Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Mass Spectrom ; 59(6): e5040, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38736147

RESUMEN

In addition to providing critical knowledge of the accurate mass of ions, ion mobility-mass spectrometry (IM-MS) delivers complementary data relating to the conformation and size of ions in the form of an ion mobility spectrum and derived parameters, namely, the ion's mobility (K) and the IM-derived collision cross section (CCS). However, the maximum amount of information obtained in IM-MS measurements is not currently transferred into analytical databases including the full mobility spectra (CCS distributions) as well as capturing of additional ion species (e.g., adducts) into the same compound entry. We introduce CCSfind, a new tool for building comprehensive databases from experimental IM-MS measurements of small molecules. CCSfind allows predicted ion species to be chosen for input chemical formulae, which are then targeted by CCSfind after parsing open source mzML input files to provide a unified set of results within a single data processing step. CCSfind can handle both chromatographically separated isomers and IM separation of isomeric ions (e.g., "protomers" or conformers of the same ion species) with simple user control over the output for new database entries in SQL format. Files of up to 1 GB can be processed in less than 2 min on a desktop computer with 32 GB RAM with computational time scaling linearly with the size of the input mzML file or the number of input molecular formulae. Results are manually reviewed, annotated with experimental settings, before committing the database where the full dataset can be retrieved.

2.
J Mass Spectrom ; 59(5): e5026, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38656572

RESUMEN

Identification and specific quantification of isomers in a complex biological matrix by mass spectrometry alone is not an easy task due to their identical chemical formula and therefore their same mass-to-charge ratio (m/z). Here, the potential of direct introduction combined with ion mobility-mass spectrometry (DI-IM-MS) for rapid quantification of isomers as human milk oligosaccharides (HMOs) was investigated. Differences in HMO profiles between various analyzed breast milk samples were highlighted using the single ion mobility monitoring (SIM2) acquisition for high ion mobility resolution detection. Furthermore, the Se+ (secretor) or Se- (non-secretor) phenotype could be assigned to breast milk samples studied based on their HMO contents, especially on the response of 2'-fucosyllactose (2'-FL) and lacto-N-fucopentaose I (LNFP I). The possibility of quantifying a specific isomer in breast milk by DI-IM-MS was also investigated. The standard addition method allowed the determination of the 2'-FL despite the presence of other oligosaccharides, including 3-fucosyllactose (3-FL) isomer in breast milk. This proof-of-concept study demonstrated the high potential of such an approach for the rapid and convenient quantification of isomers in complex mixtures.


Asunto(s)
Espectrometría de Movilidad Iónica , Leche Humana , Oligosacáridos , Trisacáridos , Leche Humana/química , Humanos , Trisacáridos/análisis , Trisacáridos/química , Oligosacáridos/análisis , Oligosacáridos/química , Isomerismo , Femenino , Espectrometría de Movilidad Iónica/métodos , Espectrometría de Masas/métodos
3.
Talanta ; 274: 125970, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38621320

RESUMEN

The use of collision cross section (CCS) values derived from ion mobility studies is proving to be an increasingly important tool in the characterization and identification of molecules detected in complex mixtures. Here, a novel machine learning (ML) based method for predicting CCS integrating both molecular modeling (MM) and ML methodologies has been devised and shown to be able to accurately predict CCS values for singly charged small molecular weight molecules from a broad range of chemical classes. The model performed favorably compared to existing models, improving compound identifications for isobaric analytes in terms of ranking and assigning identification probability values to the annotation. Furthermore, charge localization was seen to be correlated with CCS prediction accuracy and with gas-phase proton affinity demonstrating the potential to provide a proxy for prediction error based on chemical structural properties. The presented approach and findings represent a further step towards accurate prediction and application of computationally generated CCS values.

4.
J Mass Spectrom ; 59(5): e5021, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38605451

RESUMEN

Trapped ion mobility spectrometry-time-of-flight mass spectrometry (TIMS-TOFMS) has emerged as a tool to study protein conformational states. In TIMS, gas-phase ions are guided across the IM stages by applying direct current (DC) potentials (D1-6), which, however, might induce changes in protein structures through collisional activation. To define conditions for native protein analysis, we evaluated the influence of these DC potentials using the metalloenzyme bovine carbonic anhydrase (BCA) as primary test compound. The variation of DC potentials did not change BCA-ion charge and heme content but affected (relative) charge-state intensities and adduct retention. Constructed extracted-ion mobilograms and corresponding collisional cross-section (CCS) profiles gave useful insights in (alterations of) protein conformational state. For BCA, the D3 and D6 potential (which are applied between the deflection transfer and funnel 1 [F1] and the accumulation exit and the start of the ramp, respectively) had most profound effects, showing multimodal CCS distributions at higher potentials indicating gradual unfolding. The other DC potentials only marginally altered the CCS profiles of BCA. To allow for more general conclusions, five additional proteins of diverse molecular weight and conformational stability were analyzed, and for the main protein charge states, CCS profiles were constructed. Principal component analysis (PCA) of the obtained data showed that D1 and D3 exhibit the highest degree of correlation with the ratio of folded and unfolded protein (F/U) as extracted from the mobilograms obtained per set D potential. The correlation of D6 with F/U and protein charge were similar, and D2, D4, and D5 showed an inverse correlation with F/U but were correlated with protein charge. Although DC boundary values for induced conformational changes appeared protein dependent, a set of DC values could be determined, which assured native analysis of most proteins.


Asunto(s)
Espectrometría de Movilidad Iónica , Proteínas , Animales , Bovinos , Espectrometría de Movilidad Iónica/métodos , Espectrometría de Masas/métodos , Conformación Proteica , Proteínas/química , Iones
5.
J Am Soc Mass Spectrom ; 35(6): 1076-1088, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38660944

RESUMEN

A recently developed proteolytic reactor, designed for protein structural investigation, was coupled to ion mobility mass spectrometry to monitor collisional cross section (CCS) evolution of model proteins undergoing trypsin-mediated mono enzymatic digestion. As peptides are released during digestion, the CCS of the remaining protein structure may deviate from the classical 2/3 power of the CCS-mass relationship for spherical structures. The classical relationship between CCS and mass (CCS = A × M2/3) for spherical structures, assuming a globular shape in the gas phase, may deviate as stabilizing elements are lost during digestion. In addition, collision-induced unfolding (CIU) experiments on partially digested proteins provided insights into the CCS resilience in the gas phase to ion activation, potentially due to the presence of stabilizing elements. The study initially investigated a model peptide ModBea (3 kDa), assessing the impact of disulfide bridges on CCS resilience in both reduced and oxidized forms. Subsequently, ß-lactoglobulin (2 disulfide bridges), calmodulin (Ca2+ coordination cation), and cytochrome c (heme) were selected to investigate the influence of common structuring elements on CCS resilience. CIU experiments probed the unfolding process, evaluating the effect of losing specific peptides on the energy landscapes of partially digested proteins. Comparisons of the TWCCSN2→He to trend curves describing the CCS/mass relationship revealed that proteins with structure-stabilizing elements consistently exhibit TWCCSN2→He and greater resilience toward CIU compared to proteins lacking these elements. The integration of online digestion, ion mobility, and CIU provides a valuable tool for identifying structuring elements in biopolymers in the gas phase.


Asunto(s)
Calmodulina , Espectrometría de Movilidad Iónica , Desplegamiento Proteico , Proteínas , Espectrometría de Movilidad Iónica/métodos , Proteínas/química , Calmodulina/química , Calmodulina/metabolismo , Lactoglobulinas/química , Lactoglobulinas/metabolismo , Citocromos c/química , Citocromos c/análisis , Espectrometría de Masas/métodos , Péptidos/química , Péptidos/análisis , Tripsina/química , Tripsina/metabolismo , Animales , Conformación Proteica
6.
Environ Sci Technol ; 58(14): 6236-6249, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38534032

RESUMEN

The COVID-19 pandemic has led to significantly increased human exposure to the widely used disinfectants quaternary ammonium compounds (QACs). Xenobiotic metabolism serves a critical role in the clearance of environmental molecules, yet limited data are available on the routes of QAC metabolism or metabolite levels in humans. To address this gap and to advance QAC biomonitoring capabilities, we analyzed 19 commonly used QACs and their phase I metabolites by liquid chromatography-ion mobility-tandem mass spectrometry (LC-IM-MS/MS). In vitro generation of QAC metabolites by human liver microsomes produced a series of oxidized metabolites, with metabolism generally occurring on the alkyl chain group, as supported by MS/MS fragmentation. Discernible trends were observed in the gas-phase IM behavior of QAC metabolites, which, despite their increased mass, displayed smaller collision cross-section (CCS) values than those of their respective parent compounds. We then constructed a multidimensional reference SQLite database consisting of m/z, CCS, retention time (rt), and MS/MS spectra for 19 parent QACs and 81 QAC metabolites. Using this database, we confidently identified 13 parent QACs and 35 metabolites in de-identified human fecal samples. This is the first study to integrate in vitro metabolite biosynthesis with LC-IM-MS/MS for the simultaneous monitoring of parent QACs and their metabolites in humans.


Asunto(s)
Desinfectantes , Compuestos de Amonio Cuaternario , Humanos , Compuestos de Amonio Cuaternario/análisis , Compuestos de Amonio Cuaternario/química , Espectrometría de Masas en Tándem/métodos , Pandemias , Cromatografía Liquida , Hígado
7.
J Am Soc Mass Spectrom ; 35(3): 582-589, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38361441

RESUMEN

Synthetic cannabinoids, a subclass of new psychoactive substances (NPS), are laboratory-made substances that are chemically similar to those found naturally in the cannabis plant. Many of these substances are illicitly manufactured and have been associated with severe health problems, prompting a need to develop analytical methods capable of characterizing both known and previously undetected compounds. This work focuses on a novel Structures for Lossless Ion Manipulations (SLIM) IM-MS approach to the differentiation and structural characterization of synthetic cannabinoid metabolites, specifically MDA-19/BUTINACA, JWH-018, and JWH-250 isomer groups. These different compound classes are structurally very similar, differing only in the position of one or a few functional groups; this yielded similarity in measured collision cross section (CCS) values. However, the high resolution of SLIM IM provided adequate separation of many of these isomers, such as sodiated JWH-250 metabolites N-4-OH, N-5-OH, and 5-OH, which displayed CCS of 187.5, 182.5, and 202.3 Å2, respectively. In challenging cases where baseline separation was precluded due to nearly identical CCS, such as for JWH-018 isomers, simple derivatization by dansyl chloride selectively reacted with the 6-OH compound to provide differentiation of all isomers using a combination of CCS and m/z. Finally, the opportunity to use this method for structural elucidation of unknowns was demonstrated by using SLIM IM mobility-aligned MS/MS fragmentation. Different MDA-19/BUTINACA isomers were first mobility separated and could then be individually activated, yielding unique fragments for both targeted identification and structural determination. Overall, the described SLIM IM-MS/MS workflow provides significant potential as a rapid screening tool for the characterization of emerging NPS such as synthetic cannabinoids and their metabolites.


Asunto(s)
Anisoles , Cannabinoides , Naftalenos , Espectrometría de Masas en Tándem , Espectrometría de Masas en Tándem/métodos , Indoles/química
8.
Drug Test Anal ; 16(4): 369-379, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37491787

RESUMEN

Fentanyl is a potent synthetic opioid that has attracted significant attention due to its illegal production and distribution, resulting in misuse, overdose, and fatalities. Because numerous fentanyl analogs, including structural isomers, with different potency have been discovered in the field, there is a critical need to continue developing analytical methodologies capable of accurate identification in forensic and clinical laboratories. This study aimed to develop a rapid method for detecting and separating fentanyl isomers based on ion mobility-mass spectrometry (IM-MS), where IM separates gas-phase ions based on differences in their size, shape, and charge. Several strategies for improved differentiation were implemented, including using unconventional cation adducts (e.g., alkali and transition metals) and data post-processing by high-resolution demultiplexing. A collection of collision cross section (CCS) values for the various metal ion adducts was gathered, which can be used to improve confidence of identification in future samples. Notable examples, such as [M + Cu]+ and [M + Ag]+ adducts, contributed to significant improvement of resolution between isomers. Furthermore, the addition of high-resolution post-processing provided resolving power of >150, which constitutes a significant increase in comparison with the normal 50-60 obtained with low-resolution drift tube instruments. Collectively, these improved separation strategies allowed for confident detection and subsequent quantitative analysis. The optimized IM-MS method resulted in quantification of fentanyl in human urine with limits of detection and quantification of 13 pg/mL and 40 pg/mL, respectively.


Asunto(s)
Fentanilo , Espectrometría de Movilidad Iónica , Humanos , Cationes , Espectrometría de Movilidad Iónica/métodos , Isomerismo , Espectrometría de Masas/métodos
9.
Mass Spectrom Rev ; 43(3): 526-559, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37260128

RESUMEN

Recent advances in instrumentation and development of computational strategies for ion mobility mass spectrometry (IM-MS) studies have contributed to an extensive growth in the application of this analytical technique to comprehensive structural description of supramolecular systems. Apart from the benefits of IM-MS for interrogation of intrinsic properties of noncovalent aggregates in the experimental gas-phase environment, its merits for the description of native structural aspects, under the premises of having maintained the noncovalent interactions innate upon the ionization process, have attracted even more attention and gained increasing interest in the scientific community. Thus, various types of supramolecular complexes and assemblies relevant for biological, medical, material, and environmental sciences have been characterized so far by IM-MS supported by computational chemistry. This review covers the state-of-the-art in this field and discusses experimental methods and accompanying computational approaches for assessing the reliable three-dimensional structural elucidation of supramolecular complexes and assemblies by IM-MS.

10.
Crit Rev Anal Chem ; : 1-10, 2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-37975700

RESUMEN

Peptides and proteins having D-amino acids in their sequences are now believed to be widespread among different living organisms. Their significance is attributed to the diverse functions of these molecules, such as having a certain pathological implication or enhancing biological activity. Indeed, some peptide molecules with D-amino acids in their structure have already found their way to clinical use such as the antibacterial gramicidin and the antidiabetic nateglinide. Ion mobility mass spectrometry (IM-MS) added an additional dimension of separation as it depends on ions mobility in the space, which is dependent on their shapes, and the shape depends on the orientation of atoms. Thus, D-amino acids containing peptides (DAACPs) will have different mobility and collision cross-section values than those with L-amino acids. Eventually, this will lead to baseline separation of the two peptides. Additionally, ion mobility can precisely locate the position of D-amino acids by analyzing the difference in the arrival times of the fragment ions. The importance of DAACPs, as well as the difficulties in discovering them, were addressed in this review. Similarly, we emphasized how recent developments in IM-MS have improved their detection and analysis. Consequently, the LC-IM-MS/MS platform appears to be promising in isomeric mixture analysis.

11.
J Chromatogr A ; 1708: 464327, 2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37660562

RESUMEN

Oligonucleotides have become an essential modality for a variety of therapeutic approaches, including cell and gene therapies. Rapid progress in the field has attracted significant research in designing novel oligonucleotide chemistries and structures. Beyond their polar nature, the length of large RNAs and presence of numerous diastereomers for phosphorothioate (PS)-modified RNAs pose heightened challenges for their characterization. In this study, the stereochemistry of a fully-modified antisense oligonucleotide (ASO) and partially-modified guide RNAs (gRNAs) was investigated using HILIC and orthogonal techniques. The profiles of three lots of a fully-modified ASO with PS linkages were compared using ion-pairing RPLC (IPRP) and HILIC. Interestingly, three isomer peaks were partially resolved by HILIC for two lots while only one peak was observed on the IPRP profile. Model oligonucleotides having the same sequence of the five nucleotides incorporated to the 3'-end of the gRNA but differing in their number and position of PS linkages were investigated by HILIC, IPRP, ion mobility spectrometry-mass spectrometry (IM-MS) and nuclear magnetic resonance (NMR). An strategy was ultimately designed to aid in the characterization of gRNA stereochemistry. Ribonuclease (RNase) T1 digestion enabled the characterization of gRNA diastereomers by reducing their number from 32 at the gRNA intact level to 4 or 8 at the fragment level. To our knowledge, this is the first time that HILIC has successfully been utilized for the profiling of diastereomers for various oligonucleotide formats and chemical modifications.


Asunto(s)
Oligonucleótidos Antisentido , Oligonucleótidos , Cromatografía Liquida , Espectrometría de Masas , ARN
12.
Anal Bioanal Chem ; 415(27): 6757-6769, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37740752

RESUMEN

Over the last decade, applications of ion mobility-mass spectrometry (IM-MS) have exploded due primarily to the widespread commercialization of robust instrumentation from several vendors. Unfortunately, the modest resolving power of many of these platforms (~40-60) has precluded routine separation of constitutional and stereochemical isomers. While instrumentation advances have pushed resolving power to >150 in some cases, chemical approaches offer an alternative for increasing resolution with existing IM-MS instrumentation. Herein we explore the utility of two reactions, derivatization by Girard's reagents and 1,1-carbonyldiimidazole (CDI), for improving IM separation of steroid hormone isomers. These reactions are fast (≤30 min), simple (requiring only basic lab equipment/expertise), and low-cost. Notably, these reactions are structurally selective in that they target carbonyl and hydroxyl groups, respectively, which are found in all naturally occurring steroids. Many steroid hormone isomers differ only in the number, location, and/or stereochemistry of these functional groups, allowing these reactions to "amplify" subtle structural differences and improve IM resolution. Our results show that resolution was significantly improved amongst CDI-derivatized isomer groups of hydroxyprogesterone (two-peak resolution of Rpp = 1.10 between 21-OHP and 11B-OHP), deoxycortisone (Rpp = 1.47 between 11-DHC and 21-DOC), and desoximetasone (Rpp = 1.98 between desoximetasone and fluocortolone). Moreover, characteristic collision cross section (DTCCSN2) measurements can be used to increase confidence in the identification of these compounds in complex biological mixtures. To demonstrate the feasibility of analyzing the derivatized steroids in complex biological matrixes, the reactions were performed following steroid extraction from urine and yielded similar results. Additionally, we applied a software-based approach (high-resolution demultiplexing) that further improved the resolving power (>150). Overall, our results suggest that targeted derivatization reactions coupled with IM-MS can significantly improve the resolution of challenging isomer groups, allowing for more accurate and efficient analysis of complex mixtures.

13.
ACS Chem Neurosci ; 14(15): 2717-2726, 2023 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-37442126

RESUMEN

Alzheimer's disease (AD) is one of the world's most pressing health crises. AD is an incurable disease affecting more than 6.5 million Americans, predominantly the elderly, and in its later stages, leads to memory loss, dementia, and death. Amyloid ß (Aß) protein aggregates have been one of the pathological hallmarks of AD since its initial characterization. The early stages of Aß accumulation and aggregation involve the formation of oligomers, which are considered neurotoxic and play a key role in further aggregation into fibrils that eventually appear in the brain as amyloid plaques. We have recently shown by combining ion mobility mass spectrometry (IM-MS) and atomic force microscopy (AFM) that Aß42 rapidly forms dodecamers (12-mers) as the terminal oligomeric state, and these dodecamers seed the early formation of Aß42 protofibrils. The link between soluble oligomers and fibril formation is one of the essential aspects for understanding the root cause of the disease state and is critical to developing therapeutic interventions. Utilizing a joint pharmacophore space (JPS) method, potential drugs have been designed specifically for amyloid-related diseases. These small molecules were generated based on crucial chemical features necessary for target selectivity. In this paper, we utilize our combined IM-MS and AFM methods to investigate the impact of three second-generation JPS small-molecule inhibitors, AC0201, AC0202, and AC0203, on dodecamer as well as fibril formation in Aß42. Our results indicate that AC0201 works well as an inhibitor and remodeler of both dodecamers and fibril formation, AC0203 behaves less efficiently, and AC0202 is ineffective.


Asunto(s)
Enfermedad de Alzheimer , Amiloidosis , Humanos , Anciano , Péptidos beta-Amiloides/metabolismo , Enfermedad de Alzheimer/metabolismo , Encéfalo/metabolismo , Amiloide/metabolismo , Fragmentos de Péptidos/metabolismo
14.
Int J Mol Sci ; 23(21)2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36362136

RESUMEN

When working on the synthesis of substituted cyclodextrins (CDs), the main challenge remains the analysis of the reaction media content. Our objective in this study was to fully characterise a complex isomers mixture of Lipidyl-ßCDs (LipßCD) obtained with a degree of substitution 1 (DS = 1) from a one-step synthesis pathway. The benefit of tandem mass spectrometry (MS/MS) and ion mobility separation hyphenated with mass spectrometry (IM-MS) was investigated. The MS/MS fragment ion's relative intensities were analysed by principal component analysis (PCA) to discriminate isomers. The arrival time distribution (ATD) of each isomer was recorded using a travelling wave ion mobility (TWIM) cell allowing the determination of their respective experimental collision cross section (CCSexp). The comparison with the predicted theoretical CCS (CCSth) obtained from theoretical calculations propose a regioisomer assignment according to the ßCD hydroxyl position (2, 3, or 6) involved in the reaction. These results were validated by extensive NMR structural analyses of pure isomers combined with molecular dynamics simulations. This innovative approach seems to be a promising tool to elucidate complex isomer mixtures such as substituted cyclodextrin derivatives.


Asunto(s)
Ciclodextrinas , Espectrometría de Masas en Tándem , Espectrometría de Masas en Tándem/métodos , Espectrometría de Movilidad Iónica/métodos , Modelos Moleculares , Isomerismo
15.
Int J Mol Sci ; 23(22)2022 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-36430339

RESUMEN

Aldosterone-producing adenomas (APAs) have different steroid profiles in serum, depending on the causative genetic mutation. Ion mobility is a separation technique for gas-phase ions based on their m/z values, shapes, and sizes. Human serum (100 µL) was purified by liquid-liquid extraction using tert-butyl methyl ether/ethyl acetate at 1/1 (v/v) and mixed with deuterium-labeled steroids as the internal standard. The separated supernatant was dried, re-dissolved in water containing 20% methanol, and injected into a liquid chromatography-ion mobility-mass spectrometer (LC/IM/MS). We established a highly sensitive assay system by separating 20 steroids based on their retention time, m/z value, and drift time. Twenty steroids were measured in the serum of patients with primary aldosteronism, essential hypertension, and healthy subjects and were clearly classified using principal component analysis. This method was also able to detect phosphatidylcholine and phosphatidylethanolamine, which were not targeted. LC/IM/MS has a high selectivity for known compounds and has the potential to provide information on unknown compounds. This analytical method has the potential to elucidate the pathogenesis of APA and identify unknown steroids that could serve as biomarkers for APA with different genetic mutations.


Asunto(s)
Extracción Líquido-Líquido , Esteroides , Humanos , Cromatografía Liquida/métodos , Espectrometría de Masas/métodos , Iones
16.
Se Pu ; 40(9): 782-787, 2022 Sep.
Artículo en Chino | MEDLINE | ID: mdl-36156624

RESUMEN

Ion mobility-mass spectrometry (IM-MS) is a combination of ion mobility separation and mass spectrometry technologies. In IM-MS, analytes are ionized by the ion source to form gas-phase ions, which are then rapidly separated using ion mobility based on their mobility difference, under the influence of both neutral buffer gas and an electric field, and then traversed and detected using mass spectrometry, which can separate ions based on mass-to-charge ratio. Furthermore, IM-MS could provide not only mass-to-charge ratio parameters like MS1 and MS2 spectra but also new structural information for component identification like collision cross-section values, drift time, arrival time, compensation voltage, and so on, which can be employed to resolve complex chemical components, especially indistinguishable isomers using mass spectrometry alone. In recent years, with the development of IM-MS technologies, IM-MS has become more widely employed in chemical analysis in traditional Chinese medicines (TCMs). Firstly, IM-MS was been successfully used in the separation of complex TCMs complex extract from interfering isobaric species. Secondly, IM-MS also offers new types of MS/MS fragmentation modes, and the combination of IM separation and fragmentation modes enables the acquisition of more specific and detailed fragment ion spectra. Thirdly, the collision cross-section is introduced by IM-MS, which is a unique physicochemical property of a component. Related data post-processing strategies based on experimentally derived collision cross-section values have been continuously developed in recent years to make full use of the collision cross-section values, these data post-processing strategies include collision cross-section database matching, theoretical collision cross-section values matching, machine-learning-based collision cross-section values prediction matching, mass-to-charge ratio versus collision cross-section correlation trend lines and so on. In doing so, these diverse strategies can greatly enhance the reliability and accuracy of the structural annotation of TCM compounds. This review primarily briefly introduces the major types and basic principles of IM-MS. The applications of IM-MS in TCM chemical analysis are highlighted in this study. The current applications of IM-MS in improving TCM chemical component separation are summarized, followed by a discussion of several strategies for enhancing separation selectivity. This review also offers some new fragmentation modes, novel data acquisition approaches, and collision cross-section data post-processing strategies applied in TCM qualitative analysis. Finally, the prospect of IM-MS applied in TCM chemical analysis is also discussed. This review provides approaches and ideas for future IM-MS research on TCM's chemical analysis.


Asunto(s)
Mezclas Complejas , Espectrometría de Masas en Tándem , China , Mezclas Complejas/análisis , Cromatografía de Gases y Espectrometría de Masas , Iones/análisis , Iones/química , Reproducibilidad de los Resultados , Espectrometría de Masas en Tándem/métodos
17.
J Mass Spectrom Adv Clin Lab ; 24: 50-56, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35469203

RESUMEN

Introduction: Ion mobility-mass spectrometry (IM-MS) is an emerging technique in the -omics fields that has broad potential applicability to the clinical lab. As a rapid, gas-phase structure-based separation technique, IM-MS offers promise in isomer separations and can be easily combined with existing LC-MS methods (i.e., LC-IM-MS). Several experimental conditions, including analyte cation adducts and drift composition further provide a means to tune separations for global and/or targeted applications. Objectives: The primary objective of this study was to demonstrate the utility of IM-MS under a range of experimental conditions for detection of glucocorticoids, and specifically for the separation of several isomeric pairs. Methods: LC-IM-MS was used to characterize 16 glucocorticoids including three isomer pairs: cortisone/prednisolone, betamethasone/dexamethasone, and flunisolide/triamcinolone acetonide. Collision cross section (CCS) values were measured for all common adducts (e.g., protonated and sodiated) using both step-field and single-field methods. Alternative alkali, alkaline earth, and transition metals were introduced, such that their adducts could also be measured. Finally, four different drift gases (helium, nitrogen, argon, and carbon dioxide) were compared for their relative separation capability. Results: LC-IM-MS offered a robust, multidimensional separation technique that allowed for the 16 glucocorticoids to be analyzed and separated in three-dimensions (retention time, CCS, and m/z). Despite the relatively modest resolution of isomer pairs under standard conditions (i.e., nitrogen drift gas, sodiated ions, etc.), improvements were observed for alkaline earth and transition metals (notable barium adducts) and in carbon dioxide drift gas. Conclusion: In summary, LC-IM-MS offers potential as a clinical method due to its ease of coupling with traditional LC-MS methods and its promise for tuning separations to better resolve targeted and/or global isomers in complex biological samples.

18.
Biochim Biophys Acta Proteins Proteom ; 1870(3): 140759, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35051665

RESUMEN

Human Histone Deacetylase 2 (HDAC2) belongs to a conserved enzyme superfamily that regulates deacetylation inside cells. HDAC2 is a drug target as it is known to be upregulated in cancers and neurodegenerative disorders. It consists of globular deacetylase and C-terminus intrinsically-disordered domains [1-3]. To date, there is no full-length structure of HDAC2 available due to the high intrinsic flexibility of its C-terminal domain. The intrinsically-disordered domain, however, is known to be important for the enzymatic function of HDAC2 [1, 4]. Here we combine several structural Mass Spectrometry (MS) methodologies such as denaturing, native, ion mobility and chemical crosslinking, alongside biochemical assays and molecular modelling to study the structure and dynamics of the full-length HDAC2 for the first time. We show that MS can easily dissect heterogeneity inherent within the protein sample and at the same time probe the structural arrangement of the different conformers present. Activity assays combined with data from MS and molecular modelling suggest how the structural dynamics of the C-terminal domain, and its interactions with the catalytic domain, regulate the activity of this enzyme.


Asunto(s)
Histona Desacetilasa 2/química , Espectrometría de Masas/métodos , Modelos Moleculares , Dominio Catalítico , Reactivos de Enlaces Cruzados/química , Histona Desacetilasa 2/metabolismo , Humanos , Proteínas Intrínsecamente Desordenadas/química , Proteínas Intrínsecamente Desordenadas/metabolismo , Espectrometría de Movilidad Iónica/métodos , Estructura Molecular
19.
Mass Spectrom Rev ; 41(5): 722-765, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-33522625

RESUMEN

Researchers worldwide are taking advantage of novel, commercially available, technologies, such as ion mobility mass spectrometry (IM-MS), for metabolomics and lipidomics applications in a variety of fields including life, biomedical, and food sciences. IM-MS provides three main technical advantages over traditional LC-MS workflows. Firstly, in addition to mass, IM-MS allows collision cross-section values to be measured for metabolites and lipids, a physicochemical identifier related to the chemical shape of an analyte that increases the confidence of identification. Second, IM-MS increases peak capacity and the signal-to-noise, improving fingerprinting as well as quantification, and better defining the spatial localization of metabolites and lipids in biological and food samples. Third, IM-MS can be coupled with various fragmentation modes, adding new tools to improve structural characterization and molecular annotation. Here, we review the state-of-the-art in IM-MS technologies and approaches utilized to support metabolomics and lipidomics applications and we assess the challenges and opportunities in this growing field.


Asunto(s)
Espectrometría de Movilidad Iónica , Lipidómica , Espectrometría de Movilidad Iónica/métodos , Lípidos/análisis , Espectrometría de Masas/métodos , Metabolómica/métodos
20.
Matrix Biol Plus ; 12: 100081, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34505054

RESUMEN

Syndecans are membrane proteoglycans regulating extracellular matrix assembly, cell adhesion and signaling. Their ectodomains can be shed from the cell surface, and act as paracrine and autocrine effectors or as competitors of full-length syndecans. We report the first biophysical characterization of the recombinant ectodomains of the four human syndecans using biophysical techniques, and show that they behave like flexible random-coil intrinsically disordered proteins, and adopt several conformation ensembles in solution. We have characterized their conformational landscapes using native mass spectrometry (MS) and ion-mobility MS, and demonstrated that the syndecan ectodomains explore the majority of their conformational landscape, from minor compact, globular-like, conformations to extended ones. We also report that the ectodomain of syndecan-4, corresponding to a natural isoform, is able to dimerize via a disulfide bond. We have generated a three-dimensional model of the C-terminus of this dimer, which supports the dimerization via a disulfide bond. Furthermore, we have mapped the NXIP adhesion motif of syndecans and their sequences involved in the formation of ternary complexes with integrins and growth factor receptors on the major conformations of their ectodomains, and shown that these sequences are not accessible in all the conformations, suggesting that only some of them are biologically active. Lastly, although the syndecan ectodomains have a far lower number of amino acid residues than their membrane partners, their intrinsic disorder and flexibility allow them to adopt extended conformations, which have roughly the same size as the cell surface receptors (e.g., integrins and growth factor receptors) they bind to.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...