Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Methods Mol Biol ; 2733: 87-99, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38064028

RESUMEN

The piscine orthomyxovirus called infectious salmon anemia virus (ISAV) is one of the most important emerging pathogens affecting the salmon industry worldwide. The first reverse genetics system for ISAV, which allows the generation of recombinant ISA virus (rISAV), is an important tool for the characterization and study of this virus. The plasmid-based reverse genetics system for ISAV includes the use of a novel fish promoter, the Atlantic salmon internal transcribed spacer region 1 (ITS-1). The salmon, viral, and mammalian genetic elements included in the pSS-URG vectors allow the expression of the eight viral RNA segments. In addition to four cytomegalovirus (CMV)-based vectors that express the four proteins of the ISAV ribonucleoprotein complex, the eight pSS-URG vectors allowed the generation of infectious rISAV in salmon cells.


Asunto(s)
Enfermedades de los Peces , Isavirus , Infecciones por Orthomyxoviridae , Orthomyxoviridae , Animales , Isavirus/genética , ADN Complementario/genética , Línea Celular , Orthomyxoviridae/genética , ARN Viral/genética , Infecciones por Orthomyxoviridae/veterinaria , Salmón/genética , Mamíferos/genética
2.
Front Immunol ; 8: 1170, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29062313

RESUMEN

Antigen cross-presentation is a crucial step in the assembly of an antitumor immune response leading to activation of naïve CD8 T cells. This process has been extensively used in clinical trials, in which dendritic cells generated in vitro are loaded with tumor antigens and then autotransplanted to the patients. Recently, the use of autologous transplant of dendritic cells fused with dying tumor cells has demonstrated good results in clinical studies. In this work, we generated a similar process in vivo by treating mice with dead tumor cells [cell bodies (CBs)] expressing the fusogenic protein of the infectious salmon anemia virus (ISAV). ISAV fusion protein retains its fusogenic capability when is expressed on mammalian cells in vitro and the CBs expressing it facilitates DCs maturation, antigen transfer by antigen-presenting cells, and increase cross-presentation by DCs in vitro. Additionally, we observed in the melanoma model that CBs with or without ISAV fusion protein reduce tumor growth in prophylactic treatment; however, only ISAV expressing CBs showed an increase CD4 and CD8 cells in spleen. Overall, our results suggest that CBs could be used as a complement with other type of strategies to amplify antitumor immune response.

3.
Methods Mol Biol ; 1602: 239-250, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28508224

RESUMEN

The piscine Orthomyxovirus called Infectious Salmon Anemia Virus (ISAV) is one of the most important emerging pathogens affecting the salmon industry worldwide. The first reverse genetics system for ISAV, which allows the generation of recombinant ISA virus (rISAV), is an important tool for the characterization and study of this fish virus. The plasmid-based reverse genetics system for ISAV includes the use of a novel fish promoter, the Atlantic salmon internal transcribed spacer region 1 (ITS-1). The salmon, viral and mammalian genetic elements included in pSS-URG vectors allow the expression of the eight viral RNA segments. In addition to four cytomegalovirus (CMV)-based vectors that express the four proteins of the ISAV ribonucleoprotein complex, the eight pSS-URG vectors allowed the generation of infectious rISAV in salmon cells.


Asunto(s)
ADN Complementario , Isavirus/genética , ARN Viral , Replicación Viral , Animales , Línea Celular , Clonación Molecular , Expresión Génica , Orden Génico , Genoma Viral , Plásmidos/genética , Genética Inversa , Transfección
4.
Front Microbiol ; 6: 300, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25932022

RESUMEN

Infectious salmon anemia virus (ISAV) has caused great losses to the Chilean salmon industry, and the success of prevention and treatment strategies is uncertain. The use of RNA interference (RNAi) is a promising approach because during the replication cycle, the ISAV genome must be transcribed to mRNA in the cytoplasm. We explored the capacity of E. coli transformed with plasmids that produce double-stranded RNA (dsRNA) to induce antiviral activity when added to infected ASK cells. We transformed the non-pathogenic Escherichia coli HT115 (DE3) with plasmids that expressed highly conserved regions of the ISAV genes encoding the nucleoprotein (NP), fusion (F), hemagglutinin (HE), and matrix (M) proteins as dsRNA, which is the precursor of the RNAi mechanism. The inactivated transformed bacteria carrying dsRNA were tested for their capacity to silence the target ISAV genes, and the dsRNA that were able to inhibit gene expression were subsequently tested for their ability to attenuate the cytopathic effect (CPE) and reduce the viral load. Of the four target genes tested, inactivated E. coli transformed with plasmids producing dsRNA targeting HE showed antiviral activity when added to infected ASK cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA