Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.494
Filtrar
1.
R Soc Open Sci ; 11(7): 240490, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39086821

RESUMEN

Only approximately 356 North Atlantic right whales (Eubalaena glacialis) remain. With extremely low levels of genetic diversity, limited options for mates, and variation in reproductive success across females, there is concern regarding the potential for genetic limitations of population growth from inbreeding depression. In this study, we quantified reproductive success of female North Atlantic right whales with a modified de-lifing approach using reproductive history information collected over decades of field observations. We used double-digest restriction site-associated sequencing to sequence approximately 2% of the genome of 105 female North Atlantic right whales and combined genomic inbreeding estimates with individual fecundity values to assess evidence of inbreeding depression. Inbreeding depression could not explain the variance in reproductive success of females, however we present evidence that inbreeding depression may be affecting the viability of inbred fetuses-potentially lowering the reproductive success of the species as a whole. Combined, these results allay some concerns that genetic factors are impacting species survival as genetic diversity is being retained through selection against inbred fetuses. While still far fewer calves are being born each year than expected, the small role of genetics underlying variance in female fecundity suggests that variance may be explained by external factors that can potentially be mitigated through protection measures designed to reduce serious injury and mortality from human activities.

2.
BMC Genomics ; 25(1): 754, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39095706

RESUMEN

BACKGROUND: Silkie is a traditional Chinese chicken breed characterized by its unique combination of specialized morphological traits. While previous studies have focused on the genetic basis of these traits, the overall genomic characteristics of the Silkie breed remain largely unexplored. In this study, we employed whole genome resequencing data to examine the genetic diversity, selective signals and demographic history of the Silkie breed through comparative analyses with seven other Chinese indigenous breeds (IDGBs), a commercial breed, and the wild ancestor Red Jungle Fowl. RESULTS: In total, 20.8 million high-quality single nucleotide polymorphisms and 86 large structural variations were obtained. We discovered that Silkie exhibits a relatively high level of inbreeding and is genetically distinct from other IDGBs. Furthermore, our analysis indicated that Silkie has experienced a stronger historical population bottleneck and has a smaller effective population size compared with other IDGBs. We identified 45 putatively selected genes that are enriched in the melanogenesis pathway, which probably is related to the feather color. Among these genes, LMBR1 and PDSS2 have been previously associated with the extra toe and the hookless feathers, respectively. Six of the selected genes (KITLG, GSK3B, SOBP, CTBP1, ELMO2, SNRPN) are known to be associated with neurodevelopment and mental diseases in human, and are possibly related to the distinct behavior of Silkie. We further identified structural variants in Silkie and found previously reported variants linked to hyperpigmentation (END3), muff and beard (HOXB8), and Rose-comb phenotype (MNR2). Additionally, we found a 0.61 Mb inversion overlapping with the GMDS gene, which was previously linked to neurodevelopmental defects in zebrafish and humans. This may also be related to the behavior distinctiveness of Silkie. CONCLUSIONS: Our study revealed that Silkie is genetically distinct and relatively highly inbred compared to other IDGB chicken populations, possibly attributed to more prolong population bottlenecks and selective breeding practice. These results enhance our understanding of how domestication and selective breeding have shaped the genome of Silkie. These findings contribute to the broader field of domestication and avian genomics, and have implications for the future conservation and breeding efforts.


Asunto(s)
Pollos , Variación Genética , Polimorfismo de Nucleótido Simple , Animales , Pollos/genética , Selección Genética , Secuenciación Completa del Genoma , Cruzamiento , Genética de Población , Genómica/métodos
3.
Animal ; 18(8): 101236, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-39096602

RESUMEN

Tunchang pigs, mainly distributed throughout Hainan Province of China, are well-known for their superior meat quality, crude feed tolerance, and adaptability to high temperatures and humidity. Runs of homozygosity (ROH) can provide valuable information about the inbreeding coefficient in individuals and selection signals that may reveal candidate genes associated with key functional traits. Runs of heterozygosity (ROHet) are commonly associated with balance selection, which can help us understand the adaptive evolutionary history of domestic animals. In this study, we investigated ROHs and ROHets in 88 Tunchang pigs. We also compared the estimates of inbreeding coefficients in individuals calculated based on four methods. In summary, we detected a total of 16 ROH islands in our study, and 100 genes were found within ROH regions. These genes were correlated with economically important traits such as reproduction (e.g., SERPIND1, HIRA), meat quality (e.g., PI4KA, TBX1), immunity (e.g., ESS2, RANBP1), adaption to heat stress (TXNRD2 and DGCR8), and crude food tolerance (TRPM6). Moreover, we discovered 18 ROHet islands harbouring genes associated with reproduction (e.g., ARHGEF12, BMPR2), immune system (e.g., BRD4, DNMT3B). These findings may help us design effective breeding and conservation strategies for this unique breed.

4.
Poult Sci ; 103(10): 104071, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39096830

RESUMEN

This study assessed the trends in inbreeding, effective population size, and genetic diversity across six Korean native chicken lines using pedigree records from 54,383 chickens. Understanding these genetic parameters is significantly important for maintaining healthy and viable chicken populations. The primary objective was to analyze the pedigree data to assess the levels of inbreeding and genetic diversity and to evaluate the effective population size across the different lines. Pedigree analysis revealed that pedigree completeness peaked in the first generation and declined in subsequent generations for all lines. Line A exhibited a mean inbreeding coefficient of 0.0201, whereas the other lines displayed lower mean values ranging from 0.0009 to 0.0098, indicating that inbreeding levels were within an acceptable range and considered safe from extinction. Average relatedness consistently increased with time. Individual increases in inbreeding were the highest in Line A (0.62%), with smaller increases in the other lines ranging from 0.02 to 0.23%. Effective population sizes varied from 81 to 2500, with average coancestry within parental populations ranging from 0.0032 to 0.0290. The fe/fa ratio between 1.00 and 1.69 in the 6 lines suggested a moderate impact during bottleneck events, with subsequent populations recovering well. The genetic diversity loss due to genetic drift and unequal founder contributions ranged from 0.66-3.15%, indicating that considerable genetic variability remains within the populations. The results of this study have practical applications in the management and conservation of genetic resources in poultry breeding programs. By highlighting the importance of monitoring inbreeding and maintaining genetic diversity, the findings can help develop strategies to ensure the long-term sustainability of these chicken lines. This study provides valuable insights into the genetic management of Korean native chicken lines, emphasizing the need for strategic breeding practices to preserve genetic health and diversity.

5.
Sci Rep ; 14(1): 17850, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39090204

RESUMEN

The State University of North Fluminense Darcy Ribeiro (UENF) has been developing for fifteen years a breeding program that aims at the development of new cultivars of elephant grass due to its high potential and the low availability of cultivars developed by genetic breeding programs that meet the needs of producers in the State of Rio de Janeiro. In this sense, inbred families were also obtained as a way of fixing potential alleles for traits related to production, as the inbreeding process apparently does not strongly affect elephant grass in aspects related to inbreeding depression. This study aimed to estimate genetic diversity, variance components and prediction of genotypic values in 11 (S1) elephant grass families, and perform the truncation and simultaneous selection of traits using the selection index, by mixed models. The experimental design consisted of randomized blocks with 11 (S1) families, three replications, and six plants per plot. For variables dry matter production, percentage of dry matter, plant height, stem diameter, number of tillers and leaf blade width, was performed the estimation of genetic parameters and selection of the best genotypes based selection index using mixed model. The descriptors were subjected to correlation analysis, distance matrices were generated by the Mahalanobis method, and individuals were grouped by the UPGMA method. In the selection via mixed models (REML/BLUP), families 6, 11, 8, 1, 3, 7, and 9 contributed most of the genotypes selected for the evaluated traits, indicating their high potential to generate superior genotype. The selection indices via mixed models indicated that the multiplicative index presented a greater selection gain.The phenotypic correlations showed the possibility of performing an indirect selection from six evaluated traits.The genotypes were separated into 18 groups by the Mahalanobis distance, allowing the observation of a wide genetic diversity. The most divergent and productive genotypes were self-fertilized to obtain the second generation (S2), continuing the development program.


Asunto(s)
Variación Genética , Fitomejoramiento , Selección Genética , Fitomejoramiento/métodos , Genotipo , Modelos Genéticos , Poaceae/genética , Fenotipo , Endogamia , Metabolismo Energético/genética
6.
J Hered ; 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39058401

RESUMEN

Inbreeding and outbreeding depression are dynamic forms of selection critical to mating system evolution and the efficacy of conservation biology. Most evidence on how the relative severity and timing of these forces are shaped is confined to self-fertilization, distant outcrossing, and intermediate 'optimal outcrossing' in hermaphrodites. We tested the notion that closed population demographics may reduce and delay the costs of inbreeding relative to distant outbreeding in an intertidal copepod with separate sexes and a biphasic larval / post-metamorphic life-history (Tigriopus californicus). At three lifecycle stages (fecundity, metamorphosis, and post-metamorphosis), we quantified the effects of inbreeding and outbreeding in crosses with varying degrees of recent common ancestry. Although inbreeding and outbreeding depression have distinct genetic mechanisms, both manifested the same stage-specific consequences for fitness. Inbreeding and outbreeding depression were not apparent for fecundity, post-metamorphic survival, sex ratio, or the ability to acquire mates, but inbreeding between full siblings and outbreeding between interpopulation hybrids reduced the fraction of offspring that completed metamorphosis by 32% and 47%, respectively. On average, the effects of inbreeding on metamorphic rate were weaker and nearly twice as variable among families than those of outbreeding, suggesting genetic load was less pervasive than the incompatibilities accrued between divergent populations. Overall, our results indicate the transition from larval to juvenile life stages is markedly susceptible to both inbreeding and outbreeding depression in T. californicus. We suggest stage-specific selection acting concurrently with the timing of metamorphosis may be an instrumental factor shaping reproductive optima in species with complex life-histories.

7.
Gene ; 928: 148787, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39053660

RESUMEN

The yak (Bos grunniens), renowned for its adaptability to extreme cold and hypoxic conditions, stands as a remarkable domestic animal crucial for sustaining livelihoods in harsh climates. We conducted a comprehensive analysis of the whole genome sequence data from three distinct Indian yak populations: Arunachali yak (n = 10), Himachali yak (n = 10), and Ladakhi yak (n = 10). The genomic data for Indian yaks were meticulously generated by our laboratory and compared with their Chinese counterpart, the Jinchuan yak (n = 8), for a more nuanced understanding. Our investigation revealed a total of 37,437 runs of homozygosity (ROH) segments in 34 animals representing four distinct yak populations. The Jinchuan yak population exhibited the highest proportion, constituting 80.8 % of total ROHs, predominantly as small segments (<0.1 Mb), accounting for 63 % of the overall ROHs. Further analysis uncovered a significantly higher degree of inbreeding in Chinese yaks compared to their Indian counterparts. The Indian yak populations, in contrast, demonstrated relatively lower and consistent levels of inbreeding. Moreover, we identified ROH hotspots that covered at least 60 % of individuals in our study, indicating their pivotal role in environmental adaptation. A total of five hotspot regions were detected, housing genes such as ENSBGRG00000015023 (WNT2), YIPF4, SPAST, TLN2, and DSG4. These genes are associated with traits including hair follicle initiation, nutrient stress response, microtubule assembly, development of cardiac muscle, hair follicle, and coat color. This observation strongly suggests that there is substantial selection acting on these genes, emphasizing their important role in environmental adaptation among yak populations.

8.
Anim Genet ; 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39021305

RESUMEN

In livestock breeding, single nucleotide polymorphism arrays have become a cornerstone of modern livestock breeding. SNP arrays facilitate the identification of genetic markers linked to economically important traits and provide a powerful tool for predicting breeding values. However, conventional breeding programs often overlook additional genomic features contained in the SNP array data that can provide valuable insights into the genetic diversity, copy number variation, inbreeding levels and potential challenges in breeding lines. Here we present genomeprofile, a tool using SNP array-based genomic data, offering a comprehensive profile of breeding animals including the identification of copy number variants and runs of homozygosity, and screening for aneuploidy. By integrating these features into the breeding landscape, genomeprofile enables a more comprehensive picture of genomic variation, ultimately enhancing precision breeding strategies. To illustrate the practicality and efficacy of genomeprofile, we applied the tool to a dataset of four pig breeding lines. The genomeprofile tool is a user-friendly tool that processes genotype data in finalreport or plink ped format efficiently into useful output. The output contains copy number variations, runs of homozygosity, selection signatures, aneuploidy and inbreeding per individual and across populations. This allows breeding companies and researchers to identify unique individuals or regions in the genome of interest based on routinely collected data.

9.
Animals (Basel) ; 14(13)2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38997956

RESUMEN

Inbreeding is unavoidable in small populations. However, the deleterious effects of inbreeding on fitness-related traits (inbreeding depression) may not be an inevitable phenomenon, since deleterious recessive alleles causing inbreeding depression might be purged from populations through inbreeding and selection. Inbreeding purging has been of great interest in conservation biology and animal breeding, because populations manifesting lower inbreeding depression could be created even with a small number of breeding animals, if inbreeding purging exists. To date, many studies intending to detect inbreeding purging in captive and domesticated animal populations have been carried out using pedigree analysis. Ballou's ancestral inbreeding coefficient (FBAL-ANC) is one of the most widely used measurements to detect inbreeding purging, but the theoretical basis for FBAL-ANC has not been fully established. In most of the published works, estimates from stochastic simulation (gene-dropping simulation) have been used. In this report, the author provides a mathematical basis for FBAL-ANC and proposes a new estimate by hybridizing stochastic and deterministic computation processes. A stochastic simulation suggests that the proposed method could considerably reduce the variance of estimates, compared to ordinary gene-dropping simulation, in which whole gene transmissions in a pedigree are stochastically determined. The favorable property of the proposed method results from the bypass of a part of the stochastic process in the ordinary gene-dropping simulation. Using the proposed method, the reliability of the estimates of FBAL-ANC could be remarkably enhanced. The relationship between FBAL-ANC and other pedigree-based parameters is also discussed.

10.
Animals (Basel) ; 14(13)2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38998043

RESUMEN

The Istrian (IS) and the Pag sheep (PS) are local Croatian breeds which provide significant income for the regional economy and have a cultural and traditional importance for the inhabitants. The aim of this study was to estimate some important population specific genetic parameters in IS (N = 1293) and PS (N = 2637) based on genome wide SNPs. Estimates of linkage disequilibrium effective population size (Ne) evidenced more genetic variability in PS (Ne = 838) compared to IS (Ne = 197), regardless of historical time (both recent and ancient genetic variability). The discrepancy in the recent genetic variability between these breeds was additionally confirmed by the estimates of genomic inbreeding (FROH), which was estimated to be notably higher in IS (FROH>2 = 0.062) than in PS (FROH>2 = 0.029). The average FROH2-4, FROH4-8, FROH8-16, and FROH>16 were 0.26, 1.65, 2.14, and 3.72 for IS and 0.22, 0.61, 0.75, and 1.58 for PS, thus evidencing a high contribution of recent inbreeding in the overall inbreeding. One ROH island with > 30% of SNP incidence in ROHs was detected in IS (OAR6; 34,253,440-38,238,124 bp) while there was no ROH islands detected in PS. Seven genes (CCSER1, HERC3, LCORL, NAP1L5, PKD2, PYURF, and SPP1) involved in growth, feed intake, milk production, immune responses, and resistance were associated with the found autozygosity. The results of this study represent the first comprehensive insight into genomic variability of these two Croatian local sheep breeds and will serve as a baseline for setting up the most promising strategy of genomic Optimum Contribution Selection.

11.
Mol Ecol ; : e17470, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39034770

RESUMEN

Inbreeding, the mating of individuals that are related through common ancestry, is of central importance in evolutionary and conservation biology due to its impacts on individual fitness and population dynamics. However, while advanced genomic approaches have revolutionised the study of inbreeding in animals, genomic studies of inbreeding are rare in plants and lacking in fungi. We investigated global patterns of inbreeding in the prized edible porcini mushroom Boletus edulis using 225 whole genomes from seven lineages distributed across the northern hemisphere. Genomic inbreeding was quantified using runs of homozygosity (ROHs). We found appreciable variation both among and within lineages, with some individuals having over 20% of their genomes in ROHs. Much of this variation could be explained by a combination of elevation and latitude, and to a lesser extent by predicted habitat suitability during the last glacial maximum. In line with this, the majority of ROHs were short, reflecting ancient common ancestry dating back approximately 200-1700 generations ago, while longer ROHs indicative of recent common ancestry (less than approximately 50 generations ago) were infrequent. Our study reveals the inbreeding legacy of major climatic events in a widely distributed forest mutualist, aligning with prevailing theories and empirical studies of the impacts of historical glaciation events on the dominant forest tree species of the northern hemisphere.

12.
BMC Genomics ; 25(1): 698, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39014331

RESUMEN

BACKGROUND: Inner Mongolia cashmere goat (IMCG), renowned for its superior cashmere quality, is a Chinese indigenous goat breed that has been developed through natural and artificial selection over a long period. However, recently, the genetic resources of IMCGs have been significantly threatened by the introduction of cosmopolitan goat breeds and the absence of adequate breed protection systems. RESULTS: In order to assess the conservation effectiveness of IMCGs and efficiently preserve and utilize the purebred germplasm resources, this study analyzed the genetic diversity, kinship, family structure, and inbreeding of IMCGs utilizing resequencing data from 225 randomly selected individuals analyzed using the Plink (v.1.90), GCTA (v.1.94.1), and R (v.4.2.1) software. A total of 12,700,178 high-quality SNPs were selected through quality control from 34,248,064 SNP sites obtained from 225 individuals. The average minor allele frequency (MAF), polymorphic information content (PIC), and Shannon information index (SHI) were 0.253, 0.284, and 0.530, respectively. The average observed heterozygosity (Ho) and the average expected heterozygosity (He) were 0.355 and 0.351, respectively. The analysis of the identity by state distance matrix and genomic relationship matrix has shown that most individuals' genetic distance and genetic relationship are far away, and the inbreeding coefficient is low. The family structure analysis identified 10 families among the 23 rams. A total of 14,109 runs of homozygosity (ROH) were identified in the 225 individuals, with an average ROH length of 1014.547 kb. The average inbreeding coefficient, calculated from ROH, was 0.026 for the overall population and 0.027 specifically among the 23 rams, indicating a low level of inbreeding within the conserved population. CONCLUSIONS: The IMCGs exhibited moderate polymorphism and a low level of kinship with inbreeding occurring among a limited number of individuals. Simultaneously, it is necessary to prevent the loss of bloodline to guarantee the perpetuation of the IMCGs' germplasm resources.


Asunto(s)
Variación Genética , Cabras , Polimorfismo de Nucleótido Simple , Animales , Cabras/genética , Secuenciación Completa del Genoma , Frecuencia de los Genes , Endogamia , China
13.
Ann Hum Biol ; 51(1): 2369281, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38979927

RESUMEN

BACKGROUND: Inbreeding, arising from consanguinity between related parents, has been observed to impact the health of individuals, typically attributed to biological factors. Nevertheless, these effects may be influenced by the social and environmental conditions. The prevalence of consanguineous marriages increased in certain parts of Sweden after it became legal in 1844, which offers a unique opportunity to study and understand the effects of inbreeding on health. AIM: The objective of this study is to explore the potential impact of inbreeding on the longevity, fertility, and impairments of individuals born in the Skellefteå region, Sweden, between 1890 and 1905, with a follow-up period extending until 1950. SUBJECTS AND METHODS: The level of inbreeding is calculated using micro-level parish register data and related to longevity, fertility, and impairments using regression analysis. RESULTS: Inbreeding is shown to be associated with longevity, fertility, and impairments. It seems to affect the risk of stillbirth and impairments and male longevity and fertility. CONCLUSION: Inbreeding seems to have had a detrimental effect on some health outcomes in this historical population under study.


Asunto(s)
Consanguinidad , Fertilidad , Longevidad , Humanos , Suecia/epidemiología , Masculino , Femenino , Adulto , Persona de Mediana Edad , Endogamia
14.
Sci Rep ; 14(1): 17519, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39080286

RESUMEN

Genetic rescue-an increase in population fitness following the introduction of new alleles-has been proven to ameliorate inbreeding depression in small, isolated populations, yet is rarely applied as a conservation tool. A lingering question regarding genetic rescue in wildlife conservation is how long beneficial effects persist in admixed populations. Using data collected over 40 years from 1192 endangered Florida panthers (Puma concolor coryi) across nine generations, we show that the experimental genetic rescue implemented in 1995-via the release of eight female pumas from Texas-alleviated morphological, genetic, and demographic correlates of inbreeding depression, subsequently preventing extirpation of the population. We present unequivocal evidence, for the first time in any terrestrial vertebrate, that genetic and phenotypic benefits of genetic rescue remain in this population after five generations of admixture, which helped increase panther abundance (> fivefold) and genetic effective population size (> 20-fold). Additionally, even with extensive admixture, microsatellite allele frequencies in the population continue to support the distinctness of Florida panthers from other North American puma populations, including Texas. Although threats including habitat loss, human-wildlife conflict, and infectious diseases are challenges to many imperiled populations, our results suggest genetic rescue can serve as an effective, multi-generational tool for conservation of small, isolated populations facing extinction from inbreeding.


Asunto(s)
Especies en Peligro de Extinción , Puma , Animales , Puma/genética , Femenino , Conservación de los Recursos Naturales/métodos , Genética de Población , Repeticiones de Microsatélite/genética , Frecuencia de los Genes , Texas , Endogamia , Depresión Endogámica , Aptitud Genética , Florida , Masculino
15.
BMC Genomics ; 25(1): 738, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39080557

RESUMEN

BACKGROUND: The selection of individuals based on their predicted breeding values and mating of related individuals can increase the proportion of identical-by-descent alleles. In this context, the objectives of this study were to estimate inbreeding coefficients based on alternative metrics and data sources such as pedigree (FPED), hybrid genomic relationship matrix H (FH), and ROH of different length (FROH); and calculate Pearson correlations between the different metrics in a closed Nellore cattle population selected for body weight adjusted to 378 days of age (W378). In addition to total FROH (all classes) coefficients were also estimated based on the size class of the ROH segments: FROH1 (1-2 Mb), FROH2 (2-4 Mb), FROH3 (4-8 Mb), FROH4 (8-16 Mb), and FROH5 (> 16 Mb), and for each chromosome (FROH_CHR). Furthermore, we assessed the effect of each inbreeding metric on birth weight (BW), body weights adjusted to 210 (W210) and W378, scrotal circumference (SC), and residual feed intake (RFI). We also evaluated the chromosome-specific effects of inbreeding on growth traits. RESULTS: The correlation between FPED and FROH was 0.60 while between FH and FROH and FH and FPED were 0.69 and 0.61, respectively. The annual rate of inbreeding was 0.16% for FPED, 0.02% for FH, and 0.16% for FROH. A 1% increase in FROH5 resulted in a reduction of up to -1.327 ± 0.495 kg in W210 and W378. Four inbreeding coefficients (FPED, FH, FROH2, and FROH5) had a significant effect on W378, with reductions of up to -3.810 ± 1.753 kg per 1% increase in FROH2. There was an unfavorable effect of FPED on RFI (0.01 ± 0.0002 kg dry matter/day) and of FROH on SC (-0.056 ± 0.022 cm). The FROH_CHR coefficients calculated for BTA3, BTA5, and BTA8 significantly affected the growth traits. CONCLUSIONS: Inbreeding depression was observed for all traits evaluated. However, these effects were greater for the criterion used for selection of the animals (i.e., W378). The increase in the genomic inbreeding was associated with a higher inbreeding depression on the traits evaluated when compared to pedigree-based inbreeding. Genomic information should be used as a tool during mating to optimize control of inbreeding and, consequently, minimize inbreeding depression in Nellore cattle.


Asunto(s)
Fertilidad , Endogamia , Linaje , Animales , Bovinos/genética , Bovinos/crecimiento & desarrollo , Fertilidad/genética , Genómica/métodos , Femenino , Masculino , Fenotipo , Carácter Cuantitativo Heredable , Peso Corporal/genética
16.
Ecol Evol ; 14(7): e11561, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39045501

RESUMEN

The fixation index, F IS, has been a staple measure to detect selection, or departures from random mating in populations. However, current Next Generation Sequencing (NGS) cannot easily estimate F IS, in multi-locus gene families that contain multiple loci having similar or identical arrays of variant sequences of ≥1 kilobase (kb), which differ at multiple positions. In these families, high-quality short-read NGS data typically identify variants, but not the genomic location, which is required to calculate F IS (based on locus-specific observed and expected heterozygosity). Thus, to assess assortative mating, or selection on heterozygotes, from NGS of multi-locus gene families, we need a method that does not require knowledge of which variants are alleles at which locus in the genome. We developed such a method. Like F IS, our novel measure, 1 H IS, is based on the principle that positive assortative mating, or selection against heterozygotes, and some other processes reduce within-individual variability relative to the population. We demonstrate high accuracy of 1 H IS on a wide range of simulated scenarios and two datasets from natural populations of penguins and dolphins. 1 H IS is important because multi-locus gene families are often involved in assortative mating or selection on heterozygotes. 1 H IS is particularly useful for multi-locus gene families, such as toll-like receptors, the major histocompatibility complex in animals, homeobox genes in fungi and self-incompatibility genes in plants.

17.
Front Plant Sci ; 15: 1379730, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39045597

RESUMEN

Inbreeding depression (ID) is a major selective force during mating system evolution primarily contributed by highly to partially recessive deleterious mutations. Theories suggest that transient genetic association with fitness alleles can be important in affecting the evolution of alleles that modify the selfing rate during its sweep. Nevertheless, empirical tests often focus on the pre-existing genetic association between selfing rate and ID maintained under mutation-selection balance. Therefore, how this standing genetic association is affected by key factors and its impacts on the evolution of selfing remain unclear. I show that as the selection coefficient of deleterious mutations increases, the association between selfing rate and ID declines from positive to negative. These results predict that association between selfing and ID tends to be negative in populations with low selfing rates, while positive in highly selfing populations. Using population genetic and quantitative genetic models, I show that standing genetic associations between selfing rate and fitness alleles can significantly impact the evolution of the mean selfing rate of a population. I present better metrics of population-level ID, which can be calculated based on the correlation coefficient between individual selfing rate and the fitness of selfed and outcrossed offspring.

18.
BMC Ecol Evol ; 24(1): 99, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39026190

RESUMEN

BACKGROUND: Inbreeding and relationship coefficients are essential for conservation and breeding programs. Whether dealing with a small conserved population or a large commercial population, monitoring the inbreeding rate and designing mating plans that minimize the inbreeding rate and maximize the effective population size is important. Free, open-source, and efficient software may greatly contribute to conservation and breeding programs and help students and researchers. Efficient methods exist for calculating inbreeding coefficients. Therefore, an efficient way of calculating the numerator relationship coefficients is via the inbreeding coefficients. i.e., the relationship coefficient between parents is twice the inbreeding coefficient of their progeny. A dummy progeny is introduced where no progeny exists for a pair of individuals. Calculating inbreeding coefficients is very fast, and finding whether a pair of individuals has a progeny and picking one from multiple progenies is computationally more demanding. Therefore, the R package introduces a dummy progeny for any pair of individuals whose relationship coefficient is of interest, whether they have a progeny or not. RESULTS: Runtime and peak memory usage were benchmarked for calculating relationship coefficients between two sets of 250 and 800 animals (200,000 dummy progenies) from a pedigree of 2,721,252 animals. The program performed efficiently (200,000 relationship coefficients, which involved calculating 2,721,252 + 200,000 inbreeding coefficients) within 3:45 (mm:ss). Providing the inbreeding coefficients (for real animals), the runtime was reduced to 1:08. Furthermore, providing the diagonal elements of D in A = TDT ' (d), the runtime was reduced to 54s. All the analyses were performed on a machine with a total memory size of 1 GB. CONCLUSIONS: The R package FnR is free and open-source software with implications in conservation and breeding programs. It proved to be time and memory efficient for large populations and many dummy progenies. Calculation of inbreeding coefficients can be resumed for new animals in the pedigree. Thus, saving the latest inbreeding coefficient estimates is recommended. Calculation of d coefficients (from scratch) was very fast, and there was limited value in storing those for future use.


Asunto(s)
Endogamia , Programas Informáticos , Endogamia/métodos , Animales , Linaje , Masculino , Femenino
19.
Plants (Basel) ; 13(11)2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38891385

RESUMEN

Safflower (Carthamus tinctorius L.) is a multipurpose minor crop consumed by developed and developing nations around the world with limited research funding and genetic resources. Genomic selection (GS) is an effective modern breeding tool that can help to fast-track the genetic diversity preserved in genebank collections to facilitate rapid and efficient germplasm improvement and variety development. In the present study, we simulated four GS strategies to compare genetic gains and inbreeding during breeding cycles in a safflower recurrent selection breeding program targeting grain yield (GY) and seed oil content (OL). We observed positive genetic gains over cycles in all four GS strategies, where the first cycle delivered the largest genetic gain. Single-trait GS strategies had the greatest gain for the target trait but had very limited genetic improvement for the other trait. Simultaneous selection for GY and OL via indices indicated higher gains for both traits than crossing between the two single-trait independent culling strategies. The multi-trait GS strategy with mating relationship control (GS_GY + OL + Rel) resulted in a lower inbreeding coefficeint but a similar gain compared to that of the GS_GY + OL (without inbreeding control) strategy after a few cycles. Our findings lay the foundation for future safflower GS breeding.

20.
Biochem Genet ; 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38864964

RESUMEN

Originating in Thailand, the Thai Ridgeback dog is known for its unique fur ridge that grows in the opposite direction along its back. Selective breeding and a limited populations in Thailand have led to significant close inbreeding among related individuals. The current Thai Ridgeback population is assumed to have experienced a loss of genetic diversity and bottleneck events. Furthermore, studies on the genetic diversity and structure of Thai Ridgeback dogs are limited. Therefore, the aim of this study was to assess the genetic diversity in Thai Ridgeback dogs. Microsatellite genotyping and mitochondrial DNA D-loop sequences were used to assess genetic diversity in 105 Thai Ridgeback dogs from various farms throughout Thailand. Significant genetic diversity and minimal inbreeding were observed in the current Thai Ridgeback population. Signs of bottlenecks were not observed because the exchange of genetic material among Thai Ridgeback owners effectively preserved the genetic diversity. Moreover, the genetic parameters in this study supported owner-to-owner exchanges animals for mating programs. To sustain the genetic diversity of Thai Ridgeback dogs, the use of genetic parameters to manage genetic closeness while preserving breed characteristics is essential. These data are crucial for ensuring demographic stability, which is pivotal for long-term conservation and effective population management.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA