Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
1.
Cytometry A ; 2024 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-39152710

RESUMEN

Logic-gated engineered cells are an emerging therapeutic modality that can take advantage of molecular profiles to focus medical interventions on specific tissues in the body. However, the increased complexity of these engineered systems may pose a challenge for prediction and optimization of their behavior. Here we describe the design and testing of a flow cytometry-based screening system to rapidly select functional inhibitory receptors from a pooled library of candidate constructs. In proof-of-concept experiments, this approach identifies inhibitory receptors that can operate as NOT gates when paired with activating receptors. The method may be used to generate large datasets to train machine learning models to better predict and optimize the function of logic-gated cell therapeutics.

2.
Arerugi ; 73(4): 357-358, 2024.
Artículo en Japonés | MEDLINE | ID: mdl-38880636
3.
Mol Cell Biochem ; 2024 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-38880861

RESUMEN

Acute myocardial infarction is mainly caused by a lack of blood flood in the coronary artery. Angiopoietin-like protein 2 (ANGPTL2) induces platelet activation and thrombus formation in vitro through binding with immunoglobulin-like receptor B, an immunoglobulin superfamily receptor. However, the mechanism by which it regulates platelet function in vivo remains unclear. In this study, we investigated the role of ANGPTL2 during thrombosis in relationship with ST-segment elevation myocardial infarction (STEMI) with spontaneous recanalization (SR). In a cohort of 276 male and female patients, we measured plasma ANGPTL2 protein levels. Using male Angptl2-knockout and wild-type mice, we examined the inhibitory effect of Angptl2 on thrombosis and platelet activation both in vivo and ex vivo. We found that plasma and platelet ANGPTL2 levels were elevated in patients with STEMI with SR compared to those in non-SR (NSR) patients, and was an independent predictor of SR. Angptl2 deficiency accelerated mesenteric artery thrombosis induced by FeCl3 in Angptl2-/- compared to WT animals, promoted platelet granule secretion and aggregation induced by thrombin and collogen while purified ANGPTL2 protein supplementation reversed collagen-induced platelet aggregation. Angptl2 deficiency also increased platelet spreading on immobilized fibrinogen and clot contraction. In collagen-stimulated Angptl2-/- platelets, Src homology region 2 domain-containing phosphatase (Shp)1-Y564 and Shp2-Y580 phosphorylation were attenuated while Src, Syk, and Phospholipase Cγ2 (PLCγ2) phosphorylation increased. Our results demonstrate that ANGPTL2 negatively regulated thrombus formation by activating ITIM which can suppress ITAM signaling pathway. This new knowledge provides a new perspective for designing future antiplatelet aggregation therapies.

4.
Sci Rep ; 14(1): 10661, 2024 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724599

RESUMEN

We report the generation of a novel anti-LAG-3/TIGIT bispecific IgG4 antibody, ZGGS15, and evaluated its anti-tumor efficacy in mouse models as monotherapy or in combination with a PD-1 antibody. ZGGS15 exhibited strong affinities for human LAG-3 and TIGIT, with KDs of 3.05 nM and 2.65 nM, respectively. ZGGS15 has EC50s of 0.69 nM and 1.87 nM for binding to human LAG-3 and TIGIT on CHO-K1 cells, respectively. ZGGS15 competitively inhibited the binding of LAG-3 to MHC-II (IC50 = 0.77 nM) and the binding of TIGIT to CD155 (IC50 = 0.24 nM). ZGGS15 does not induce ADCC, CDC, or obvious cytokine production. In vivo results showed that ZGGS15 had better anti-tumor inhibition than single anti-LAG-3 or anti-TIGIT agents and demonstrated a synergistic effect when combined with nivolumab, with a significantly higher tumor growth inhibition of 95.80% (p = 0.001). The tumor volume inhibition rate for ZGGS15 at 2 mg/kg was 69.70%, and for ZGGS15 at 5 mg/kg plus nivolumab at 1 mg/kg, it was 94.03% (p < 0.001). Our data reveal that ZGGS15 exhibits potent anti-tumor efficacy without eliciting ADCC or CDC or causing cytokine production, therefore having a safe profile.


Asunto(s)
Anticuerpos Biespecíficos , Proteína del Gen 3 de Activación de Linfocitos , Receptor de Muerte Celular Programada 1 , Receptores Inmunológicos , Animales , Femenino , Humanos , Ratones , Anticuerpos Biespecíficos/farmacología , Anticuerpos Biespecíficos/uso terapéutico , Antígenos CD/inmunología , Antígenos CD/metabolismo , Línea Celular Tumoral , Células CHO , Cricetulus , Modelos Animales de Enfermedad , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Receptor de Muerte Celular Programada 1/inmunología , Receptores Inmunológicos/antagonistas & inhibidores , Receptores Inmunológicos/metabolismo , Receptores Inmunológicos/inmunología , Ensayos Antitumor por Modelo de Xenoinjerto
5.
Molecules ; 29(9)2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38731468

RESUMEN

Phosphorylation of tyrosine is the basic mode of protein function and signal transduction in organisms. This process is regulated by protein tyrosine kinases (PTKs) and protein tyrosinases (PTPs). Immunoreceptor tyrosine-based inhibition motif (ITIM) has been considered as regulating the PTP activity through the interaction with the partner proteins in the cell signal pathway. The ITIM sequences need to be phosphorylated first to active the downstream signaling proteins. To explore potential regulatory mechanisms, the ITIM sequences of two transmembrane immunoglobulin proteins, myelin P0 protein-related protein (PZR) and programmed death 1 (PD-1), were analyzed to investigate their interaction with proteins involved in regulatory pathways. We discovered that phosphorylated ITIM sequences can selectively interact with the tyrosine phosphatase SHP2. Specifically, PZR-N-ITIM (pY) may be critical in the interaction between the ITIM and SH2 domains of SHP2, while PD1-C-ITSM (pY) may play a key role in the interaction between the ITIM and SH2 domains of SHP2. Quite a few proteins were identified containing the SH2 domain, exhibiting phosphorylation-mediated interaction with PZR-ITIM. In this study, 14 proteins with SH2 structural domains were identified by GO analysis on 339 proteins associated to the affinity pull-down of PZR-N-ITIM (pY). Through the SH2 domains, these proteins may interact with PZR-ITIM in a phosphorylation-dependent manner.


Asunto(s)
Motivo de Inhibición del Inmunorreceptor Basado en Tirosina , Unión Proteica , Proteómica , Fosforilación , Humanos , Proteómica/métodos , Proteína Tirosina Fosfatasa no Receptora Tipo 11/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 11/química , Dominios Homologos src , Secuencia de Aminoácidos , Transducción de Señal , Receptor de Muerte Celular Programada 1/metabolismo , Receptor de Muerte Celular Programada 1/química
6.
Transl Oncol ; 45: 101961, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38631259

RESUMEN

Tumor microenvironment is an intricate web of stromal and immune cells creating an immune suppressive cordon around the tumor. In hepatocellular carcinoma (HCC), Tumor microenvironment is a formidable barrier towards novel immune therapeutic approaches recently evading the oncology field. In this study, the main aim was to identify the intricate immune evasion tactics mediated by HCC cells and to study the epigenetic modulation of the immune checkpoints; Programmed death-1 (PD-1)/ Programmed death-Ligand 1 (PD-L1) and T cell immunoreceptor with Ig and ITIM domains (TIGIT)/Cluster of Differentiation 155 (CD155) at the tumor-immune synapse. Thus, liver tissues, PBMCs and sera were collected from Hepatitis C Virus (HCV), HCC as well as healthy individuals. Screening was performed to PD-L1/PD-1 and CD155/TIGIT axes in HCC patients. PDL1, CD155, PD-1 and TIGIT were found to be significantly upregulated in liver tissues and peripheral blood mononuclear cells (PBMCs) of HCC patients. An array of long non-coding RNAs (lncRNAs) and microRNAs validated to regulate such immune checkpoints were screened. The lncRNAs; CCAT-1, H19, and MALAT-1 were all significantly upregulated in the sera, PBMCs, and tissues of HCC patients as compared to HCV patients and healthy controls. However, miR-944-5p, miR-105-5p, miR-486-5p, miR-506-5p, and miR-30a-5p were downregulated in the sera and liver tissues of HCC patients. On the tumor cell side, knocking down of lncRNAs-CCAT-1, MALAT-1, or H19-markedly repressed the co-expression of PD-L1 and CD155 and accordingly induced the cytotoxicity of co-cultured primary immune cells. On the immune side, ectopic expression of the under-expressed microRNAs; miR-486-5p, miR-506-5p, and miR-30a-5p significantly decreased the transcript levels of PD-1 in PBMCs with no effect on TIGIT. On the other hand, ectopic expression of miR-944-5p and miR-105-5p in PBMCs dramatically reduced the co-expression of PD-1 and TIGIT. Finally, all studied miRNAs enhanced the cytotoxic effects of PBMCs against Huh7 cells. However, miR-105-5p showed the highest augmentation for PBMCs cytotoxicity against HCC cells. In conclusion, this study highlights a novel co-targeting strategy using miR-105-5p mimics, MALAT-1, CCAT-1 and H19 siRNAs to efficiently hampers the immune checkpoints; PD-L1/PD-1 and CD155/TIGIT immune evasion properties in HCC.

7.
Clin Exp Immunol ; 216(2): 132-145, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38386917

RESUMEN

Natural killer (NK) cells were reported to be involved in the pathogenesis of primary antiphospholipid syndrome (pAPS). Immunosuppressive receptor T-cell immunoreceptor with Ig and ITIM domains (TIGIT) and activating receptor cluster of differentiation 226 (CD226) are specifically expressed on NK cells with competitive functions. This study aims to investigate the expression diversities of CD226/TIGIT on NK subsets and their associations with NK subsets activation phenotypes and potential clinical significance, furthermore, to explore potential cause for CD226/TIGIT expression diversities in pAPS. We comparatively assessed the changes of CD56brightNK, CD56dimNK, and NK-like cells in 70 pAPS patients compared with control groups, including systemic lupus erythematosus, asymptomatic antiphospholipid antibodies carriers (asymp-aPLs carriers), and healthy controls and their expression diversities of CD226/TIGIT by flow cytometry. CD25, CD69, CD107α expression, and interferon gamma (IFN-γ) secretion levels of NK subsets were detected to determine the potential association of CD226/TIGIT expression with NK subsets phenotypes. CD226/TIGIT expression levels were compared among different subgroups divided by aPLs status. Moreover, in vitro cultures were conducted to explore the potential mechanisms of CD226/TIGIT expression imbalance. CD56brightNK and CD3+CD56+NK-like cells were significantly increased while CD56dimNK cells were obviously decreased in pAPS, and CD56brightNK and NK-like cells exhibited significantly higher CD226 but lower TIGIT expressions. CD226+CD56brightNK and TIGIT-CD56brightNK cells show higher CD69 expression and IFN-γ secretion capacity, and CD226+NK-like and TIGIT-NK-like cells showed higher expressions of CD25 and CD69 but lower apoptosis rate than CD226- and TIGIT+CD56brightNK/NK-like cells, respectively. The imbalanced CD226/TIGIT expressions were most significant in aPLs triple-positive group. Imbalanced expressions of CD226/TIGIT on CD56brightNK and NK-like cells were aggravated after interleukin-4 (IL-4) stimulation and recovered after tofacitinib blocking. Our data revealed significant imbalanced CD226/TIGIT expressions on NK subsets in pAPS, which closely associated with NK subsets phenotypes and more complicated autoantibody status. CD226/TIGIT imbalanced may be affected by IL-4/Janus Kinase (JAK) pathway activation.

8.
Adv Biol (Weinh) ; 8(1): e2300050, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37690824

RESUMEN

This study aims to explore whether TIGIT is an effective target for the immunotherapy of renal cell cancer (RCC) with PD-1 as a positive control. The expression of TIGIT and PD-1 in RCC and peripheral blood mononuclear cells (PBMC) and the correlation between TIGIT and PD-1 are evaluated. The expression of TIGIT and PD-1 is inhibited, and then the proliferation, apoptosis, and migration are assessed. TIGIT expression is positively related to the expression of PDCD1, BTLA, ICOS, and FOXP3 (p < 0.05). TIGIT expression in the PBMC, TIL, RCC, and adjacent normal tissues is higher than PD-1 expression. Blocking the TIGIT and PD-1 signaling pathways significantly inhibits the proliferation, migration, and invasion of RCC cells and promotes their apoptosis. These effects are more evident in TIGIT inhibitors than in PD-1 inhibitors. TIGIT inhibitor mainly regulates the expression of differential genes to achieve the reconstruction of immune killing and restore the killing effect on the RCC, and its mechanism by which TIGIT functions overlap that of PD-1 inhibitor. TIGIT may become a target for the immunotherapy of RCC, and there is a theoretical basis for the combination of TIGIT inhibitors and PD-1 inhibitors for the treatment of RCC.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/terapia , Receptor de Muerte Celular Programada 1/genética , Receptor de Muerte Celular Programada 1/metabolismo , Leucocitos Mononucleares/metabolismo , Inhibidores de Puntos de Control Inmunológico , Neoplasias Renales/tratamiento farmacológico , Receptores Inmunológicos/genética , Receptores Inmunológicos/metabolismo , Inmunoterapia
9.
Int Immunopharmacol ; 127: 111381, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38150880

RESUMEN

BACKGROUND: Immunotherapy has shown promise in treating various cancers; however, its efficacy in endometrial cancer (EC) remains suboptimal owing to the complex dynamics of the tumour immune microenvironment. This study focuses on exploring the potential of targeting the programmed cell death protein 1 gene (PD-1) and the T cell Immunoreceptor with Ig and ITIM domains gene (TIGIT) coexpressing tissue-resident memory cells in EC. METHODS: A comprehensive approach, utilizing RNA sequencing, single-cell RNA sequencing, mass cytometry, and flow cytometry, was employed to analyse the expression patterns of PD-1 and TIGIT in the EC tumor environment and to characterize the phenotypic properties of tumor-infiltrating lymphocytes (TILs), particularly tissue-resident memory (TRM) cells. Additionally, in vitro cell experiments were conducted to assess the functional impact of PD-1 and TIGIT blockade on T-cell activity. RESULTS: Our analysis identified a significant co-expression of PD-1 and TIGIT in TRM cells within the EC tumor microenvironment. These TRM cells displayed an exhausted phenotype with impaired cytotoxicity, enhanced proliferative capacity, and diminished cytotoxic activity. In vitro T-cell assays showed that a dual blockade of PD-1 and TIGIT more effectively restored T-cell functionality compared to single blockade, suggesting enhanced therapeutic potential. CONCLUSIONS: TRM cells co-expressing PD-1 and TIGIT represent potential targets for EC immunotherapy. Dual immune checkpoint blockade targeting PD-1 and TIGIT may offer an effective therapeutic strategy for EC, providing valuable insights for the development of immunotherapeutic approaches.


Asunto(s)
Neoplasias Endometriales , Receptor de Muerte Celular Programada 1 , Femenino , Humanos , Receptor de Muerte Celular Programada 1/metabolismo , Linfocitos T CD8-positivos , Receptores Inmunológicos/genética , Receptores Inmunológicos/metabolismo , Neoplasias Endometriales/terapia , Inmunoterapia , Microambiente Tumoral
10.
J Neurochem ; 2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37822118

RESUMEN

Microglia are critical responders to amyloid beta (Aß) plaques in Alzheimer's disease (AD). Therefore, the therapeutic targeting of microglia in AD is of high clinical interest. While previous investigation has focused on the innate immune receptors governing microglial functions in response to Aß plaques, how microglial innate immune responses are regulated is not well understood. Interestingly, many of these microglial innate immune receptors contain unique cytoplasmic motifs, termed immunoreceptor tyrosine-based activating and inhibitory motifs (ITAM/ITIM), that are commonly known to regulate immune activation and inhibition in the periphery. In this review, we summarize the diverse functions employed by microglia in response to Aß plaques and also discuss the innate immune receptors and intracellular signaling players that guide these functions. Specifically, we focus on the role of ITAM and ITIM signaling cascades in regulating microglia innate immune responses. A better understanding of how microglial innate immune responses are regulated in AD may provide novel therapeutic avenues to tune the microglial innate immune response in AD pathology.

11.
Elife ; 122023 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-37549051

RESUMEN

Effective neutrophil migration to sites of inflammation is crucial for host immunity. A coordinated cascade of steps allows intravascular leukocytes to counteract the shear stress, transmigrate through the endothelial layer, and move toward the extravascular, static environment. Those events are tightly orchestrated by integrins, but, while the molecular mechanisms leading to their activation have been characterized, the regulatory pathways promoting their detachment remain elusive. In light of this, it has long been known that platelet-endothelial cell adhesion molecule (Pecam1, also known as CD31) deficiency blocks leukocyte transmigration at the level of the outer vessel wall, yet the associated cellular defects are controversial. In this study, we combined an unbiased proteomic study with in vitro and in vivo single-cell tracking in mice to study the dynamics and role of CD31 during neutrophil migration. We found that CD31 localizes to the uropod of migrating neutrophils along with closed ß2-integrin and is required for essential neutrophil actin/integrin polarization. Accordingly, the uropod of Pecam1-/- neutrophils is unable to detach from the extracellular matrix, while antagonizing integrin binding to extracellular matrix components rescues this in vivo migratory defect. Conversely, we showed that sustaining CD31 co-signaling actively favors uropod detachment and effective migration of extravasated neutrophils to sites of inflammation in vivo. Altogether, our results suggest that CD31 acts as a molecular rheostat controlling integrin-mediated adhesion at the uropod of egressed neutrophils, thereby triggering their detachment from the outer vessel wall to reach the inflammatory sites.


Asunto(s)
Neutrófilos , Molécula-1 de Adhesión Celular Endotelial de Plaqueta , Animales , Ratones , Antígenos CD18/metabolismo , Adhesión Celular/fisiología , Inflamación/metabolismo , Integrinas/metabolismo , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/genética , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/metabolismo , Proteómica , Transducción de Señal , Movimiento Celular
12.
Mol Immunol ; 158: 68-78, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37146480

RESUMEN

The immune system plays a crucial role in controlling colorectal cancer (CRC) development. Natural killer (NK) cells are tumoricidal but undergo exhaustion in CRC patients. The current research aims to understand the role of sirtuin 6 (SIRT6) in CRC-associated NK cell exhaustion in a murine inflammatory colorectal cancer model. To this end, inflammatory CRC was induced by treating mice with azoxymethane plus dextran sulfate sodium. The expression of SIRT6 in NK cells in murine mesenteric lymph nodes (mLNs) and the CRC tissue was characterized by Immunoblotting. SIRT6 knockdown was achieved by lentiviral transduction of murine splenic NK cells, followed by evaluation of NK cell proliferation and the expression of cytotoxic mediators using flow cytometry. NK cell cytotoxicity was measured by cytotoxicity assays. Adoptive transfer of murine NK cells was applied to analyze the effect of SIRT6 knockdown in vivo. We found that SIRT6 was up-regulated in infiltrating NK cells in the murine CRC tissue, especially NK cells with an exhausted phenotype and impaired cytotoxicity. SIRT6 knockdown significantly boosted murine splenic NK cell functionality, as evidenced by accelerated proliferation, increased production of cytotoxic mediators, and higher tumoricidal activity both in vitro and in vivo. Furthermore, the adoptive transfer of SIRT6-knockdown NK cells into CRC-bearing mice effectively suppressed CRC progression. Therefore, SIRT6 up-regulation is essential for murine NK cell exhaustion in CRC because it impedes the tumoricidal activity of murine NK cells. Artificial SIRT6 down-regulation could boost the function of infiltrating NK cells to oppress CRC progression in mice.


Asunto(s)
Antineoplásicos , Neoplasias Colorrectales , Sirtuinas , Ratones , Animales , Células Asesinas Naturales , Regulación hacia Abajo , Sirtuinas/metabolismo
13.
Oncoimmunology ; 12(1): 2170095, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36733497

RESUMEN

Indoleamine 2,3 dioxygenase 1 (IDO1), a leader tryptophan-degrading enzyme, represents a recognized immune checkpoint molecule. In neoplasia, IDO1 is often highly expressed in dendritic cells infiltrating the tumor and/or in tumor cells themselves, particularly in human melanoma. In dendritic cells, IDO1 does not merely metabolize tryptophan into kynurenine but, after phosphorylation of critical tyrosine residues in the non-catalytic small domain, it triggers a signaling pathway prolonging its immunoregulatory effects by a feed-forward mechanism. We here investigated whether the non-enzymatic function of IDO1 could also play a role in tumor cells by using B16-F10 mouse melanoma cells transfected with either the wild-type Ido1 gene (Ido1WT ) or a mutated variant lacking the catalytic, but not signaling activity (Ido1H350A ). As compared to the Ido1WT -transfected counterpart (B16WT), B16-F10 cells expressing Ido1H350A (B16H350A) were characterized by an in vitro accelerated growth mediated by increased Ras and Erk activities. Faster growth and malignant progression of B16H350A cells, also detectable in vivo, were found to be accompanied by a reduction in tumor-infiltrating CD8+ T cells and an increase in Foxp3+ regulatory T cells. Our data, therefore, suggest that the IDO1 signaling function can also occur in tumor cells and that alternative therapeutic approach strategies should be undertaken to effectively tackle this important immune checkpoint molecule.


Asunto(s)
Melanoma Experimental , Triptófano , Ratones , Humanos , Animales , Linfocitos T CD8-positivos/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenasa/genética , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Proteínas de Punto de Control Inmunitario , Melanoma Experimental/genética , Transducción de Señal
14.
Gene Rep ; 31: 101747, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36747893

RESUMEN

During viral infections, especially Covid-19, Tcell exhaustion plays a crucial role in reducing the activity of lymphocytes and the immune system's antiviral activities. This research aimed to investigate the co-inhibitory receptors and transcription factors involved in the Tcell exhaustion process in ICU-admitted (ICUA) compared to non-ICU admitted (non-ICUA) Covid-19 patients. A total of 60 Covid-19 patients (30 patients in the severe group who were admitted in the ICU (ICUA) and 30 patients in the mild group who were admitted in departments other than the ICU (non-ICUA)) and 10 healthy individuals were included in this study. Laboratory tests and the level of gene expressions related to 4 inhibitory co-receptors, including LAG-3, TIM-3, TIGIT, PD-1, and T-bet and Eomes transcription factors involved in the process of Tcell exhaustion in severe and mild patients of Covid-19 were investigated. The results showed lymphopenia and an increase in other hematologic laboratory factors such as NLR, PLR, CRP, ALT, and AST in people with a severe form of the disease (ICUA) compared to mild groups (non-ICUA) (P < 0.001). Furthermore, a significant increase in 3 co-inhibitory receptors, TIM-3, LAG-3, and PD-1, was observed in severe patients compared to mild and healthy people (P < 0.001). An increase in TIGIT gene expression was lesser than the other three mentioned receptors (P < 0.05). Concerning the transcription factors, we observed a significant increase in Eomes in ICUA patients compared to the non-ICUA group (P < 0.001), and this increment in T-bet gene expression was minor compared to Eomes (P < 0.05). In conclusion, Patients with a severe form of acute respiratory syndrome coronavirus 2 (SARS-CoV-2) represented a higher level of gene expressions in terms of co-inhibitory receptors and transcription factors involved in the T cell exhaustion process.

15.
China Tropical Medicine ; (12): 191-2023.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-979615

RESUMEN

@#The T-cell immunoglobulin and immunoreceptor tyrosine-based inhibitory motif domain (TIGIT) is an inhibitory receptor mainly expressed on active T-cells, or natural killer cells (NK cells) that activate negative stimulus signals in immune cells by combining with multiple ligands on the surface of target cells including tumor cells and infected cells. TIGIT plays an important regulatory role in the immune pathogenesis of tumors, viral infections and various autoimmune diseases by inhibiting the over activation of cells and the over secretion of proinflammatory cytokines. Recent researches show that TIGIT is highly expressed in T cells and NK cells of cancer patients, and is related to disease progression and poor clinical prognosis. Researchers try to enhance the activity of T cells or NK cells by blocking the binding of TIGIT and its ligand for therapeutic intervention. At present, there have been many reports about the use of anti-TIGIT monoclonal antibody treatment in different mouse tumor models leading to tumor regression, TIGIT has received extensive attention in cancer immunotherapy as a promising target for next generation cancer immunotherapy. Several clinical trials are currently evaluating the efficacy of anti-TIGIT monoclonal antibodies (mAbs) in patients with several cancers. The most advanced candidate, tiragolumab, has exhibited remarkable efficacy in programmed cell death ligand 1 (PD-L1)-positive non-small cell lung carcinoma (NSCLC) patients in phase Ⅱ clinical trials, in combination with PD-L1 blockade. However, the specific mechanism of TIGIT blockade remains to be fully elucidated.

16.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-1026719

RESUMEN

Programmed death-1 and programmed death-ligand 1(PD-1/PD-L1)are regulatory immune checkpoint molecules that inhibit T cell activation and,therefore,play an important role in tumor immunotherapy.In recent years,increasing numbers of targeted therapeutic agents have been developed,but single immune checkpoint blockers cannot completely inhibit tumor occurrence,and tumor escape sporadically occurs.Consequently,combination therapy of targeted drugs is considered a useful method to inhibit tumorigenesis and tumor development.T cell immunoglobulin and immunoreceptor tyrosine-based inhibition motif(ITIM)domain(TIGIT)is an inhibitory type 1 poliovirus receptor that has recently been a hotspot of targeted drug therapy research.It has been shown that the combination therapy of TIGIT plus PD-1/PD-L1 can reduce tumor escape and inhibit tumorigenesis more effectively.Therefore,this review summarizes and discusses the progress on the dual blockade of TIGIT and PD-1/PD-L1 pathways in tumor immunotherapy to provide a theoretical basis for tumor im-munotherapy.

17.
Front Immunol ; 14: 1267743, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38187381

RESUMEN

CD4 and LAG-3 are related molecules that are receptors for MHC class II molecules. Their major functional differences are situated in their cytoplasmic tails, in which CD4 has an activation motif and LAG-3 an inhibitory motif. Here, we identify shark LAG-3 and show that a previously identified shark CD4-like gene has a genomic location, expression pattern, and motifs similar to CD4 in other vertebrates. In nurse shark (Ginglymostoma cirratum) and cloudy catshark (Scyliorhinus torazame), the highest CD4 expression was consistently found in the thymus whereas such was not the case for LAG-3. Throughout jawed vertebrates, the CD4 cytoplasmic tail possesses a Cx(C/H) motif for binding kinase LCK, and the LAG-3 cytoplasmic tail possesses (F/Y)xxL(D/E) including the previously determined FxxL inhibitory motif resembling an immunoreceptor tyrosine-based inhibition motif (ITIM). On the other hand, the acidic end of the mammalian LAG-3 cytoplasmic tail, which is believed to have an inhibitory function as well, was acquired later in evolution. The present study also identified CD4-1, CD4-2, and LAG-3 in the primitive ray-finned fishes bichirs, sturgeons, and gars, and experimentally determined these sequences for sterlet sturgeon (Acipenser ruthenus). Therefore, with CD4-1 and CD4-2 already known in teleosts (modern ray-finned fish), these two CD4 lineages have now been found within all major clades of ray-finned fish. Although different from each other, the cytoplasmic tails of ray-finned fish CD4-1 and chondrichthyan CD4 not only contain the Cx(C/H) motif but also an additional highly conserved motif which we expect to confer a function. Thus, although restricted to some species and gene copies, in evolution both CD4 and LAG-3 molecules appear to have acquired functional motifs besides their canonical Cx(C/H) and ITIM-like motifs, respectively. The presence of CD4 and LAG-3 molecules with seemingly opposing functions from the level of sharks, the oldest living vertebrates with a human-like adaptive immune system, underlines their importance for the jawed vertebrate immune system. It also emphasizes the general need of the immune system to always find a balance, leading to trade-offs, between activating and inhibiting processes.


Asunto(s)
Tiburones , Animales , Humanos , Genómica , Antígenos de Histocompatibilidad Clase II/genética , Mamíferos
18.
Front Immunol ; 13: 1058424, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36544779

RESUMEN

Background: T cell immunoreceptor with Ig and ITIM domains (TIGIT) interacts with poliovirus receptor (PVR) to contribute to cancer immune escape. Recently, TIGIT and PVR have been identified as promising immunotherapy targets. Their gene expression is upregulated in many solid tumors, but their protein expression level is not well documented, particularly in triple negative breast cancer (TNBC), the breast cancer subtype that most benefit from immunotherapy. Methods: TIGIT and PVR expression levels were assessed by immunohistochemistry in 243 surgically resected localized TNBC and then their relationship with clinical-pathological features and clinical outcome was analyzed. Results: TIGIT expression was observed in immune cells from the tumor microenvironment, whereas PVR was mainly expressed by tumor cells. High TIGIT expression was significantly associated with age (p=0.010), histological grade (p=0.014), non-lobular histology (p=0.024), adjuvant chemotherapy (p=0.006), and various immune cell populations (tumor infiltrating lymphocytes (TILs), CD3+, CD8+, PD-1+ cells; all p<0.0001), PD-L1+ tumor cells (p<0.0001), and PD-L1+ stromal cells (p=0.003). Infiltration by TIGIT+ cells tended to be higher in non-molecular apocrine tumors (p=0.088). PVR was significantly associated with histological grade (p<0.0001), the basal-like (p=0.003) and non-molecular apocrine phenotypes (p=0.039), high TILs infiltration (p=0.011), CD3+ (p=0.002), CD8+ (p=0.024) T cells, and PD-L1 expression in tumor (p=0.003) and stromal cells (p=0.001). In univariate analysis, only known prognostic factors (age, tumor size, lymph node status, adjuvant chemotherapy, TILs and CD3+ T-cell infiltrate) were significantly associated with relapse-free survival (RFS) and overall survival. High TIGIT and PVR expression levels tended to be associated with longer RFS (p=0.079 and 0.045, respectively). The analysis that included only non-molecular apocrine TNBC revealed longer RFS for tumors that strongly expressed TIGIT or PVR (p=0.025 for TIGIT and 0.032 for PVR). Conclusions: These results indicated that in TNBC, TIGIT+ cells can easily interact with PVR to exert their inhibitory effects. Their wide expression in TNBC and their association with other immune checkpoint components suggest the therapeutic interest of the TIGIT-PVR axis.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/patología , Pronóstico , Antígeno B7-H1/metabolismo , Recurrencia Local de Neoplasia , Receptores Inmunológicos/genética , Microambiente Tumoral
19.
Biomedicines ; 10(12)2022 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-36551992

RESUMEN

(1) Background: T-cell immunoglobulin and ITIM domain (TIGIT) is a potential immunotherapeutic target in a variety of malignant entities, and antibody-based treatments are currently under investigation in clinical trials. While promising results were observed in patients with lung cancer, the role of TIGIT in oral squamous cell carcinoma (OSCC) as a biomarker as well as a therapeutic target remains elusive. Therefore, we evaluated the role of TIGIT as a prognostic factor in OSCC. (2) Methods: Here, we describe the results of a retrospective tissue microarray (TMA) OSCC cohort. Using immunohistochemistry, TIGIT expression was correlated with overall and recurrence-free survival (OAS and RFS, respectively). Additionally, in silico analysis was performed based on the TCGA Head and Neck Squamous Cell Carcinoma (HNSCC) cohort in order to correlate patients' survival with TIGIT and CD274 (encoding for PD-L1) gene expression levels. (3) Results: Database analysis revealed a beneficial outcome in OAS for tumor patients with high intraepithelial CD3-TIGIT-expression (n = 327). Hereby, OAS was 53.9 months vs. 30.1 months for patients with lower TIGIT gene expression levels (p = 0.033). In our retrospective OSCC-TMA cohort, elevated TIGIT levels on CD3+ cells correlated significantly with improved OAS (p = 0.025) as well as distant RFS (p = 0.026). (4) Conclusions: This study introduces TIGIT as a novel prognostic factor in OSCC, indicating the improved outcome of OSCC patients relative to their increased TIGIT expression. TIGIT might provide therapeutic implications for future immunotherapy in advanced-stage OSCC patients.

20.
Comput Struct Biotechnol J ; 20: 5790-5812, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36382179

RESUMEN

The relevance of protein-glycan interactions in immunity has long been underestimated. Yet, the immune system possesses numerous classes of glycan-binding proteins, so-called lectins. Of specific interest is the group of myeloid C-type lectin receptors (CLRs) as they are mainly expressed by myeloid cells and play an important role in the initiation of an immune response. Myeloid CLRs represent a major group amongst pattern recognition receptors (PRRs), placing them at the center of the rapidly growing field of glycoimmunology. CLRs have evolved to encompass a wide range of structures and functions and to recognize a large number of glycans and many other ligands from different classes of biopolymers. This review aims at providing the reader with an overview of myeloid CLRs and selected ligands, while highlighting recent insights into CLR-ligand interactions. Subsequently, methodological approaches in CLR-ligand research will be presented. Finally, this review will discuss how CLR-ligand interactions culminate in immunological functions, how glycan mimicry favors immune escape by pathogens, and in which way immune responses can be affected by CLR-ligand interactions in the long term.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA