin on oxidative stress stimulation, including determination of antioxidant enzyme activity and apoptosis. Transcriptome sequencing, qRT-PCR, and western blot were performed to further verify the antioxidant stress mechanism of bellidifolin. Results showed that bellidifolin pretreatment decreased the rate of apoptosis and the levels of lactate dehydrogenase (LDH), creatine kinase (CK), and alanine aminotransferase (ALT). Conversely, it increased the contents of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) in a dose-dependent manner, indicating that bellidifolin caused a protective effect on cardiomyocyte injury. Bellidifolin minimized the H2O2-induced cell injury by activating the PI3K-Akt signal pathway and downregulating glycogen synthase kinase-3ß (GSK-3ß) and p-Akt1/Akt1. Therefore, this work revealed that G. acuta has a good development prospect as an edible medicinal plant in cardiovascular disease. Its bellidifolin component is a potential therapeutic agent for cardiovascular disease induced by oxidative stress damage.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA