Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Expert Rev Endocrinol Metab ; : 1-8, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39132812

RESUMEN

INTRODUCTION: Achondroplasia is a heritable disorder of the skeleton that affects approximately 300,000 individuals worldwide. Until recently, treatment for this condition has been purely symptomatic. Efficacious treatment options for children are now approved or are in clinical trials. AREAS COVERED: This review discusses key advances in the therapeutic management of children with achondroplasia, including vosoritide, the first approved drug, and other emerging precision therapies. These include navepegritide, a long-acting form of C-type natriuretic peptide, and infigratinib, a tyrosine kinase receptor inhibitor, summarizing trial outcomes to date. EXPERT OPINION: The advent of the first approved precision therapy for achondroplasia in vosoritide has been a paradigm shifting advance for children affected by this condition. In addition to changing their natural growth history, it is hoped that it will decrease their medical complications and enhance functionality. These new treatment options highlight the importance of prompt prenatal identification and subsequent testing of a suspected fetus with achondroplasia and counseling of families. It is hoped that, in the near future, families will have the option to consider a range of effective targeted therapies that best suit their child with achondroplasia, starting from birth should they choose.

2.
Mol Ther ; 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39033323

RESUMEN

Patients with cancer of unknown primary (CUP) carry the double burden of an aggressive disease and reduced access to therapies. Experimental models are pivotal for CUP biology investigation and drug testing. We derived two CUP cell lines (CUP#55 and #96) and corresponding patient-derived xenografts (PDXs), from ascites tumor cells. CUP cell lines and PDXs underwent histological, immune-phenotypical, molecular, and genomic characterization confirming the features of the original tumor. The tissue-of-origin prediction was obtained from the tumor microRNA expression profile and confirmed by single-cell transcriptomics. Genomic testing and fluorescence in situ hybridization analysis identified FGFR2 gene amplification in both models, in the form of homogeneously staining region (HSR) in CUP#55 and double minutes in CUP#96. FGFR2 was recognized as the main oncogenic driver and therapeutic target. FGFR2-targeting drug BGJ398 (infigratinib) in combination with the MEK inhibitor trametinib proved to be synergic and exceptionally active, both in vitro and in vivo. The effects of the combined treatment by single-cell gene expression analysis revealed a remarkable plasticity of tumor cells and the greater sensitivity of cells with epithelial phenotype. This study brings personalized therapy closer to CUP patients and provides the rationale for FGFR2 and MEK targeting in metastatic tumors with FGFR2 pathway activation.

3.
Biochem Pharmacol ; 226: 116390, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38914316

RESUMEN

Infigratinib, an oral FGFR inhibitor for advanced cholangiocarcinoma, yielded two active metabolites, BHS697 and CQM157, with similar receptor affinity. Our study characterized P450s that are responsible for the metabolism of infigratinib to its two major active metabolites, BHS697 and CQM157. In vitro inhibition of P450s and UGTs by infigratinib, BHS697 or CQM157 was further investigated. The unbound apparent Km values for metabolism of infigratinib to BHS697 by HLM, human recombinant CYP2C8, CYP2C19, CYP2D6 and CYP3A4 enzymes are 4.47, 0.65, 2.50, 30.6 and 2.08 µM, while Vmax values are 90.0 pmol/min/mg protein, 0.13, 0.027, 0.81, and 0.56 pmol/min/pmol protein, respectively. The unbound apparent Km value for metabolism of infigratinib to CQM157 by HLM is 0.049 µM, while the Vmax value is 0.32 pmol/min/mg protein respectively. In HLM, infigratinib displayed moderate inhibition of CYP3A4 and CYP2C19 and weak or negligible inhibition of other P450 isoforms. BHS697 exhibited weak inhibition of CYP2B6, CYP2C9, CYP2C19 and CYP3A4, and no inhibition of CYP2C8 and CYP2D6. CQM157 moderately inhibited CYP2C9 and CYP3A4, and weakly or negligibly inhibited other P450 isoforms. Regarding UGTs, infigratinib moderately inhibited UGT1A4 and weakly inhibited UGT1A1, respectively. BHS697 weakly inhibited UGT1A1. In contrast, CQM157 moderately inhibited both UGT1A1 and UGT1A4. Our findings provide novel insights into the metabolism of and potential DDIs implicating infigratinib.


Asunto(s)
Inhibidores Enzimáticos del Citocromo P-450 , Sistema Enzimático del Citocromo P-450 , Glucuronosiltransferasa , Humanos , Sistema Enzimático del Citocromo P-450/metabolismo , Inhibidores Enzimáticos del Citocromo P-450/farmacología , Inhibidores Enzimáticos del Citocromo P-450/metabolismo , Glucuronosiltransferasa/metabolismo , Glucuronosiltransferasa/antagonistas & inhibidores , Microsomas Hepáticos/metabolismo , Microsomas Hepáticos/efectos de los fármacos , Pirimidinas/farmacología , Pirimidinas/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/metabolismo , Compuestos de Fenilurea
4.
J Bone Miner Res ; 39(6): 765-774, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38590263

RESUMEN

Achondroplasia (ACH), the most common form of disproportionate short stature, is caused by gain-of-function point mutations in fibroblast growth factor receptor 3 (FGFR3). Abnormally elevated activation of FGFR3 modulates chondrocyte proliferation and differentiation via multiple signaling pathways, such as the MAPK pathway. Using a mouse model mimicking ACH (Fgfr3Y367C/+), we have previously shown that daily treatment with infigratinib (BGJ398), a selective and orally bioavailable FGFR1-3 inhibitor, at a dose of 2 mg/kg, significantly increased bone growth. In this study, we investigated the activity of infigratinib administered at substantially lower doses (0.2 and 0.5 mg/kg, given once daily) and using an intermittent dosing regimen (1 mg/kg every 3 days). Following a 15-day treatment period, these low dosages were sufficient to observe significant improvement of clinical hallmarks of ACH such as growth of the axial and appendicular skeleton and skull development. Immunohistological labeling demonstrated the positive impact of infigratinib on chondrocyte differentiation in the cartilage growth plate and the cartilage end plate of the vertebrae. Macroscopic and microcomputed analyses showed enlargement of the foramen magnum area at the skull base, thus improving foramen magnum stenosis, a well-recognized complication in ACH. No changes in FGF23 or phosphorus levels were observed, indicating that the treatment did not modify phosphate homeostasis. This proof-of-concept study demonstrates that infigratinib administered at low doses has the potential to be a safe and effective therapeutic option for children with ACH.


Asunto(s)
Acondroplasia , Modelos Animales de Enfermedad , Placa de Crecimiento , Pirimidinas , Animales , Acondroplasia/tratamiento farmacológico , Acondroplasia/patología , Placa de Crecimiento/efectos de los fármacos , Placa de Crecimiento/patología , Placa de Crecimiento/metabolismo , Pirimidinas/farmacología , Pirimidinas/administración & dosificación , Ratones , Compuestos de Fenilurea/farmacología , Compuestos de Fenilurea/administración & dosificación , Desarrollo Óseo/efectos de los fármacos , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/metabolismo , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/genética , Relación Dosis-Respuesta a Droga , Condrocitos/efectos de los fármacos , Condrocitos/patología , Condrocitos/metabolismo
5.
Acta Pharm ; 74(1): 1-36, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38554385

RESUMEN

The arrival of comprehensive genome sequencing has accelerated the understanding of genetically aberrant advanced cancers and target identification for possible cancer treatment. Fibroblast growth factor receptor (FGFR) gene alterations are frequent findings in various rare and advanced cancers refractive to mainstay chemo-therapy or surgical interventions. Several FGFR inhibitors have been developed for addressing these genetically altered FGFR-harboring malignancies, and some have performed well in clinical trials. In contrast, others are still being investigated in different phases of clinical trials. FDA has approved four anticancer agents such as erdafitinib, pemigatinib, infigratinib, and futibatinib, for clinical use in oncogenic FGFR-driven malignancies. These include cholangiocarcinoma, urothelial carcinoma, and myeloid/lymphoid malignancies. Pemigatinib is the only FGFR inhibitor globally approved (USA, EU, and Japan) and available as a targeted therapy for two types of cancer, including FGFR2 fusion or other rearrangements harboring cholangiocarcinoma and relapsed/refractory myeloid/lymphoid neoplasms with FGFR1 rearrangements. Myeloid/lymphoid neoplasm is the latest area of application added to the therapeutic armamentarium of FGFR inhibitors. Furthermore, futibatinib is the first-in-class covalent or irreversible pan-FGFR inhibitor that has received FDA approval for locally advanced or metastatic intrahepatic cholangiocarcinoma harboring FGFR2 gene aberrations. This review highlights the current clinical progress concerning the safety and efficacy of all the approved FGFR-TKIs (tyrosine kinase inhibitors) and their ongoing investigations in clinical trials for other oncogenic FGFR-driven malignancies.


Asunto(s)
Neoplasias de los Conductos Biliares , Carcinoma de Células Transicionales , Colangiocarcinoma , Neoplasias de la Vejiga Urinaria , Humanos , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Colangiocarcinoma/tratamiento farmacológico , Colangiocarcinoma/genética , Conductos Biliares Intrahepáticos/patología
6.
Clinics (Sao Paulo) ; 79: 100329, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38330791

RESUMEN

OBJECTIVES: To compare the efficacy and safety of larotrectinib with those of infigratinib in adult glioma patients with tyrosine kinase alterations. METHODS: Patients received oral infigratinib 125 mg (IN cohort, n = 125) or oral larotrectinib (LB cohort, n = 105) until unacceptable toxicity or disease progression. RESULTS: Duration of treatment was longer in the LB cohort than in the IN cohort (8 [9.5-6.25] months vs. 5.5 [6-5.25] months, p < 0.0001). Patients with partial responses (p = 0.0424) and overall survival (p = 0.03) were higher in the IN cohort than those in the LB cohort. The number of patients with disease progression was higher in the LB cohort (p = 0.0015). All the patients reported diarrhea, fatigue, vomiting, constipation, and decreased appetite. Patients in the IN cohort reported hyperphosphatemia, hyperlipasemia, stomatitis, dry skin, alopecia, dyspepsia, onycholysis, palmar-plantar erythrodysesthesia, nail disorders, and dry eyes. Patients in the LB cohort reported upper respiratory tract infections, pyrexia, cough, anemia, bacterial/viral infections, conjunctivitis, urinary tract infections, headaches, ataxia, dizziness, and muscle tremors. A total of 30 (24 %) and 40 (38 %) patients from the IN and the LB cohorts died at the follow-up of 18 months (p = 0.03). Patients who received bevacizumab initial therapy had higher overall survival (p = 0.048). CONCLUSIONS: Infigratinib has higher efficacy and overall survival than larotrectinib but has higher adverse effects in the management of both glioma and tyrosine kinase alterations after failure of initial therapies. Initial bevacizumab therapy is associated with a higher overall survival.


Asunto(s)
Glioma , Compuestos de Fenilurea , Proteínas Tirosina Quinasas , Pirazoles , Pirimidinas , Adulto , Humanos , Bevacizumab , Glioma/tratamiento farmacológico , Progresión de la Enfermedad
7.
Eur J Pediatr ; 183(3): 1121-1128, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37831302

RESUMEN

As we continue to understand more about the complex mechanism of growth, a plethora of novel therapies have recently been developed that aim to address barriers and optimize efficacy. This review aims to explore these novel therapies and provide a succinct review based on the latest clinical studies in order to introduce clinicians to therapies that will soon constitute the future in the field of short stature.  Conclusion: The review focuses on long-acting growth hormone formulations, a novel growth hormone oral secretagogue, novel treatments for children with achondroplasia, and targeted therapies for rare forms of skeletal dysplasias. What is Known: • Recombinant human growth hormone has been the mainstay of treatment for children with short stature for years. • Such therapy is not always effective based on the underlying diagnosis (e.g achondroplasia, Turner syndrome). Compliance with daily injections is challenging and can directly affect efficacy. What is New: • Recent development of long-acting growth hormone regimens and oral secretagogues can overcome some of these barriers, however several limitations need to be taken into consideration. • Newer therapies for achondroplasia, and other rare forms of skeletal dysplasias introduce us to a new era of targeted therapies for children with short stature. Clinicians ought to be aware of pitfalls and caveats before introducing these novel therapies to every day practice.


Asunto(s)
Acondroplasia , Hormona de Crecimiento Humana , Síndrome de Turner , Niño , Humanos , Trastornos del Crecimiento/tratamiento farmacológico , Hormona de Crecimiento Humana/uso terapéutico , Hormona del Crecimiento/uso terapéutico , Acondroplasia/tratamiento farmacológico
8.
Clinics ; 79: 100329, 2024. tab, graf
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1534245

RESUMEN

Abstract Objectives To compare the efficacy and safety of larotrectinib with those of infigratinib in adult glioma patients with tyrosine kinase alterations. Methods Patients received oral infigratinib 125 mg (IN cohort, n = 125) or oral larotrectinib (LB cohort, n = 105) until unacceptable toxicity or disease progression. Results Duration of treatment was longer in the LB cohort than in the IN cohort (8 [9.5-6.25] months vs. 5.5 [6-5.25] months, p < 0.0001). Patients with partial responses (p = 0.0424) and overall survival (p = 0.03) were higher in the IN cohort than those in the LB cohort. The number of patients with disease progression was higher in the LB cohort (p = 0.0015). All the patients reported diarrhea, fatigue, vomiting, constipation, and decreased appetite. Patients in the IN cohort reported hyperphosphatemia, hyperlipasemia, stomatitis, dry skin, alopecia, dyspepsia, onycholysis, palmar-plantar erythrodysesthesia, nail disorders, and dry eyes. Patients in the LB cohort reported upper respiratory tract infections, pyrexia, cough, anemia, bacterial/viral infections, conjunctivitis, urinary tract infections, headaches, ataxia, dizziness, and muscle tremors. A total of 30 (24 %) and 40 (38 %) patients from the IN and the LB cohorts died at the follow-up of 18 months (p = 0.03). Patients who received bevacizumab initial therapy had higher overall survival (p = 0.048). Conclusions Infigratinib has higher efficacy and overall survival than larotrectinib but has higher adverse effects in the management of both glioma and tyrosine kinase alterations after failure of initial therapies. Initial bevacizumab therapy is associated with a higher overall survival.

10.
Cureus ; 15(10): e46792, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37954763

RESUMEN

Cholangiocarcinoma (CCA) is an aggressive and diverse malignancy with a poor prognosis. Related to a typical indolent course of progression, most cases of CCA are metastatic or locally advanced at the time of presentation. For patients with nonresectable tumors or metastatic disease, the mainstay of treatment is comprehensive with combination chemotherapy. The first-line chemotherapeutic combination for the treatment of CCA are cisplatin and gemcitabine-based chemotherapies. However, many locally advanced and progressive CCA cases are refractory to first-line management. Within the past few years, the increase in the incidence of metastatic CCA and its poor prognosis has brought to light the need for novel therapeutic approaches to treatment. With advancements in next-generation genome sequencing, multiple molecular pathways have been identified in the pathogenesis of CCA and have shown great potential as alternative treatments in cases of CCA refractory to surgical resection. FGFR2 fusions or rearrangements have been identified in 10-16% of all intrahepatic CCA and are thought to serve as a pathway of resistance for a number of nonresectable and refractory cases of cholangiocarcinoma. A novel therapeutic agent that has been discussed is infigratinib, a selective, ATP-competitive inhibitor of fibroblast growth factor receptor 2 (FGFR2). In a phase 1 trial, infigratinib showed a safe profile and showed remarkable clinical efficacy in advanced CCA with FGFR2 fusions or rearrangements in phase II trials. As of May 2021, the Food and Drug Administration (FDA) approved infigratinib for CCA largely based on tumor response and duration of response. As of 2021, infigratinib, futibatinib, and pemigatinib, similar novel selective FGFR inhibitors, have been approved by the FDA for the treatment of locally advanced or metastatic CCA harboring FGFR2 gene mutations. The present investigation reviews the development of infigratinib in particular and its clinical efficacy compared to other available treatment options for cholangiocarcinoma. While the side effect profile of infigratinib is minimal, particularly GI side effects, when compared with futibatinib and pemigatinib, the overall response rate (ORR) and median overall survival (mOS) for infigratinib (ORR=23.1%, mOS=3.8 months) was significantly lower than futibatinib (ORR=35.8%, mOS=21.1 months) and pemigatinib (ORR=35.5%, mOS=21.1 months). While there is ample promise for the use of infigratinib as molecular-directed therapy in the treatment of CCA harboring FGFR2 mutations, there is an appropriate concern for patient-acquired resistance. The heterogeneous nature of FGFR mutations and the emergence of different resistance mechanisms emphasize a need for more agents to inhibit FGFR rearrangements effectively.

11.
Molecules ; 28(22)2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-38005198

RESUMEN

Infigratinib, a protein kinase inhibitor employed in the therapeutic management of cholangiocarcinoma, was subjected to various stress conditions, including hydrolytic (acidic and alkaline), oxidative, photolytic, and thermal stress, in accordance with the rules established by the International Council for Harmonization. A cumulative count of five degradation products was observed. The application of the Quality by Design principle was utilized in the development of a rapid and specific separation method for Infigratinib and its degradation products. The methodology employed in this study was derived from an experimental design approach, which was utilized to examine the critical process parameters associated with chromatographic systems. The reversed-phase high-performance liquid chromatography technique, employing a C18 column and a mobile phase composed of a gradient mixture of 25 mM ammonium acetate buffer at pH 6.0 and acetonitrile, successfully facilitated the chromatographic separation. The methodology was expanded to include the utilization of UPLC-quadrupole tandem mass spectrometry in order to conduct a comprehensive analysis of the structural properties and characterize the degradation products. Overall, five degradation products were found in different stress conditions. The method was verified at certain working points, wherein a linearity range (5.0-200.0 µg/mL) was developed and other parameters such as accuracy, repeatability, selectivity, and system suitability were evaluated. Finally, the toxicity and mutagenicity of Infigratinib and its degradation products were predicted using in silico software, namely DEREK Nexus® (version 6.2.1) and SARAH Nexus® (version 3.2.1). Various toxicity endpoints, including chromosomal damage, were predicted. Additionally, two degradation products were also predicted to be mutagenic.


Asunto(s)
Cromatografía de Fase Inversa , Espectrometría de Masas en Tándem , Cromatografía Liquida/métodos , Espectrometría de Masas en Tándem/métodos , Hidrólisis , Oxidación-Reducción , Estabilidad de Medicamentos , Cromatografía Líquida de Alta Presión/métodos
12.
Cancers (Basel) ; 15(22)2023 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-38001614

RESUMEN

We showed previously that inhibition of KIT signaling in GISTs activates FGFR-signaling pathway rendering cancer cells resistant to receptor tyrosine kinase inhibitor (RTKi) imatinib mesylate (IM) (Gleevec) despite of absence of secondary KIT mutations and thereby illustrating a rationale for the combined (e.g., KIT- and FGFR-targeted) therapies. We show here that long-term culture of IM-resistant GISTs (GIST-R1) with IM substantially down-regulates KIT expression and induces activation of the FGFR-signaling cascade, evidenced by increased expression of total and phosphorylated forms of FGFR1 and 2, FGF-2, and FRS-2, the well-known adaptor protein of the FGF-signaling cascade. This resulted in activation of both AKT- and MAPK-signaling pathways shown on mRNA and protein levels, and rendered cancer cells highly sensitive to pan-FGFR-inhibitors (BGJ 398, AZD 4547, and TAS-120). Indeed, we observed a significant decrease of IC50 values for BGJ 398 in the GIST subclone (GIST-R2) derived from GIST-R1 cells continuously treated with IM for up to 12 months. An increased sensitivity of GIST-R2 cells to FGFR inhibition was also revealed on the xenograft models, illustrating a substantial (>70%) decrease in tumor size in BGJ 398-treated animals when treated with this pan-FGFR inhibitor. Similarly, an increased intra-tumoral apoptosis as detected by immunohistochemical (IHC)-staining for cleaved caspase-3 on day 5 of the treatment was found. As expected, both BGJ 398 and IM used alone lacked the pro-apoptotic and growth-inhibitory activities on GIST-R1 xenografts, thereby revealing their resistance to these TKis when used alone. Important, the knockdown of FGFR2, and, in much less content, FGF-2, abrogated BGJ 398's activity against GIST-R2 cells both in vitro and in vivo, thereby illustrating the FGF-2/FGFR2-signaling axis in IM-resistant GISTs as a primary molecular target for this RTKi. Collectively, our data illustrates that continuous inhibition of KIT signaling in IM-resistant GISTs lacking secondary KIT mutations induced clonal heterogeneity of GISTs and resulted in accumulation of cancer cells with overexpressed FGF-2 and FGFR1/2, thereby leading to activation of FGFR-signaling. This in turn rendered these cells extremely sensitive to the pan-FGFR inhibitors used in combination with IM, or even alone, and suggests a rationale to re-evaluate the effectiveness of FGFR-inhibitors in order to improve the second-line therapeutic strategies for selected subgroups of GIST patients (e.g., IM-resistant GISTs lacking secondary KIT mutations and exhibiting the activation of the FGFR-signaling pathway).

13.
Cardiovasc Intervent Radiol ; 46(9): 1267-1275, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37491520

RESUMEN

PURPOSE: Stent-induced tissue hyperplasia remains a challenge for the application of self-expanding metal stents in the management of esophageal stricture. This study aimed to evaluate the efficacy of infigratinib, which is a selective fibroblast growth factor receptor inhibitor, in the prevention of stent-induced tissue hyperplasia in a rat esophageal model. METHODS: Twenty-four male Sprague-Dawley rats underwent esophageal stent placement and were randomized to receive 1 ml of vehicle, 5 mg/kg infigratinib in 1 ml of vehicle, or 10 mg/kg infigratinib in 1 ml of vehicle via naso-gastric tube once daily for 28 days. Follow-up fluoroscopy was performed on postoperative day 28, and the stented esophageal tissues were harvested for histological and immunofluorescence examinations. RESULTS: All rats survived until euthanasia on postoperative day 28 without procedure-related adverse events. The incidence of stent migration was 12.5%, 12.5% and 25% in the control group, the 5 mg/kg infigratinib group and, the 10 mg/kg infigratinib group, respectively. The percentage of granulation tissue area, the submucosal fibrosis thickness, the number of epithelial layers, the degree of inflammatory cell infiltration, the degree of collagen deposition, the number of fibroblast growth factor receptor 1 (FGFR1)-expressing myofibroblasts, and the number of proliferating myofibroblasts were all significantly lower in both infigratinib groups than in the control group (P < 0.05) but were not significantly different between the two infigratinib groups (P > 0.05). CONCLUSIONS: Infigratinib significantly suppresses stent-induced tissue hyperplasia by inhibiting FGFR1-mediated myofibroblast proliferation and profibrotic activities in a rat esophageal model.


Asunto(s)
Estenosis Esofágica , Stents , Animales , Masculino , Ratas , Estenosis Esofágica/prevención & control , Hiperplasia/etiología , Inhibidores de Proteínas Quinasas , Radiografía , Ratas Sprague-Dawley , Receptores de Factores de Crecimiento de Fibroblastos , Stents/efectos adversos
14.
Br J Pharmacol ; 180(23): 2989-3007, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37400950

RESUMEN

BACKGROUND AND PURPOSE: Fibroblast growth factors and receptors (FGFR) have been shown to modulate inflammation and neurodegeneration in multiple sclerosis (MS). The selective FGFR inhibitor infigratinib has been shown to be effective in cancer models. Here, we investigate the effects of infigratinib on prevention and suppression of first clinical episodes of myelin oligodendrocyte glycoprotein (MOG)35-55 -induced experimental autoimmune encephalomyelitis (EAE) in mice. EXPERIMENTAL APPROACH: The FGFR inhibitor infigratinib was given over 10 days from the time of experimental autoimmune encephalomyelitis induction or the onset of symptoms. The effects of infigratinib on proliferation, cytotoxicity and FGFR signalling proteins were studied in lymphocyte cell lines and microglial cells. KEY RESULTS: Administration of infigratinib prevented by 40% and inhibited by 65% first clinical episodes of the induced experimental autoimmune encephalomyelitis. In the spinal cord, infiltration of lymphocytes and macrophages/microglia, destruction of myelin and axons were reduced by infigratinib. Infigratinib enhanced the maturation of oligodendrocytes and increased remyelination. In addition, infigratinib resulted in an increase of myelin proteins and a decrease in remyelination inhibitors. Further, lipids associated with neurodegeneration such as lysophosphatidylcholine and ceramide were decreased as were proliferation of T cells and microglial cells. CONCLUSION AND IMPLICATIONS: This proof of concept study demonstrates the therapeutic potential of targeting FGFRs in a disease model of multiple sclerosis. Application of oral infigratinib resulted in anti-inflammatory and remyelinating effects. Thus, infigratinib may have the potential to slow disease progression or even to improve the disabling symptoms of multiple sclerosis.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Esclerosis Múltiple , Remielinización , Ratones , Animales , Esclerosis Múltiple/tratamiento farmacológico , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Médula Espinal/metabolismo , Glicoproteína Mielina-Oligodendrócito/efectos adversos , Glicoproteína Mielina-Oligodendrócito/metabolismo , Antiinflamatorios/farmacología , Receptores de Factores de Crecimiento de Fibroblastos/metabolismo , Receptores de Factores de Crecimiento de Fibroblastos/uso terapéutico , Ratones Endogámicos C57BL
15.
In Vivo ; 37(4): 1628-1637, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37369494

RESUMEN

BACKGROUND/AIM: Increasing evidence has revealed FGFR2 as an attractive therapeutic target for cancer including cholangiocarcinoma (CCA). The present study investigated the oncogenic mechanisms by which FGF10 ligand activates FGFR2 in CCA cells and determined whether FGFR inhibitors could suppress FGF10-mediated migration of CCA cells. MATERIALS AND METHODS: Effects of FGF10 on the proliferation, migration, and invasion of KKU-M213A cells were assessed using clonogenic and transwell assays. Protein expression levels of FGFR2 and pro-angiogenic factors were determined via immunoblotting and antibody array analysis. FGFR2 knockdown using a small interfering RNA was used to validate the role of FGF10 in promoting cell migration via FGFR2. The effects of infigratinib (FGFR inhibitor) on cell viability, were determined in KKU-100, KKU-M213A, KKU-452 cells. Moreover, the efficacy of the FGFR inhibitor in suppressing migration via FGF10/FGFR2 stimulation was assessed in KKU-M213A cells. RESULTS: FGF10 significantly increased the expression of phospho-FGFR/FGFR2 and promoted the proliferation, migration, and invasion of KKU-M213A cells. FGF10 increased the expression levels of p-Akt, p-mTOR, VEGF, Slug, and pro-angiogenic proteins related to metastasis. Cell migration mediated by FGF10 was markedly decreased in FGFR2-knockdown cells. Moreover, FGF10/FGFR2 promoted the migration of cells, which was suppressed by the FGFR inhibitor. CONCLUSION: FGF10/FGFR2 activates the Akt/mTOR and VEGF/Slug pathways, which are associated with the stimulation of migration and invasion in CCA. Moreover, the FGF10/FGFR2 signaling was inhibited by an FGFR inhibitor resulting suppression of cell migration, which warrants further studies on their clinical utility for CCA treatment.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Humanos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ligandos , Factor A de Crecimiento Endotelial Vascular , Línea Celular Tumoral , Colangiocarcinoma/tratamiento farmacológico , Colangiocarcinoma/genética , Serina-Treonina Quinasas TOR , Inhibidores de Proteínas Quinasas/uso terapéutico , Conductos Biliares Intrahepáticos/metabolismo , Neoplasias de los Conductos Biliares/tratamiento farmacológico , Neoplasias de los Conductos Biliares/genética , Proliferación Celular , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/genética , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/uso terapéutico , Factor 10 de Crecimiento de Fibroblastos/farmacología , Factor 10 de Crecimiento de Fibroblastos/uso terapéutico
17.
Bull Cancer ; 109(11S): 11S28-11S34, 2022 Nov.
Artículo en Francés | MEDLINE | ID: mdl-36535760

RESUMEN

Advanced cholangiocarcinoma and gene fusions Cholangiocarcinomas (CCAs) are rare digestive tumors classified as intrahepatic (iCCA), perihilar (pCCA), and distal (dCCA) CCAs. These tumors are most often diagnosed at an advanced stage, unresectable or metastatic, and associated with a poor prognosis. The identification in recent years of multiple molecular alterations of interest, particularly in iCCA, has nevertheless allowed the development of new targeted therapeutic options for a significant proportion of patients. Gene fusions are among the most frequent alterations, involving FGFR2 in 10-15% of iCCAs in particular, and NTRK genes at a lower frequency (<1%). A dedicated analysis, most often based on RNA sequencing, is required to identify such alterations. Three FGFR inhibitors, pemigatinib, infigratinib and futinatinib, have recently received FDA approval for use in pre-treated patients. These compounds are currently being evaluated as first-line therapy in several phase III trials. Promising results have also been reported with new-generation inhibitors such as RLY-4008, which may soon constitute new therapeutic options. In the case of NTRK fusion, larotrectinib and entrectinib have also demonstrated their efficacy. The objectives of this review are to clarify the specific diagnostic modalities for gene fusions and to summarize the results of the main trials and developments underway for the management of advanced CCA with gene fusions.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Humanos , Colangiocarcinoma/genética , Inhibidores de Proteínas Quinasas/uso terapéutico , Conductos Biliares Intrahepáticos/patología , Neoplasias de los Conductos Biliares/genética
18.
Front Oncol ; 12: 1015792, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36408177

RESUMEN

EMS(8p11 myeloproliferative syndrome, EMS) is an aggressive hematological neoplasm with/without eosinophilia caused by a rearrangement of the FGFR1 gene at 8p11-12. It was found that all cases carry chromosome abnormalities at the molecular level, not only the previously reported chromosome translocation and insertion but also a chromosome inversion. These abnormalities produced 17 FGFR1 fusion genes, of which the most common partner genes are ZNF198 on 13q11-12 and BCR of 22q11.2. The clinical manifestations can develop into AML (acute myeloid leukemia), T-LBL (T-cell lymphoblastic lymphoma), CML (chronic myeloid leukemia), CMML (chronic monomyelocytic leukemia), or mixed phenotype acute leukemia (MPAL). Most patients are resistant to traditional chemotherapy, and a minority of patients achieve long-term clinical remission after stem cell transplantation. Recently, the therapeutic effect of targeted tyrosine kinase inhibitors (such as pemigatinib and infigratinib) in 8p11 has been confirmed in vitro and clinical trials. The TKIs may become an 8p11 treatment option as an alternative to hematopoietic stem cell transplantation, which is worthy of further study.

19.
Drugs Today (Barc) ; 58(7): 327-334, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35851868

RESUMEN

Cholangiocarcinoma (CCA) is a serious and often fatal cancer of the bile ducts of the liver with a 5-year survival rate of 5-15%. At the time of diagnosis, most patients present with advanced or metastatic CCA, which is an aggressive malignancy with a poor prognosis. The standard of care for patients with locally advanced or metastatic CCA includes systemic chemotherapy with gemcitabine and cisplatin. Recently, research in the molecular basis of cancer has led to the discovery of underlying gene alterations, allowing the development of targeted therapies. Here we provide a review of infigratinib, which is an oral small-molecule tyrosine kinase inhibitor targeting fibroblast growth factor receptor (FGFR). On the basis of positive phase II efficacy data, infigratinib received accelerated approval from the U.S. Food and Drug Administration (FDA) for adults with previously treated, unresectable locally advanced or metastatic CCA with an FGFR2 fusion or other rearrangement.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Adulto , Neoplasias de los Conductos Biliares/tratamiento farmacológico , Neoplasias de los Conductos Biliares/genética , Conductos Biliares Intrahepáticos/patología , Colangiocarcinoma/tratamiento farmacológico , Colangiocarcinoma/genética , Humanos , Compuestos de Fenilurea , Pirimidinas/uso terapéutico , Estados Unidos
20.
Biomedicines ; 10(5)2022 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-35625872

RESUMEN

Advanced gastrointestinal stromal tumors (GIST) are typically treated with tyrosine kinase inhibitors, and imatinib is the most commonly used standard of care in first line treatments. The use of this and other tyrosine kinase inhibitors is associated with objective tumor responses and prolongation of progression-free and overall survival, but the treatment of metastatic disease is non-curative due to the selection or acquisition of secondary mutations and the activation of alternative kinase signaling pathways, leading to resistance and disease progression after an initial response. The present preclinical study evaluated the potential use of the fibroblast growth factor receptor inhibitors infigratinib and dovitinib alone or in combination with the mitogen-activated protein kinase inhibitor binimetinib in mouse models of GIST with different sensitivity or resistance to imatinib. Patient- and cell-line-derived GIST xenografts were established by bilateral, subcutaneous transplantation of human GIST tissue in female adult nu/nu NMRI mice. The mice were treated with dovitinib, infigratinib, or binimetinib, either alone or in combination with imatinib. The safety of treated animals was assessed by well-being inspection and body weight measurement. Antitumor effects were assessed by caliper-based tumor measurement. H&E staining and immunohistochemistry were used for assessing anti-mitotic and pro-apoptotic activity of the experimental treatments. Western blotting was used for assessing effects of the agents on kinase signaling pathways. Anti-angiogenic activity was assessed by measuring tumor vessel density. Dovitinib was found to have antitumor efficacy in GIST xenografts characterized by different imatinib resistance patterns. Dovitinib had better efficacy than imatinib (both at standard and increased dose) and was found to be well tolerated. Dovitinib had better efficacy in a KIT exon 9 mutant model, highlighting a role of patient selection in clinical GIST trials with the agent. In a model with KIT exon 11 and 17 mutations, dovitinib induced tumor necrosis, most likely due to anti-angiogenic effects. Additive effects combining dovitinib with binimetinib were limited.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA