Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(11)2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38892311

RESUMEN

Plants and insects coevolved as an evolutionarily successful and enduring association. The molecular arms race led to evolutionary novelties regarding unique mechanisms of defence and detoxification in plants and insects. While insects adopt mechanisms to conquer host defence, trees develop well-orchestrated and species-specific defence strategies against insect herbivory. However, current knowledge on the molecular underpinnings of fine-tuned tree defence responses against different herbivore insects is still restricted. In the current study, using a multi-omics approach, we unveiled the defence response of Populus tremula against aphids (Chaitophorus populialbae) and spongy moths (Lymantria dispar) herbivory. Comparative differential gene expression (DGE) analyses revealed that around 272 and 1203 transcripts were differentially regulated in P. tremula after moth and aphid herbivory compared to uninfested controls. Interestingly, 5716 transcripts were differentially regulated in P. tremula between aphids and moth infestation. Further investigation showed that defence-related stress hormones and their lipid precursors, transcription factors, and signalling molecules were over-expressed, whereas the growth-related counterparts were suppressed in P. tremula after aphid and moth herbivory. Metabolomics analysis documented that around 37% of all significantly abundant metabolites were associated with biochemical pathways related to tree growth and defence. However, the metabolic profiles of aphid and moth-fed trees were quite distinct, indicating species-specific response optimization. After identifying the suitable reference genes in P. tremula, the omics data were further validated using RT-qPCR. Nevertheless, our findings documented species-specific fine-tuning of the defence response of P. tremula, showing conservation on resource allocation for defence overgrowth under aphid and moth herbivory. Such findings can be exploited to enhance our current understanding of molecular orchestration of tree responses against herbivory and aid in developing insect pest resistance P. tremula varieties.


Asunto(s)
Áfidos , Regulación de la Expresión Génica de las Plantas , Herbivoria , Mariposas Nocturnas , Populus , Transcriptoma , Populus/genética , Populus/parasitología , Populus/metabolismo , Animales , Áfidos/fisiología , Mariposas Nocturnas/fisiología , Mariposas Nocturnas/genética , Metabolómica/métodos , Perfilación de la Expresión Génica , Metaboloma
2.
Data Brief ; 54: 110301, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38524842

RESUMEN

Grapevines encounter many different pathogens throughout their lifespans, including the bacterial pathogen Xylella fastidiosa, which causes Pierce's disease that results in vascular occlusion and eventual plant host death, the fungal pathogen Neofusicoccum parvum, which causes stem cankers that kill individual vines and reduce fruit yields, and the root knot nematode Meloidogyne incognita, which destroys root tissues that impacts host vigour. To date, little research has been conducted to examine how one infection could impact subsequent infections by the same or different pathogens despite this is important to ensure healthy vineyards. Therefore, grapevines initially infected with either X. fastidiosa, N. parvum, or M. incognita were subsequently infected with N. parvum eight weeks later to observe developing lesion lengths, which were assessed to determine grapevine resistance to infections. Collected data shows that when prior infections were present, the N. parvum lesions lengths were smaller. This suggests grapevines had induced resistance to combat infections. Further, defence-associated phenolics were measured by high-performance liquid chromatography to determine roles in observed resistance to the secondary N. parvum infections. Data shows that of the different phenolics examined, only stilbenoids were different due to infections, with lowered levels observed in plants that were infected compared with non-infected controls. These data provide insight into how infections by different pathogens could impact grapevine host resistance to new, subsequent pathogen infections.

3.
Ecol Lett ; 26(9): 1584-1596, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37387416

RESUMEN

Non-native plants are typically released from specialist enemies but continue to be attacked by generalists, albeit at lower intensities. This reduced herbivory may lead to less investment in constitutive defences and greater investment in induced defences, potentially reducing defence costs. We compared herbivory on 27 non-native and 59 native species in the field and conducted bioassays and chemical analyses on 12 pairs of non-native and native congeners. Non-natives suffered less damage and had weaker constitutive defences, but stronger induced defences than natives. For non-natives, the strength of constitutive defences was correlated with the intensity of herbivory experienced, whereas induced defences showed the reverse. Investment in induced defences correlated positively with growth, suggesting a novel mechanism for the evolution of increased competitive ability. To our knowledge, these are the first linkages reported among trade-offs in plant defences related to the intensity of herbivory, allocation to constitutive versus induced defences, and growth.


Asunto(s)
Herbivoria , Fenómenos Fisiológicos de las Plantas , Plantas
4.
Plants (Basel) ; 12(9)2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37176828

RESUMEN

Plants use a variety of secondary metabolites to defend themselves against herbivore insects. Methyl salicylate (MeSA) is a natural plant-derived compound that has been used as a plant defence elicitor and a herbivore repellent on several crop plants. The aim of this study was to investigate the effect of MeSA treatment of Brassica rapa subsp. chinensis ('Hanakan' pak choi) on its interactions with peach potato aphids, Myzus persicae, and their natural enemy, Diaeretiella rapae. For this, we selected two concentrations of MeSA (75 mg/L and 100 mg/L). Our results showed that aphid performance was significantly reduced on plants treated with MeSA (100 mg/L). In a cage bioassay, the MeSA (100 mg/L)-treated plants showed lower adult survival and larviposition. Similarly, the MeSA (100 mg/L)-treated plants had a significantly lower aphid settlement in a settlement bioassay. In contrast, the M. persicae aphids did not show any significant difference between the MeSA (75 mg/L)-treated and control plants. In a parasitoid foraging bioassay, the parasitoid D. rapae also did not show any significant difference in the time spent on MeSA-treated and control plants. A volatile analysis showed that the MeSA treatment induced a significant change in volatile emissions, as high numbers of volatile compounds were detected from the MeSA-treated plants. Our results showed that MeSA has potential to induce defence in Brassica against M. persicae and can be utilised in developing sustainable approaches for the management of peach potato aphids.

5.
J Chem Ecol ; 49(5-6): 340-352, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37160550

RESUMEN

Cotton has been used as a model plant to study direct and indirect plant defence against herbivorous insects. However, the plant growing conditions could have an important effect on the outcome of such plant defence studies. We examined how common experimental growth conditions influence constitutive and inducible defences in two species of cotton, Gossypium hirsutum and G. herbaceum. We induced plants by applying caterpillar regurgitant to mechanical wounds to compare the induction levels between plants of both species grown in greenhouse or phytotron conditions. For this we measured defence metabolites (gossypol and heliocides) and performance of Spodoptera frugiperda caterpillars on different leaves, the emission of plant volatiles, and their attractiveness to parasitic wasps. Induction increased the levels of defence metabolites, which in turn decreased the performance of S. frugiperda larvae. Constitutive and induced defence levels were the highest in plants grown in the phytotron (compared to greenhouse plants), G. hirsutum and young leaves. Defence induction was more pronounced in plants grown in the phytotron and in young leaves. Also, the differences between growing conditions were more evident for metabolites in the youngest leaves, indicating an interaction with plant ontogeny. The composition of emitted volatiles was different between plants from the two growth conditions, with greenhouse-grown plants showing more variation than phytotron-grown plants. Also, G. hirsutum released higher amounts of volatiles and attracted more parasitic wasps than G. herbaceum. Overall, these results highlight the importance of experimental abiotic factors in plant defence induction and ontogeny of defences. We therefore suggest careful consideration in selecting the appropriate experimental growing conditions for studies on plant defences.


Asunto(s)
Gossypium , Avispas , Animales , Gossypium/metabolismo , Larva , Spodoptera , Herbivoria
6.
J Exp Bot ; 74(15): 4613-4627, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37115640

RESUMEN

Few studies have explored the phenotypic plasticity of nectar production on plant attractiveness to ants. Here, we investigate the role of extrafloral nectary (EFN) size on the productivity of extrafloral nectar in three sympatric legume species. We hypothesized that plant species with larger EFNs (i) have higher induced nectar secretion after herbivory events, and (ii) are more likely to interact with more protective (i.e. dominant) ant partners. We target 90 plants of three Chamaecrista species in the field. We estimated EFN size and conducted field experiments to evaluate any differences in nectar traits before and after leaf damage to investigate the phenotypic plasticity of nectar production across species. We conducted multiple censuses of ant species feeding on EFNs over time. Plant species increased nectar descriptors after leaf damage, but in different ways. Supporting our hypothesis, C. duckeana, with the largest EFN size, increased all nectar descriptors, with most intense post-herbivory-induced response, taking its place as the most attractive to ants, including dominant species. EFN size variation was an excellent indicator of nectar productivity across species. The higher control over reward production in plants with larger sized EFNs reflects an induction mechanism under damage that reduces costs and increases the potential benefits of indirect biotic defences.


Asunto(s)
Hormigas , Animales , Hormigas/fisiología , Néctar de las Plantas , Simbiosis , Herbivoria/fisiología , Hojas de la Planta/fisiología , Plantas
7.
Insects ; 13(5)2022 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-35621786

RESUMEN

The larvae of frugivorous tephritid fruit flies feed within fruit and are global pests of horticulture. With the reduced use of pesticides, alternative control methods are needed, of which fruit resistance is one. In the current study, we explicitly tested for phenotypic evidence of induced fruit defences by running concurrent larval survival experiments with fruit on or off the plant, assuming that defence induction would be stopped or reduced by fruit picking. This was accompanied by RT-qPCR analysis of fruit defence and insect detoxification gene expression. Our fruit treatments were picking status (unpicked vs. picked) and ripening stage (colour break vs. fully ripe), our fruit fly was the polyphagous Bactrocera tryoni, and larval survival was assessed through destructive fruit sampling at 48 and 120 h, respectively. The gene expression study targeted larval and fruit tissue samples collected at 48 h and 120 h from picked and unpicked colour-break fruit. At 120 h in colour-break fruit, larval survival was significantly higher in the picked versus unpicked fruit. The gene expression patterns in larval and plant tissue were not affected by picking status, but many putative plant defence and insect detoxification genes were upregulated across the treatments. The larval survival results strongly infer an induced defence mechanism in colour-break tomato fruit that is stronger/faster in unpicked fruits; however, the gene expression patterns failed to provide the same clear-cut treatment effect. The lack of conformity between these results could be related to expression changes in unsampled candidate genes, or due to critical changes in gene expression that occurred during the unsampled periods.

8.
BMC Plant Biol ; 22(1): 140, 2022 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-35331150

RESUMEN

BACKGROUND: Cabbage white butterflies (Pieris spp.) can be severe pests of Brassica crops such as Chinese cabbage, Pak choi (Brassica rapa) or cabbages (B. oleracea). Eggs of Pieris spp. can induce a hypersensitive response-like (HR-like) cell death which reduces egg survival in the wild black mustard (B. nigra). Unravelling the genetic basis of this egg-killing trait in Brassica crops could improve crop resistance to herbivory, reducing major crop losses and pesticides use. Here we investigated the genetic architecture of a HR-like cell death induced by P. brassicae eggs in B. rapa. RESULTS: A germplasm screening of 56 B. rapa accessions, representing the genetic and geographical diversity of a B. rapa core collection, showed phenotypic variation for cell death. An image-based phenotyping protocol was developed to accurately measure size of HR-like cell death and was then used to identify two accessions that consistently showed weak (R-o-18) or strong cell death response (L58). Screening of 160 RILs derived from these two accessions resulted in three novel QTLs for Pieris brassicae-induced cell death on chromosomes A02 (Pbc1), A03 (Pbc2), and A06 (Pbc3). The three QTLs Pbc1-3 contain cell surface receptors, intracellular receptors and other genes involved in plant immunity processes, such as ROS accumulation and cell death formation. Synteny analysis with A. thaliana suggested that Pbc1 and Pbc2 are novel QTLs associated with this trait, while Pbc3 also contains an ortholog of LecRK-I.1, a gene of A. thaliana previously associated with cell death induced by a P. brassicae egg extract. CONCLUSIONS: This study provides the first genomic regions associated with the Pieris egg-induced HR-like cell death in a Brassica crop species. It is a step closer towards unravelling the genetic basis of an egg-killing crop resistance trait, paving the way for breeders to further fine-map and validate candidate genes.


Asunto(s)
Brassica rapa , Mariposas Diurnas , Muerte Celular , Óvulo/química , Sitios de Carácter Cuantitativo , Animales , Brassica rapa/genética
9.
Front Fungal Biol ; 3: 1001143, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-37746162

RESUMEN

As grapevines mature in California vineyards they accumulate chronic wood infections by the Ascomycete fungi that cause trunk diseases, including Botryosphaeria dieback (caused by Diplodia seriata and Neofusicoccum parvum) and Esca (caused by Phaeomoniella chlamydospora). It is thought that such mixed infections become localized to separate internal lesions/cankers of the permanent, woody structure of an individual vine, but nonetheless the fungi all colonize the same vascular system. In response to infection by one pathogen, the host may initiate systemic biochemical changes, which in turn may affect the extent of subsequent infections by other pathogens. To test this hypothesis, we measured changes in phenolic compounds in the wood and lesion lengths of the pathogens, during sequential co-inoculations with different or identical pair-wise sequences of infection by D. seriata, N. parvum, or P. chlamydospora. Prior fungal infections only affected the development of subsequent D. seriata infections. Effects of fungal infections on phenolic compounds were variable, yet initial infection by D. seriata was associated with significantly higher concentrations of most phenolic compounds distally, compared to all other initial inoculation treatments. It was hypothesized that pre-existing phenolic levels can slow initial lesion development of fungal trunk pathogens, especially for D. seriata, but over time the pathogens appeared to overcome or neutralize phenolic compounds and grow unimpeded. These results demonstrate that effects of one fungal trunk pathogen infection is generally unable to distally affect another long-term, albeit shifts in host phenolics and other plant defenses do occur.

10.
Front Plant Sci ; 12: 711896, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34659285

RESUMEN

There is a need to develop new ways of protecting plants against aphid attack. Here, we investigated the effect of a plant defence activator, cis-jasmone (CJ), in a range of cultivars of Brassica napus, Brassica rapa and Brassica oleracea. Plants were sprayed with cis-jasmone or blank formulation and then tested with peach potato aphids (Myzus persicae Sulzer) (Hemiptera: Aphididae) and their parasitoid Diaeretiella rapae (M'Intosh) (Hymenoptera: Braconidae). CJ treated plants had significantly lower aphid settlement than control plants in a settlement bioassay. Conversely, in a foraging bioassay, D. rapae parasitoids spent a significantly longer time foraging on CJ treated plants. Our results reveal that CJ treatment makes plants less attractive to and less suitable for M. persicae but more attractive to D. rapae in a range of brassica cultivars. It is likely that these effects are due to changes in volatile emission indicating activation of defence and presence of conspecific competitors to aphids but presence of prey to parasitoids. Increases in volatile emission were found in CJ induced plants but varied with genotype. Among the synthetic volatile compounds that were induced in the headspace of CJ treated brassica cultivars, methyl isothiocyanate, methyl salicylate and cis-jasmone were most repellent to aphids. These results build on earlier studies in Arabidopsis and show that tritrophic interactions are influenced by CJ in a wide range of brassica germplasm. The implication is that CJ is a promising treatment that could be used in brassica crops as part of an integrated pest management system.

11.
Proc Biol Sci ; 288(1959): 20211682, 2021 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-34583580

RESUMEN

Plants have been shown to change their foraging behaviour in response to resource heterogeneity. However, an unexplored hypothesis is that foraging could be induced by environmental stressors, such as herbivory, which might increase the demand for particular resources, such as those required for herbivore defence. This study examined the way simulated herbivory affects both root foraging for and uptake of cadmium (Cd), in the metal-hyperaccumulating plant Arabidopsis halleri, which uses this heavy metal as herbivore defence. Simulated herbivory elicited enhanced relative allocation of roots to Cd-rich patches as well as enhanced Cd uptake, and these responses were exhibited particularly by plants from non-metalliferous origin, which have lower metal tolerance. By contrast, plants from a metalliferous origin, which are more tolerant to Cd, did not show any preference in root allocation, yet enhanced Cd sharing between ramets when exposed to herbivory. These results suggest that foraging for heavy metals, as well as their uptake and clonal-sharing, could be stimulated in A. halleri by herbivory impact. Our study provides first support for the idea that herbivory can induce not only defence responses in plants but also affect their foraging, resource uptake and clonal sharing responses.


Asunto(s)
Arabidopsis , Metales Pesados , Cadmio , Herbivoria , Hojas de la Planta
12.
Trends Ecol Evol ; 36(5): 444-456, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33468354

RESUMEN

To achieve ecological and reproductive success, plants need to mitigate a multitude of stressors. The stressors encountered by plants are highly dynamic but typically vary predictably due to seasonality or correlations among stressors. As plants face physiological and ecological constraints in responses to stress, it can be beneficial for plants to evolve the ability to incorporate predictable patterns of stress in their life histories. Here, we discuss how plants predict adverse conditions, which plant strategies integrate predictability of biotic stress, and how such strategies can evolve. We propose that plants commonly optimise responses to correlated sequences or combinations of herbivores and pathogens, and that the predictability of these patterns is a key factor governing plant strategies in dynamic environments.


Asunto(s)
Plantas , Estrés Fisiológico , Herbivoria
13.
Bull Entomol Res ; 110(3): 417-422, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31813402

RESUMEN

The role of silicon (Si) in alleviating the effects of biotic and abiotic stresses, including defence against insect herbivores, in plants is widely reported. Si defence against insect herbivores is overwhelmingly studied in grasses (especially the cereals), many of which are hyper-accumulators of Si. Despite being neglected, legumes such as soybean (Glycine max) have the capacity to control Si accumulation and benefit from increased Si supply. We tested how Si supplementation via potassium, sodium or calcium silicate affected a soybean pest, the native budworm Helicoverpa punctigera Wallengren (Lepidoptera: Noctuidae). Herbivory reduced leaf biomass similarly in Si-supplemented (+Si) and non-supplemented (-Si) plants (c. 29 and 23%, respectively) relative to herbivore-free plants. Both Si supplementation and herbivory increased leaf Si concentrations. In relative terms, herbivores induced Si uptake by c. 19% in both +Si and -Si plants. All Si treatments reduced H. punctigera relative growth rates (RGR) to a similar extent for potassium (-41%), sodium (-49%) and calcium (-48%) silicate. Moreover, there was a strong negative correlation between Si accumulation in leaves and herbivore RGR. To our knowledge, this is only the second report of Si-based herbivore defence in soybean; the rapid increase in leaf Si following herbivory being indicative of an induced defence. Taken together with the other benefits of Si supplementation of legumes, Si could prove an effective herbivore defence in legumes as well as grasses.


Asunto(s)
Glycine max/química , Mariposas Nocturnas/fisiología , Hojas de la Planta/química , Silicio , Animales , Herbivoria , Larva/crecimiento & desarrollo , Larva/fisiología , Mariposas Nocturnas/crecimiento & desarrollo , Silicatos , Glycine max/metabolismo
14.
J Evol Biol ; 33(2): 237-246, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31631428

RESUMEN

Phenotypic plasticity is the primary mechanism of organismal resilience to abiotic and biotic stress, and genetic differentiation in plasticity can evolve if stresses differ among populations. Inducible defence is a common form of adaptive phenotypic plasticity, and long-standing theory predicts that its evolution is shaped by costs of the defensive traits, costs of plasticity and a trade-off in allocation to constitutive versus induced traits. We used a common garden to study the evolution of defence in two native populations of wild arugula Eruca sativa (Brassicaceae) from contrasting desert and Mediterranean habitats that differ in attack by caterpillars and aphids. We report genetic differentiation and additive genetic variance for phenology, growth and three defensive traits (toxic glucosinolates, anti-nutritive protease inhibitors and physical trichome barriers) as well their inducibility in response to the plant hormone jasmonic acid. The two populations were strongly differentiated for plasticity in nearly all traits. There was little evidence for costs of defence or plasticity, but constitutive and induced traits showed a consistent additive genetic trade-off within each population for the three defensive traits. We conclude that these populations have evolutionarily diverged in inducible defence and retain ample potential for the future evolution of phenotypic plasticity in defence.


Asunto(s)
Adaptación Fisiológica , Evolución Biológica , Brassicaceae/fisiología , Ecosistema , Defensa de la Planta contra la Herbivoria/fisiología , Brassicaceae/efectos de los fármacos , Brassicaceae/parasitología , Ciclopentanos/farmacología , Oxilipinas/farmacología
15.
J Chem Ecol ; 45(11-12): 982-992, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31784860

RESUMEN

Plants have evolved intricate defence strategies against herbivore attack which can include activation of defence in response to stress-related volatile organic compounds (VOCs) emitted by neighbouring plants. VOCs released by intact molasses grass (Melinis minutiflora), have been shown to repel stemborer, Chilo partellus (Swinhoe), from maize and enhance parasitism by Cotesia sesamiae (Cameron). In this study, we tested whether the molasses grass VOCs have a role in plant-plant communication by exposing different maize cultivars to molasses grass for a 3-week induction period and then observing insect responses to the exposed plants. In bioassays, C. partellus preferred non-exposed maize landrace plants for egg deposition to those exposed to molasses grass. Conversely, C. sesamiae parasitoid wasps preferred volatiles from molasses grass exposed maize landraces compared to volatiles from unexposed control plants. Interestingly, the molasses grass induced defence responses were not observed on hybrid maize varieties tested, suggesting that the effect was not simply due to absorption and re-emission of VOCs. Chemical and electrophysiological analyses revealed strong induction of bioactive compounds such as (R)-linalool, (E)-4,8-dimethyl-1,3,7-nonatriene and (E,E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene from maize landraces exposed to molasses grass volatiles. Our results suggest that constitutively emitted molasses grass VOCs can induce direct and indirect defence responses in neighbouring maize landraces. Plants activating defences by VOC exposure alone could realize enhanced levels of resistance and fitness compared to those that launch defence responses upon herbivore attack. Opportunities for exploiting plant-plant signalling to develop ecologically sustainable crop protection strategies against devastating insect pests such as stemborer C. partellus are discussed.


Asunto(s)
Compuestos Orgánicos Volátiles/química , Zea mays/metabolismo , Monoterpenos Acíclicos/química , Monoterpenos Acíclicos/metabolismo , Animales , Productos Agrícolas , Femenino , Cromatografía de Gases y Espectrometría de Masas/métodos , Herbivoria , Interacciones Huésped-Parásitos , Melaza , Mariposas Nocturnas/parasitología , Oviposición/efectos de los fármacos , Compuestos Orgánicos Volátiles/metabolismo , Avispas/fisiología , Zea mays/parasitología
16.
J Plant Physiol ; 241: 153030, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31493717

RESUMEN

Phytophthora cinnamomi (Pc) is a dangerous pathogen that causes root rot (ink disease) and threatens the production of chestnuts worldwide. Despite all the advances recently reported at molecular and physiological level, there are still gaps of knowledge that would help to unveil the defence mechanisms behind plant-Pc interactions. Bearing this in mind we quantified constitutive and Pc-induced stress-related signals (hormones and metabolites) complemented with changes in photosynthetic related parameters by exploring susceptible and resistant Castanea spp.-Pc interactions. In a greenhouse experiment, five days before and nine days after inoculation with Pc, leaves and fine roots from susceptible C. sativa and resistant C. sativa × C. crenata clonal 2-year-old plantlets were sampled (clones Cs14 and 111-1, respectively). In the resistant clone, stomatal conductance (gs) and net photosynthesis (A) decreased significantly and soluble sugars in leaves increased, while in the susceptible clone gs and A remained unchanged and proline levels in leaves increased. In the resistant clone, higher constitutive content of root SA and foliar ABA, JA and JA-Ile as compared to the susceptible clone were observed. Total phenolics and condensed tannins were highest in roots of the susceptible clone. In response to infection, a dynamic hormonal response in the resistant clone was observed, consisting of accumulation of JA, JA-Ile and ABA in roots and depletion of total phenolics in leaves. However, in the susceptible clone only JA diminished in leaves and increased in roots. Constitutive and Pc-induced levels of JA-Ile were only detectable in the resistant clone. From the hormonal profiles obtained in leaves and roots before and after infection, it is concluded that the lack of effective hormonal changes in C. sativa explains the lack of defence responses to Pc of this susceptible species.


Asunto(s)
Resistencia a la Enfermedad , Fagaceae/fisiología , Interacciones Huésped-Patógeno/fisiología , Phytophthora , Enfermedades de las Plantas/microbiología , Reguladores del Crecimiento de las Plantas/fisiología , Resistencia a la Enfermedad/fisiología , Fagaceae/inmunología , Fagaceae/microbiología , Metaboloma/fisiología , Phytophthora/fisiología , Enfermedades de las Plantas/inmunología , Reguladores del Crecimiento de las Plantas/metabolismo , Hojas de la Planta/fisiología , Raíces de Plantas/fisiología
17.
Front Physiol ; 10: 813, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31333483

RESUMEN

Numerous microbial root symbionts are known to induce different levels of enhanced plant protection against a variety of pathogens. However, more recent studies have demonstrated that beneficial microbes are able to induce plant systemic resistance that confers some degree of protection against insects. Here, we report how treatments with the fungal biocontrol agent Trichoderma atroviride strain P1 in tomato plants induce responses that affect pest insects with different feeding habits: the noctuid moth Spodoptera littoralis (Boisduval) and the aphid Macrosiphum euphorbiae (Thomas). We observed that the tomato plant-Trichoderma P1 interaction had a negative impact on the development of moth larvae and on aphid longevity. These effects were attributed to a plant response induced by Trichoderma that was associated with transcriptional changes of a wide array of defense-related genes. While the impact on aphids could be related to the up-regulation of genes involved in the oxidative burst reaction, which occur early in the defense reaction, the negative performance of moth larvae was associated with the enhanced expression of genes encoding for protective enzymes (i.e., Proteinase inhibitor I (PI), Threonine deaminase, Leucine aminopeptidase A1, Arginase 2, and Polyphenol oxidase) that are activated downstream in the defense cascade. In addition, Trichoderma P1 produced alterations in plant metabolic pathways leading to the production and release of volatile organic compounds (VOCs) that are involved in the attraction of the aphid parasitoid Aphidius ervi, thus reinforcing the indirect plant defense barriers. Our findings, along with the evidence available in the literature, indicate that the outcome of the tripartite interaction among plant, Trichoderma, and pests is highly specific and only a comprehensive approach, integrating both insect phenotypic changes and plant transcriptomic alterations, can allow a reliable prediction of its potential for plant protection.

18.
Ecol Evol ; 9(7): 4129-4137, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31015993

RESUMEN

Fungal communities often form on ephemeral substrates and dispersal is critical for the persistence of fungi among the islands that form these metacommunities. Within each substrate, competition for space and resources is vital for the local persistence of fungi. The capacity to detect and respond by dispersal away from unfavorable conditions may confer higher fitness in fungi. Informed dispersal theory posits that organisms are predicted to detect information about their surroundings which may trigger a dispersal response. As such, we expect that fungi will increase allocation to dispersal in the presence of a strong competitor.In a laboratory setting, we tested how competition with other filamentous fungi affected the development of conidial pycnidiomata (asexual fruiting bodies) in Phacidium lacerum over 10 days. Phacidium lacerum was not observed to produce more asexual fruiting bodies or produce them earlier when experiencing interspecific competition with other filamentous fungi. However, we found that a trade-off existed between growth rate and allocation to dispersal. We also observed a defensive response to specific interspecific competitors in the form of hyphal melanization of the colony which may have an impact on the growth rate and dispersal trade-off.Our results suggest that P. lacerum have the capacity to detect and respond to competitors by changing their allocation to dispersal and growth. However, allocation to defence may come at a cost to growth and dispersal. Thus, it is likely that optimal life history allocation in fungi constrained to ephemeral resources will depend on the competitive strength of neighbors surrounding them.

19.
Plants (Basel) ; 7(2)2018 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-29652790

RESUMEN

This paper reviews the most recent progress in exploring silicon-mediated resistance to herbivorous insects and the mechanisms involved. The aim is to determine whether any mechanism seems more common than the others as well as whether the mechanisms are more pronounced in silicon-accumulating than non-silicon-accumulating species or in monocots than eudicots. Two types of mechanisms counter insect pest attacks: physical or mechanical barriers and biochemical/molecular mechanisms (in which Si can upregulate and prime plant defence pathways against insects). Although most studies have examined high Si accumulators, both accumulators and non-accumulators of silicon as well as monocots and eudicots display similar Si defence mechanisms against insects.

20.
Proc Biol Sci ; 284(1866)2017 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-29093219

RESUMEN

Many prey species induce defences in direct response to predation cues. However, prey defences could also be enhanced by predators indirectly via mechanisms that increase resource availability to prey, e.g. trophic cascades. We evaluated the relative impacts of these direct and indirect effects on the mechanical strength of the New Zealand sea urchin Evechinus chloroticus We measured crush-resistance of sea urchin tests (skeletons) in (i) two marine reserves, where predators of sea urchins are relatively common and have initiated a trophic cascade resulting in abundant food for surviving urchins in the form of kelp, and (ii) two adjacent fished areas where predators and kelps are rare. Sea urchins inhabiting protected rocky reefs with abundant predators and food had more crush-resistant tests than individuals on nearby fished reefs where predators and food were relatively rare. A six-month long mesocosm experiment showed that while both food supply and predator cues increased crush-resistance, the positive effect of food supply on crush-resistance was greater. Our results demonstrate a novel mechanism whereby a putative morphological defence in a prey species is indirectly strengthened by predators via cascading predator effects on resource availability. This potentially represents an important mechanism that promotes prey persistence in the presence of predators.


Asunto(s)
Peces/fisiología , Cadena Alimentaria , Conducta Predatoria , Erizos de Mar/fisiología , Animales , Nueva Zelanda
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA