Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38877781

RESUMEN

Hepatitis E virus (HEV) is the major pathogen of viral hepatitis. Immunocompromised individuals infected by HEV are prone to chronic hepatitis and increase the risk of hepato-cellular carcinoma (HCC). Inhibitor of growth family member 5 (ING5) is a tumor suppressor that is expressed at low levels in cancer tumors or cells. However, the underlying relationship between ING5 and HEV infection is unclear. In the present study, acute and chronic HEV animal models are used to explore the interaction between ING5 and HEV. Notably, the expression of ING5 is significantly increased in both the livers of acute HEV-infected BALB/c mice and chronic HEV-infected rhesus macaques. In addition, the relationship between HEV infection and ING5 expression is further identified in human hepatoma (HepG-2) cells. In conclusion, HEV infection strongly upregulates ING5 expression both in vivo and in vitro, which has significant implications for further understanding the pathogenic mechanism of HEV infection.

2.
Development ; 151(5)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38446206

RESUMEN

Inhibitor of growth 4 and 5 (ING4, ING5) are structurally similar chromatin-binding proteins in the KAT6A, KAT6B and KAT7 histone acetyltransferase protein complexes. Heterozygous mutations in the KAT6A or KAT6B gene cause human disorders with cardiac defects, but the contribution of their chromatin-adaptor proteins to development is unknown. We found that Ing5-/- mice had isolated cardiac ventricular septal defects. Ing4-/-Ing5-/- embryos failed to undergo chorioallantoic fusion and arrested in development at embryonic day 8.5, displaying loss of histone H3 lysine 14 acetylation, reduction in H3 lysine 23 acetylation levels and reduced developmental gene expression. Embryonic day 12.5 Ing4+/-Ing5-/- hearts showed a paucity of epicardial cells and epicardium-derived cells, failure of myocardium compaction, and coronary vasculature defects, accompanied by reduced expression of epicardium genes. Cell adhesion gene expression and proepicardium outgrowth were defective in the ING4- and ING5-deficient state. Our findings suggest that ING4 and ING5 are essential for heart development and promote epicardium and epicardium-derived cell fates and imply mutation of the human ING5 gene as a possible cause of isolated ventricular septal defects.


Asunto(s)
Proteínas Portadoras , Defectos del Tabique Interventricular , Lisina , Humanos , Animales , Ratones , Linaje de la Célula , Histonas , Acetilación , Cromatina , Factores de Transcripción , Proteínas Supresoras de Tumor , Proteínas de Homeodominio/genética , Proteínas de Ciclo Celular , Histona Acetiltransferasas
3.
J Biochem Mol Toxicol ; 38(1): e23629, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38229318

RESUMEN

In the world, lung cancer is one of the most common malignant cancers and has become the leading cause of death of cancers in China, among which non-small cell lung cancer (NSCLC) accounts for a relatively high proportion, but there is a lack of effective treatment at present. An animal model of NSCLC was established, and BEAS-2b, H1299, Lewis, and T cells were used for subsequent experimental verification. The level of miR-196b-5p was detected by quantitative real-time polymerase chain reaction. Growth inhibitor 5 (ING5), CD9, CD63, HSP70, Caspase-1, NLRP3, and GSDMD-NT were detected by western blot. The level of ING5 was confirmed by immunohistochemistry, the location of miR-196b-5p was analyzed by fluorescence in situ hybridization (FISH), cell viability was investigated by Cell Counting Kit-8 kit, and interleukin (IL)-1ß and IL-18 were confirmed by enzyme-linked immunosorbent assay. Cell apoptosis was detected by flow cytometry. In addition, the binding site was verified by dual-luciferase reporter gene experiments. Tumor volume was measured. TUNEL staining was used to detect apoptosis. Flow cytometry was used to measure the levels of CD8 T, CD4 T, and Treg cells in tumors. miR-196-5p was highly expressed in exosomes secreted by tumor cells. miR-196-5p negatively targeted ING5 to promote the growth of tumor cells. Cancer-derived exosomes promote pyroptosis of T cells to further aggravate the development of cancer. Exosome-derived miR-196b-5p promoted pyroptosis of T cells. Exosome-derived miR-196b-5p inhibited the level of ING5 to promote tumor growth and accelerate the process of NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Exosomas , Neoplasias Pulmonares , MicroARNs , Animales , Carcinoma de Pulmón de Células no Pequeñas/genética , Piroptosis , Exosomas/genética , Hibridación Fluorescente in Situ , Neoplasias Pulmonares/genética , Proliferación Celular , MicroARNs/genética
4.
Front Immunol ; 14: 1119750, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37275850

RESUMEN

ING5 is a component of KAT6A and KAT7 histone lysine acetylation protein complexes. ING5 contains a PHD domain that binds to histone H3 lysine 4 when it is trimethylated, and so functions as a 'reader' and adaptor protein. KAT6A and KAT7 function are critical for normal hematopoiesis. To examine the function of ING5 in hematopoiesis, we generated a null allele of Ing5. Mice lacking ING5 during development had decreased foetal liver cellularity, decreased numbers of hematopoietic stem cells and perturbed erythropoiesis compared to wild-type control mice. Ing5-/- pups had hypoplastic spleens. Competitive transplantation experiments using foetal liver hematopoietic cells showed that there was no defect in long-term repopulating capacity of stem cells lacking ING5, suggesting that the defects during the foetal stage were not cell intrinsic. Together, these results suggest that ING5 function is dispensable for normal hematopoiesis but may be required for timely foetal hematopoiesis in a cell-extrinsic manner.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Factores de Transcripción , Proteínas Supresoras de Tumor , Animales , Ratones , Recuento de Células , Cromatina/genética , Hígado , Lisina , Proteínas Supresoras de Tumor/genética , Factores de Transcripción/genética
5.
Acta Biochim Biophys Sin (Shanghai) ; 55(5): 809-817, 2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37249332

RESUMEN

ING5 belongs to the inhibitor of growth (ING) candidate tumor suppressor family, which is involved in multiple cellular functions, such as cell cycle regulation, apoptosis, and chromatin remodelling. Previously, we reported that ING5 overexpression inhibits EMT by regulating EMT-related molecules, including Snail1, at the mRNA and protein levels. However, the mechanisms remain unclear. In the current study, we identify that ING5 overexpression induces the upregulation of miR-34c-5p. The expression levels of both ING5 and miR-34c-5p in NSCLC tissues from the TCGA database are decreased compared with that in adjacent tissues. Higher expression levels of both ING5 and miR-34c-5p predict longer overall survival (OS). Snail1 is the target gene of miR-34c-5p, as predicted by an online database, which is further verified by a dual-luciferase reporter assay. The expression level of Snail1 in NSCLC cells is markedly reduced following miR-34c-5p overexpression, leading to the inactivation of the Snail1 downstream TGF-ß/Smad3 signaling pathway. The TGF-ß signaling-specific inhibitor LY2157299 reverses the enhanced EMT, proliferation, migration, and invasion abilities induced by the miR-34c-5p inhibitor. Furthermore, tail vein injection of miR-34c-5p agomir inhibits xenografted tumor metastasis. Overall, this study concludes that miR-34c-5p, induced by ING5 overexpression, is a tumor suppressor that targets Snail1 and mediates the inhibitory effects of ING5 on the EMT and invasion of NSCLC cells. These results provide a novel mechanism mediating the antitumor effects of ING5.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , MicroARNs , Humanos , MicroARNs/metabolismo , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Transición Epitelial-Mesenquimal/genética , Neoplasias Pulmonares/patología , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Regulación Neoplásica de la Expresión Génica , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
6.
Proc Natl Acad Sci U S A ; 120(15): e2218361120, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-37014852

RESUMEN

The MOZ/MORF histone acetyltransferase complex is highly conserved in eukaryotes and controls transcription, development, and tumorigenesis. However, little is known about how its chromatin localization is regulated. Inhibitor of growth 5 (ING5) tumor suppressor is a subunit of the MOZ/MORF complex. Nevertheless, the in vivo function of ING5 remains unclear. Here, we report an antagonistic interaction between Drosophila Translationally controlled tumor protein (TCTP) (Tctp) and ING5 (Ing5) required for chromatin localization of the MOZ/MORF (Enok) complex and H3K23 acetylation. Yeast two-hybrid screening using Tctp identified Ing5 as a unique binding partner. In vivo, Ing5 controlled differentiation and down-regulated epidermal growth factor receptor signaling, whereas it is required in the Yorkie (Yki) pathway to determine organ size. Ing5 and Enok mutants promoted tumor-like tissue overgrowth when combined with uncontrolled Yki activity. Tctp depletion rescued the abnormal phenotypes of the Ing5 mutation and increased the nuclear translocation of Ing5 and chromatin binding of Enok. Nonfunctional Enok promoted the nuclear translocation of Ing5 by reducing Tctp, indicating a feedback mechanism between Tctp, Ing5, and Enok to regulate histone acetylation. Therefore, Tctp is essential for H3K23 acetylation by controlling the nuclear translocation of Ing5 and chromatin localization of Enok, providing insights into the roles of human TCTP and ING5-MOZ/MORF in tumorigenesis.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Humanos , Drosophila/genética , Histona Acetiltransferasas/metabolismo , Cromatina/genética , Genes Supresores de Tumor , Carcinogénesis/genética , Unión Proteica , Factores de Transcripción/metabolismo , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo
7.
Front Cell Dev Biol ; 10: 1012179, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36425530

RESUMEN

As a Class II tumor suppressor, ING5 contains nuclear localization signal, plant homeodomain, novel conserved region, and leucine zipper-like domains. ING5 proteins form homodimer into a coil-coil structure, and heterodimers with ING4, histone H3K4me3, histone acetyltransferase (HAT) complex, Tip60, Cyclin A1/CDK2, INCA1 and EBNA3C for the transcription of target genes. The acetylated proteins up-regulated by ING5 are preferentially located in nucleus and act as transcription cofactors, chromatin and DNA binding functions, while those down-regulated by ING5 mostly in cytoplasm and contribute to metabolism. ING5 promotes the autoacetylation of HAT p300, p53, histone H3 and H4 for the transcription of downstream genes (Bax, GADD45, p21, p27 and so forth). Transcriptionally, YY1 and SRF up-regulate ING5 mRNA expression by the interaction of YY1-SRF-p53-ING5 complex with ING5 promoter. Translationally, ING5 is targeted by miR-196, miR-196a, miR-196b-5p, miR-193a-3p, miR-27-3p, miR-200b/200a/429, miR-1307, miR-193, miR-222, miR-331-3p, miR-181b, miR-543 and miR-196-b. ING5 suppresses proliferation, migration, invasion and tumor growth of various cancer cells via the suppression of EGFR/PI3K/Akt, IL-6/STAT3, Akt/NF-κB/NF-κB/MMP-9 or IL-6/CXCL12 pathway. ING5-mediated chemoresistance is closely linked to anti-apoptosis, overexpression of chemoresistant genes, the activation of PI3K/Akt/NF-κB and Wnt/ß-catenin signal pathways. Histologically, ING5 abrogation in gastric stem-like and pdx1-positive cells causes gastric dysplasia and cancer, and conditional ING5 knockout in pdx1-positive and gastric chief cells increases MNU-induced gastric carcinogenesis. Intestinal ING5 deletion increases AOM/DSS- induced colorectal carcinogenesis and decreases high-fat-diet weight. The overexpression and nucleocytoplasmic translocation of ING5 are seen during carcinogenesis, and ING5 expression was inversely associated with aggressive behaviors and poor prognosis in a variety of cancers. These findings indicated that ING5 might be used for a molecular marker for carcinogenesis and following progression, and as a target for gene therapy if its chemoresistant function might be ameliorated.

8.
Cancers (Basel) ; 14(13)2022 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-35804879

RESUMEN

The Inhibitor of Growth (ING) proteins are a group of tumor suppressors with five conserved genes. A common motif of ING factors is the conserved plant homeodomain (PHD), with which they bind to chromatin as readers of the histone mark trimethylated histone H3 (H3K4me3). These genes often produce several protein products through alternative splicing events. Interestingly, ING1 and ING2 participate in the establishment of the repressive mSIN3a-HDAC complexes, whereas ING3, ING4, and ING5 are associated with the activating HAT protein complexes. In addition to the modulation of chromatin's structure, they regulate cell cycle transition, cellular senescence, repair of DNA damage, apoptosis, and angiogenic pathways. They also have fundamental effects on regulating cellular senescence in cancer cells. In the current review, we explain their role in cellular senescence based on the evidence obtained from cell line and animal studies, particularly in the context of cancer.

9.
Front Oncol ; 12: 918954, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35747809

RESUMEN

ING5 targets histone acetyltransferase or histone deacetylase complexes for local chromatin remodeling. Its transcriptional regulation and suppressive effects on gastric cancer remain elusive. Luciferase assay, EMSA, and ChIP were used to identify the cis-acting elements and trans-acting factors of the ING5 gene. We analyzed the effects of SAHA on the aggressive phenotypes of ING5 transfectants, and the effects of different ING5 mutants on aggressive phenotypes in SGC-7901 cells. Finally, we observed the effects of ING5 abrogation on gastric carcinogenesis. EMSA and ChIP showed that both SRF (-717 to -678 bp) and YY1 (-48 to 25bp) interacted with the promoter of ING5 and up-regulated ING5 expression in gastric cancer via SRF-YY1-ING5-p53 complex formation. ING5, SRF, and YY1 were overexpressed in gastric cancer, (P<0.05), and associated with worse prognosis of gastric cancer patients (P<0.05). ING5 had positive relationships with SRF and YY1 expression in gastric cancer (P<0.05). SAHA treatment caused early arrest at S phase in ING5 transfectants of SGC-7901 (P<0.05), and either 0.5 or 1.0 µM SAHA enhanced their migration and invasion (P<0.05). The wild-type and mutant ING5 transfectants showed lower viability and invasion than the control (P<0.05) with low CDC25, VEGF, and MMP-9 expression. Gastric spontaneous adenocarcinoma was observed in Atp4b-cre; ING5f/f, Pdx1-cre; ING5f/f, and K19-cre; ING5f/f mice. ING5 deletion increased the sensitivity of MNU-induced gastric carcinogenesis. ING5 mRNA might be a good marker of gastric carcinogenesis, and poor prognosis. ING5 expression was positively regulated by the interaction of SRF-YY1-ING5-p53 complex within the ING5 promoter from -50 bp upstream to the transcription start site. ING5 deletion might contribute to the tumorigenesis and histogenesis of gastric cancer.

10.
Proc Natl Acad Sci U S A ; 119(19): e2118385119, 2022 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-35500115

RESUMEN

Embryonic stem cells (ESCs) are defined by their ability to self-renew and the potential to differentiate into all tissues of the developing organism. We previously demonstrated that deleting the catalytic SET domain of the Set1A/complex of proteins associated with SET1 histone methyltransferase (Set1A/COMPASS) in mouse ESCs does not impair their viability or ability to self-renew; however, it leads to defects in differentiation. The precise mechanisms by which Set1A executes these functions remain to be elucidated. In this study, we demonstrate that mice lacking the SET domain of Set1A are embryonic lethal at a stage that is unique from null alleles. To gain insight into Set1A function in regulating pluripotency, we conducted a CRISPR/Cas9-mediated dropout screen and identified the MOZ/MORF (monocytic leukaemia zinc finger protein/monocytic leukaemia zinc finger protein-related factor) and HBO1 (HAT bound to ORC1) acetyltransferase complex member ING5 as a synthetic perturbation to Set1A. The loss of Ing5 in Set1AΔSET mouse ESCs decreases the fitness of these cells, and the simultaneous loss of ING5 and in Set1AΔSET leads to up-regulation of differentiation-associated genes. Taken together, our results point toward Set1A/COMPASS and ING5 as potential coregulators of the self-renewal and differentiation status of ESCs.


Asunto(s)
Histonas , Células Madre Embrionarias de Ratones , Animales , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/genética , Histonas/metabolismo , Lisina/metabolismo , Ratones , Células Madre Embrionarias de Ratones/metabolismo , Mutaciones Letales Sintéticas , Proteínas Supresoras de Tumor
11.
Biochem Genet ; 60(6): 2455-2470, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35482130

RESUMEN

Ischemic stroke is a disease with high mortality. Circular RNA_0010729 (hsa_circ_0010729) has been reported to be involved in ischemic heart disease. However, it is not clear whether hsa_circ_0010729 is involved in the regulation of ischemic stroke. In this study, we used oxygen-glucose deprivation/reoxygenation (OGD/R) to stimulate human brain microvascular endothelial cells (HBMECs) model to investigate the potential role of hsa_circ_0010729 in stroke in vitro. The expression levels of hsa_circ_0010729, miR-665, and ING5 in ischemic stroke were detected by quantitative real-time polymerase chain reaction (qRT-PCR). HBMECs proliferation was detected by CCK-8. Cell apoptosis was detected by flow cytometry. The levels of inflammatory cytokines were detected by enzyme-linked immunosorbent assay (ELISA). Western blot was used to detect the related protein expression. Dual-luciferase reporter assay and RNA immunoprecipitation (RIP) were used to examine the target relationship between miR-665 and hsa_circ_0010729 or ING5. Compared with the control group, hsa_circ_0010729 and ING5 were highly expressed in OGD/R-induced HBMECs, while miR-665 was lowly expressed. Hsa_circ_0010729 silencing promoted OGD/R-induced cell proliferation and inhibited apoptosis. However, the effect of hsa_circ_0010729 down-regulation on OGD/R-induced cell was partially restored after co-transfection with miR-665 inhibitor. Overexpression of miR-665 can promote the proliferation and inhibit apoptosis of OGD/R-induced HBMECs by inhibiting ING5 expression. In OGD/R-induced HBMECs, hsa_circ_0010729 silencing decreased ING5 expression by upregulating miR-665. Hsa_circ_0010729 regulated miR-665/ING5 axis in OGD/R-induced HBMECs. Therefore, hsa_circ_0010729 may be a new therapeutic target for ischemic stroke.


Asunto(s)
Accidente Cerebrovascular Isquémico , MicroARNs , ARN Circular , Humanos , Apoptosis/genética , Proliferación Celular/genética , Células Endoteliales/metabolismo , Glucosa/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Oxígeno/metabolismo , Factores de Transcripción , Proteínas Supresoras de Tumor/genética , ARN Circular/genética
12.
Technol Cancer Res Treat ; 20: 15330338211033063, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34464167

RESUMEN

AIMS: Lysine acetyltransferase 6B (KAT6B), is a histone acetyltransferase implicated to have a role in tumor suppression. However, the relationship between KAT6B and hepatocellular carcinoma (HCC) is unclear. The purpose of this study was to detect the expression of KAT6B in HCC tissues and analyze its connection with the clinicopathological features of HCC. METHODS: First, we performed immunohistochemical staining on 250 HCC tissues and 222 non-tumor liver tissues to examine the expression of KAT6B.Then the relation between KAT6B expression and clinicopathological parameters was analyzed by chi-square test, and the overall survival analysis was conducted by Kaplan-Meier survival method. In addition, based on the Oncomine expression array online and the UALCAN database, we compared KAT6B expression differences between normal liver tissues and HCC tissues more broadly. RESULTS: Compared with normal tissues, KAT6B expression was significantly lower in HCC tissues. Low KAT6B expression was found to be related to gender, AFP level, and tumor size. According to the online database, KAT6B expression was found to be decreased in HCC tissues and high in normal tissues. CONCLUSIONS: Lower expression of KAT6B is associated with poor prognosis of HCC, and KAT6B may be a potential tumor suppressor in liver cancer.


Asunto(s)
Biomarcadores de Tumor , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/mortalidad , Regulación Neoplásica de la Expresión Génica , Histona Acetiltransferasas/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/mortalidad , Adulto , Anciano , Carcinoma Hepatocelular/patología , Susceptibilidad a Enfermedades , Femenino , Estudios de Seguimiento , Histona Acetiltransferasas/metabolismo , Humanos , Inmunohistoquímica , Estimación de Kaplan-Meier , Neoplasias Hepáticas/patología , Masculino , Persona de Mediana Edad , Clasificación del Tumor , Metástasis de la Neoplasia , Estadificación de Neoplasias , Pronóstico , Transcriptoma
13.
EMBO Rep ; 22(7): e52036, 2021 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-34114325

RESUMEN

Dysregulation of lipid metabolism could lead to the development of metabolic disorders. We report here that the F-box protein JFK promotes excessive lipid accumulation in adipose tissue and contributes to the development of metabolic syndrome. JFK transgenic mice develop spontaneous obesity, accompanied by dyslipidemia, hyperglycemia, and insulin resistance, phenotypes that are further exacerbated under high-fat diets. In contrast, Jfk knockout mice are lean and resistant to diet-induced metabolic malfunctions. Liver-specific reconstitution of JFK expression in Jfk knockout mice leads to hepatic lipid accumulation resembling human hepatic steatosis and nonalcoholic fatty liver disease. We show that JFK interacts with and destabilizes ING5 through assembly of the SCF complex. Integrative transcriptomic and genomic analysis reveals that the SCFJFK -ING5 axis interferes with AMPK activity and fatty acid ß-oxidation, leading to the suppression of hepatic lipid catabolism. Significantly, JFK is upregulated and AMPKα1 is down-regulated in liver tissues from NAFLD patients. These results reveal that SCFJFK is a bona fide E3 ligase for ING5 and link the SCFJFK -ING5 axis to the development of obesity and metabolic syndrome.


Asunto(s)
Resistencia a la Insulina , Síndrome Metabólico , Enfermedad del Hígado Graso no Alcohólico , Animales , Dieta Alta en Grasa/efectos adversos , Humanos , Metabolismo de los Lípidos/genética , Hígado/metabolismo , Síndrome Metabólico/genética , Síndrome Metabólico/metabolismo , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Obesidad/genética , Obesidad/metabolismo , Factores de Transcripción/metabolismo , Proteínas Supresoras de Tumor/metabolismo
14.
Cancer Cell Int ; 20: 119, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32308564

RESUMEN

BACKGROUND: miR-196b-5p expression is deregulated in many malignant tumors. Although miR-196b-5p has been implicated in the malignant transformation of colorectal cancer, its role in this specific type of cancer has not been fully explored. Thus, the present study was aimed to examine the cellular function of miR-196b-5p and its role in malignant biological behavior in colorectal cancer. METHODS: miR-196b-5p expression was measured in colorectal cancer tissues and cell lines using quantitative real-time PCR. Cell counting kit-8 (CCK-8) assay and Transwell assay were used to detect proliferation, migration, and invasion in cell lines, whereas flow cytometry was applied to study apoptosis. Western blot analysis was performed to measure the protein levels. Dual luciferase reporter assay was used to investigate the interaction between miR-196b-5p and ING5. Tumor formation was evaluated in mice. RESULTS: MiR-196b-5p was abundantly expressed in colorectal cancer tissues and cell lines, whereas ING5 was expressed at low levels. MiR-196b-5p was successfully overexpressed or knocked down in colorectal cancer cells. We found that miR-196b-5p overexpression significantly accelerated the proliferation, cell cycle, migration and invasion, while inhibited cell apoptosis in colorectal cancer cells. However, miR-196b-5p inhibitor showed the opposite effects. Moreover, ING5 overexpression or knockdown was successfully performed in colorectal cancer cells. ING5 overexpression suppressed proliferation, migration, invasion, the phosphorylation of PI3K, Akt as well as MEK, and promoted cell apoptosis, which could be reversed by ING5 knockdown. Additionally, ING5 was identified as a target of miR-196b-5p through bioinformatics analysis and a luciferase activity assay. Furthermore, ING5 knockdown could attenuate the decrease in proliferation, migration, invasion, and the protein levels of p-PI3K, p-Akt, and p-MEK, which were induced by miRNA-196b-5p inhibitor. Besides, miR-196b-5p knockdown inhibited tumor growth, whereas ING5 knockdown elevated it in vivo. CONCLUSIONS: In conclusion, miR-196b-5p promotes cell proliferation, migration, invasion, and inhibits apoptosis in colorectal cancer by targeting ING5.

15.
Cell Mol Biol Lett ; 25: 21, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32206065

RESUMEN

BACKGROUND: Pulmonary arterial hypertension (PAH) is often characterized by cell proliferation and migration of pulmonary arterial smooth muscle cells (PASMCs). LncRNA cancer susceptibility candidate 2 (CASC2) has been revealed to be involved in PASMC injury in hypoxia-induced pulmonary hypertension. However, the exact molecular mechanisms whereby CASC2 regulates PASMC proliferation and migration are still incompletely understood. METHODS: The expression levels of CASC2, miR-222 and inhibitor of growth 5 (ING5) were measured using quantitative real-time polymerase chain reaction (qRT-PCR) or western blot, respectively. Cell proliferation was analyzed by Cell Counting Kit-8 (CCK-8) assay. Wound healing assay was used to analyze cell migration ability. The relationship between miR-222 and CASC2 or ING5 was confirmed using bioinformatics analysis, luciferase reporter assay and RNA immunoprecipitation assay. RESULTS: CASC2 was down-regulated in hypoxia-induced PASMCs in a dose- and time-dependent manner. Functional experiments showed that CASC2 overexpression could reverse hypoxia-induced proliferation and migration of PASMCs. Bioinformatics analysis indicated that CASC2 acted as a competing endogenous RNA of miR-222, thereby regulating the expression of ING5, the downstream target of miR-222, in PASMCs. In addition, rescue assay suggested that the inhibition mediated by CASC2 of hypoxia-induced PASMC proliferation and migration could be attenuated by miR-222 inhibition or ING5 overexpression. CONCLUSION: CASC2 attenuated hypoxia-induced PASMC proliferation and migration by regulating the miR-222/ING5 axis to prevent vascular remodeling and the development of PAH, providing a novel insight and therapeutic strategy for hypoxia-induced PAH.


Asunto(s)
Movimiento Celular/genética , Proliferación Celular/genética , Hipertensión Pulmonar/sangre , MicroARNs/metabolismo , Músculo Liso Vascular/metabolismo , Factores de Transcripción/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Hipoxia de la Célula/genética , Células Cultivadas , Biología Computacional , Regulación hacia Abajo , Humanos , Hipertensión Pulmonar/genética , MicroARNs/genética , Proteínas Supresoras de Tumor/genética
16.
Cell Biol Int ; 44(1): 242-252, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31475765

RESUMEN

Prostate cancer (PCa) is one of the most common types of cancer in men. In several recent studies, chromosomal deletions in the q arm of chromosome 2, where ING5 resides within, have been identified in various cancer types including PCa. In this study, we investigate the role of ING5 as a tumor suppressor in PCa. We examined the expression level of ING5 in tissue samples and cell lines using quantitative real-time polymerase chain reaction and western blot analysis. We tested the in vitro tumor suppressor potential of ING5 in PC3 and LNCaP cells stably overexpressing it using cell viability, colony formation, migration, invasion, and apoptosis assays. We then investigated the effects of ING5 on the Akt and p53 signaling using western blot analysis. We show that ING5 is significantly downregulated in PCa tumor tissue samples and cell lines compared with the corresponding controls. In vitro assays demonstrate that ING5 effectively suppresses proliferative, clonogenic, migratory, and invasive potential and induce apoptosis in PCa cells. ING5 may potentially exert its anti-tumor potential by inhibiting AKT and inducing p53 signaling pathways. Our findings demonstrate that ING5 possesses tumor suppressor roles in vitro, pointing its importance during the prostatic carcinogenesis processes.

17.
Cell Mol Biol Lett ; 24: 67, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31844418

RESUMEN

BACKGROUND: The expression level of miR-376c-3p is significantly lower in infants with neonatal hypoxic-ischemic encephalopathy (HIE) than in healthy infants. However, the biological function of this microRNA remains largely elusive. METHODS: We used PC-12 and SH-SY5Y cells to establish an oxygen-glucose deprivation (OGD) cell injury model to mimic HIE in vitro. The miR-376c-3p expression levels were measured using quantitative reverse transcription PCR. The CCK-8 assay and flow cytometry were utilized to evaluate OGD-induced cell injury. The association between miR-376c-3p and inhibitor of growth 5 (ING5) was validated using the luciferase reporter assay. Western blotting was conducted to determine the protein expression of CDK4, cyclin D1, Bcl-2 and Bax. RESULTS: MiR-376c-3p was significantly downregulated in the OGD-induced cell injury model. Its overexpression elevated cell viability and impaired cell cycle G0/G1 phase arrest and apoptosis in PC-12 and SH-SY5Y cells after OGD. Downregulation of miR-376c-3p gave the opposite results. We further demonstrated that ING5 was a negatively regulated target gene of miR-376c-3p. Importantly, ING5 knockdown had a similar effect to miR-376c-3p-mediated protective effects against cell injury induced by OGD. Its overexpression abolished these protective effects. CONCLUSION: Our data suggest that miR-376c-3p downregulated ING5 to exert protective effects against OGD-induced cell injury in PC-12 and SH-SY5Y cells. This might represent a novel therapeutic approach for neonatal HIE treatment.


Asunto(s)
Glucosa/farmacología , MicroARNs/genética , Oxígeno/farmacología , Factores de Transcripción/genética , Proteínas Supresoras de Tumor/genética , Animales , Hipoxia de la Célula , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Ciclina D1/genética , Ciclina D1/metabolismo , Quinasa 4 Dependiente de la Ciclina/genética , Quinasa 4 Dependiente de la Ciclina/metabolismo , Regulación de la Expresión Génica , Genes Reporteros , Glucosa/deficiencia , Humanos , Luciferasas/genética , Luciferasas/metabolismo , MicroARNs/metabolismo , Neuronas/citología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Células PC12 , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Ratas , Transducción de Señal , Factores de Transcripción/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Proteína X Asociada a bcl-2/genética , Proteína X Asociada a bcl-2/metabolismo
18.
Cancers (Basel) ; 12(1)2019 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-31878273

RESUMEN

The ING family of tumor suppressor genes is composed of five members (ING1-5) involved in cell cycle regulation, DNA damage response, apoptosis and senescence. All ING proteins belong to various HAT or HDAC complexes and participate in chromatin remodeling that is essential for genomic stability and signaling pathways. The gatekeeper functions of the INGs are well described by their role in the negative regulation of the cell cycle, notably by modulating the stability of p53 or the p300 HAT activity. However, the caretaker functions are described only for ING1, ING2 and ING3. This is due to their involvement in DNA repair such as ING1 that participates not only in NERs after UV-induced damage, but also in DSB repair in which ING2 and ING3 are required for accumulation of ATM, 53BP1 and BRCA1 near the lesion and for the subsequent repair. This review summarizes evidence of the critical roles of ING proteins in cell cycle regulation and DNA repair to maintain genomic stability.

19.
Cancers (Basel) ; 11(10)2019 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-31640185

RESUMEN

Non-small cell lung cancer (NSCLC) has been the leading cause of cancer-related death worldwide, over the last few decades. Survival remains extremely poor in the metastatic setting and, consequently, innovative therapeutic strategies are urgently needed. Inhibitor of Growth Gene 2 (ING2) is a core component of the mSin3A/Histone deacetylases complex (HDAC), which controls the chromatin acetylation status and modulates gene transcription. This gene has been characterized as a tumor suppressor gene and its status in cancer has been scarcely explored. In this review, we focused on ING2 and other mSin3A/HDAC member statuses in NSCLC. Taking advantage of existing public databases and known pharmacological properties of HDAC inhibitors, finally, we proposed a therapeutic model based on an ING2 biomarker-guided strategy.

20.
J Mol Biol ; 431(12): 2298-2319, 2019 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-31026448

RESUMEN

The INhibitor of Growth (ING) family of tumor suppressors regulates the transcriptional state of chromatin by recruiting remodeling complexes to sites with histone H3 trimethylated at lysine 4 (H3K4me3). This modification is recognized by the plant homeodomain (PHD) present at the C-terminus of the five ING proteins. ING5 facilitates histone H3 acetylation by the HBO1 complex, and also H4 acetylation by the MOZ/MORF complex. We show that ING5 forms homodimers through its N-terminal domain, which folds independently into an elongated coiled-coil structure. The central region of ING5, which contains the nuclear localization sequence, is flexible and disordered, but it binds dsDNA with micromolar affinity. NMR analysis of the full-length protein reveals that the two PHD fingers of the dimer are chemically equivalent and independent of the rest of the molecule, and they bind H3K4me3 in the same way as the isolated PHD. We have observed that ING5 can form heterodimers with the highly homologous ING4, and that two of three primary tumor-associated mutants in the N-terminal domain strongly destabilize the coiled-coil structure. They also affect cell proliferation and cell cycle phase distribution, suggesting a driver role in cancer progression.


Asunto(s)
Histonas/metabolismo , Factores de Transcripción/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Secuencia de Aminoácidos , Histonas/química , Humanos , Modelos Moleculares , Dominios Proteicos , Multimerización de Proteína , Alineación de Secuencia , Factores de Transcripción/química , Proteínas Supresoras de Tumor/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA