Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.875
Filtrar
1.
Mol Immunol ; 173: 88-98, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39088935

RESUMEN

Tanshinone I (Tan I) has been proven to exert an anti-inflammatory effect, but the complete mechanism remains unclear. In this study, Tan I was described to have no effect on Syk expression in resting or LPS-stimulated macrophages ex vivo, but dramatically suppressed Syk phosphorylation and CD80, CD86, and IL-1ß expression of macrophages. The inflammatory activity of macrophages in ApoC3-transgenic (ApoC3TG) mice is upregulated by Syk activation. Tan I was determined to downregulate Syk phosphorylation and inflammatory activity of macrophages in ApoC3TG mice, both ex vivo and in vivo. Intraperitoneal injection of Tan I (4 mg/kg) effectively alleviated DSS-induced colitis in mice, accompanying with suppressing the activation of intestinal macrophages. Mechanistically, Tan I-treated macrophages exhibited a decrease in cytoplasmic ROS, NLRP3, GSDMD, and IL-1ß, which suggested that the alternative pathway of inflammasome activation in macrophages was suppressed. The SPR assay demonstrated that Tan I bound to Syk protein with a dissociation constant (KD) of 2.473 × 10-6 M. When Syk expression was knocked down by its shRNA, the inhibitory effects of Tan I on macrophages were blocked. Collectively, Tanshinone I effectively alleviated DSS-induced colitis in mice by inhibiting Syk-stimulated inflammasome activation, hence suppressing the inflammatory activity of macrophages.

2.
Clin Transl Oncol ; 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39090420

RESUMEN

BACKGROUND: The nod-like receptor protein 3 (NLRP3) is one of the most characterized inflammasomes involved in the pathogenesis of several cancers, including hepatocellular carcinoma (HCC). However, the effects of genetic variants in the NLRP3 inflammasome-related genes on survival of hepatitis B virus (HBV)-related HCC patients are unclear. METHODS: We performed multivariable Cox proportional hazards regression analysis to evaluate associations between 299 single-nucleotide polymorphisms (SNPs) in 16 NLRP3 inflammasome-related genes and overall survival (OS) of 866 patients with HBV-related HCC. We further performed expression quantitative trait loci (eQTL) analysis using the data from the GTEx project and 1000 Genomes projects, and performed differential expression analysis using the TCGA dataset to explore possible molecular mechanisms underlying the observed associations. RESULTS: We found that two functional SNPs (PANX1 rs3020013 A > G and APP rs9976425 C > T) were significantly associated with HBV-related HCC OS with the adjusted hazard ratio (HR) of 0.83 [95% confidence interval (CI) = 0.73-0.95, P = 0.008], and 1.26 (95% CI = 1.02-1.55, P = 0.033), respectively. Moreover, the eQTL analysis revealed that the rs3020013 G allele was correlated with decreased mRNA expression levels of PANX1 in both normal liver tissues (P = 0.044) and whole blood (P < 0.001) in the GTEx dataset, and PANX1 mRNA expression levels were significantly higher in HCC samples and associated with a poorer survival of HCC patients. However, we did not observe such correlations for APP rs9976425. CONCLUSIONS: These results indicated that SNPs in the NLRP3 inflammasome-related genes may serve as potential biomarkers for HBV-related HCC survival, once replicated by additional larger studies.

3.
Chem Biol Drug Des ; 104(2): e14598, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39090783

RESUMEN

Acne caused by inflammation of hair follicles and sebaceous glands is a common chronic skin disease. Arctigenin (ATG) is an extract of Arctium lappa L., which has significant anti-inflammatory effects. However, the effect and mechanism of ATG in cutaneous inflammation mediated by Cutibacterium acnes (C. acnes) has not been fully evaluated. The purpose of this study was to explore the effect and potential mechanism of ATG in the treatment of acne through network pharmacology and experimental confirmation. An acne model was established by injected live C. acnes into living mice and treated with ATG. Our data showed that ATG effectively improved acne induced by live C. acnes, which was confirmed by determining ear swelling rate, estradiol concentration and hematoxylin and eosin (H&E) staining. In addition, ATG inhibited the NLRP3 inflammasome signaling pathway in mice ear tissues and reduced the secretion of pro-inflammatory cytokines IL-1ß to relieve inflammation. The results of network pharmacology and molecular docking confirmed that ATG can regulate 17ß-Estradiol (E2) levels through targeted to CYP19A1, and finally inhibited skin inflammation. Taken together, our results confirmed that ATG regulated E2 secretion by targeting CYP19A1, thereby inhibiting the NLRP3 inflammasome signaling pathway and improving inflammation levels in acne mice. This study provides a basis for the feasibility of ATG in treating acne in clinical practice.


Asunto(s)
Acné Vulgar , Aromatasa , Furanos , Lignanos , Simulación del Acoplamiento Molecular , Farmacología en Red , Animales , Furanos/química , Furanos/farmacología , Ratones , Lignanos/farmacología , Lignanos/química , Lignanos/uso terapéutico , Acné Vulgar/tratamiento farmacológico , Acné Vulgar/microbiología , Aromatasa/metabolismo , Aromatasa/química , Transducción de Señal/efectos de los fármacos , Piel/patología , Piel/efectos de los fármacos , Piel/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/antagonistas & inhibidores , Inflamasomas/metabolismo , Humanos , Antiinflamatorios/farmacología , Antiinflamatorios/química , Antiinflamatorios/uso terapéutico , Propionibacterium acnes/efectos de los fármacos , Interleucina-1beta/metabolismo , Modelos Animales de Enfermedad
4.
Neurochem Res ; 2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39096412

RESUMEN

Depression and anxiety are prevalent neuropsychiatric conditions among patients with Parkinson's disease (PD), which may manifest prior to motor symptoms. As levodopa, a prominent treatment for PD motor symptoms, provides few benefits for mood-related abnormalities, tackling non-motor symptoms is particularly important. AdipoRon (Ad), an adiponectin agonist, has demonstrated neuroprotective effects by suppressing neuroinflammatory responses and activating the AMPK/Sirt-1 signaling pathway. This study looked at the potential advantages and underlying mechanisms of intranasal Ad in a rat model of PD induced by 6-hydroxydopamine (6-OHDA). We found that Ad at doses of 1 and 10 µg for 21 days exhibited anxiolytic- and antidepressant effects in the open field (OF) test, elevated plus maze (EPM), sucrose splash test, and forced swimming test in a PD model caused by a unilateral 6-OHDA injection into the medial forebrain bundle (MFB). The Ad also lowered the levels of corticosterone in the blood, decreased inflammasome components (NLRP3, caspase 1, and IL-1ß), and increased Sirt-1 protein levels in the prefrontal cortex (PFC) of PD rats. We conclude that Ad ameliorates anxious and depressive-like behaviors in the PD rat model through stimulating the AMPK/Sirt-1 signaling and blocking the NLRP3 inflammasome pathways in the PFC.

5.
Mol Neurobiol ; 2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39096445

RESUMEN

NLRP3 inflammasomes-mediated proinflammatory response and mitochondrial dysfunction play a critical role in the etiology and pathogenesis of Parkinson's disease. Negative regulation of NLRP3 inflammasome activation through mitophagy may be an important strategy to control NLRP3 inflammasome-mediated proinflammatory responses. Palmatine (PAL), an isoquinoline alkaloid found in various of plants, has potent pharmacological effects such as anti-inflammatory and anti-oxidation. However, the specific role of PAL in the pathology of Parkinson's disease remains unclear. In this study, we found that treatment with PAL improved motor deficits and reduced the loss of dopaminergic neurons in MPTP mice. Further results showed that PAL promoted mitophagy and inhibited the proinflammatory response mediated by NLRP3 inflammasomes. In addition, chloroquine (CQ, mitophagy inhibitor) attenuated the ameliorative effects of PAL on the motor deficits and dopaminergic neuron damage, as well as the inhibitory effect of PAL on NLRP3 inflammasome. Collectively, these results provide strong evidence that PAL ameliorates motor deficits and dopaminergic neuron death in Parkinson's disease, and the mechanism may be related to its inhibition of NLRP3 inflammasome activation via promoting mitophagy.

6.
J Neurol Sci ; 464: 123159, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39094434

RESUMEN

Activation of the NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome is a moderating factor between obesity and cognitive impairment in animals, but this has never been tested in humans following mild traumatic brain injury (mTBI). This is a retrospective cohort analysis of subjects enrolled at a single level 1 trauma center (n = 172). Participants completed Trail Making Test Part A and B (TMT-A and B) at six- and twelve-months, Blood samples were obtained within 24 h of mTBI and apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), caspase-1, interleukin-18 (IL-18), and IL-1ß were assayed. Obese participants (BMI = 30-34.9) were associated with higher IL-18 (p = 0.03) and IL-1ß (p = 0.05) and severely obese participants (BMI > 35.0) were associated with higher IL-1ß (p = 0.005) than healthy weight participants. IL-1ß was associated with TMT-A at six- (p = 0.01) and twelve-months (p = 0.03) and TMT-B at twelve-months (p = 0.046). The interaction of severely obese BMI and IL-1ß was associated with TMT-B at six- (p = 0.049) and twelve-months (p = 0.02). ASC (p = 0.03) and the interaction of ASC with severely obese BMI was associated with TMTB at six- (p = 0.02) and twelve-months (p = 0.02). Obesity may augment acute inflammasome response to mTBI and influence worse long-term cognitive outcomes up to one-year post-injury.

7.
J Adv Res ; 2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39103049

RESUMEN

INTRODUCTION: Osteoarthritis (OA) is a highly prevalent degenerative disease worldwide, and tumor necrosis factor (TNF-α) is closely associated with its development. Growth differentiation factor 11 (GDF11) has demonstrated anti-injury and anti-aging abilities in certain tissues; however, its regulatory role in OA remains unclear and requires further investigation. OBJECTIVES: To identify whether GDF11 can attenuate osteoarthritis. To exploring the the potential mechanism of GDF11 in alleviating osteoarthritis. METHODS: In this study, we cultured and stimulated mouse primary chondrocytes with or without TNF-α, analyzing the resulting damage phenotype through microarray analysis. Additionally, we employed GDF11 conditional knockout mice OA model to examine the relationship between GDF11 and OA. To investigate the target of GDF11's function, we utilized NLRP3 knockout mice and its inhibitor to verify the potential involvement of the NLRP3 inflammasome. RESULTS: Our in vitro experiments demonstrated that endogenous overexpression of GDF11 significantly inhibited TNF-α-induced cartilage matrix degradation and inflammatory expression in chondrocytes. Furthermore, loss of GDF11 led to NLRP3 inflammasome activation, inflammation, and metabolic dysfunction. In an in vivo surgically induced mouse model, intraarticular administration of recombinant human GDF11 alleviated OA pathogenesis, whereas GDF11 conditional knockout reversed this effect. Additionally, findings from the NLRP3-knockout DMM mouse model revealed that GDF11 exerted its protective effect by inhibiting NLRP3. CONCLUSION: These findings demonstrate the ability of GDF11 to suppress TNF-α-induced inflammation and cartilage degeneration by preventing mitochondrial dysfunction and inhibiting NLRP3 inflammasome activation, suggesting its potential as a promising therapeutic drug for osteoarthritis.

8.
Curr Eye Res ; : 1-10, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39104014

RESUMEN

PURPOSE: Diabetic retinopathy (DR) is one of the most severe and common complications caused by diabetic mellites. Inhibiting NLRP3 inflammasome activation displays a crucial therapeutic value in DR. Studies have shown that KCNQ1OT1 plays a critical role in regulating NLRP3 inflammasome activation and participates in the pathogenesis of diabetic complications. The present study aims to explore the role, and the potential mechanism of KCNQ1OT1 in regulating the activation of NLRP3 inflammasome in DR. METHODS: qRT-PCR was used to detect the expression of KCNQ1OT1, miR-17-5p, TXNIP, NLRP3, ASC, caspase-1 and IL-1ß. Western blot was performed to detect the expression of NLRP3, ASC, caspase-1, IL-1ß and TXNIP. Immunohistochemistry and immunostaining were performed to detect the expression of caspase-1. The levels of the inflammatory cytokine IL-1ß were determined by ELISA assay. FISH was used to detect the subcellular localisation of KCNQ1OT1. Bioinformatic analysis, luciferase reporter assay and in vitro studies were performed to elucidate the mechanism of KCNQ1OT1-mediated dysfunction. RESULTS: The expression of KCNQ1OT1 and the activation of NLRP3 inflammasome were increased in experimental DR models. KCNQ1OT1 knockdown alleviated NLRP3 inflammasome-associated molecules expression. In addition, KCNQ1OT1 was found to be localized mainly in the cytoplasm of Müller cells and facilitated TXNIP expression by acting as a miR-17-5p sponge. KCNQ1OT1 promoted the activation of NLRP3 inflammasome through miR-17-5p/TXNIP axis. CONCLUSIONS: In conclusion, it was found in this study that KCNQ1OT1 promoted the activation of NLRP3 inflammasome both in vitro and in vivo, which was mediated by miR-17-5p/TXNIP axis. KCNQ1OT1 might be an effective interference target for the prevention and treatment of DR.

9.
Front Endocrinol (Lausanne) ; 15: 1397301, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39104818

RESUMEN

Diabetic nephropathy (DN), a prevalent complication of diabetes mellitus (DM), is clinically marked by progressive proteinuria and a decline in glomerular filtration rate. The etiology and pathogenesis of DN encompass a spectrum of factors, including hemodynamic alterations, inflammation, and oxidative stress, yet remain incompletely understood. The NOD-like receptor pyrin domain-containing 3 (NLRP3) inflammasome, a critical component of the body's innate immunity, plays a pivotal role in the pathophysiology of DN by promoting the release of inflammatory cytokines, thus contributing to the progression of this chronic inflammatory condition. Recent studies highlight the involvement of the NLRP3 inflammasome in the renal pathology associated with DN. This article delves into the activation pathways of the NLRP3 inflammasome and its pathogenic implications in DN. Additionally, it reviews the therapeutic potential of traditional Chinese medicine (TCM) in modulating the NLRP3 inflammasome, aiming to provide comprehensive insights into the pathogenesis of DN and the current advancements in TCM interventions targeting NLRP3 inflammatory vesicles. Such insights are expected to lay the groundwork for further exploration into TCM-based treatments for DN.


Asunto(s)
Nefropatías Diabéticas , Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Humanos , Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/patología , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/antagonistas & inhibidores , Inflamasomas/metabolismo , Animales , Medicamentos Herbarios Chinos/uso terapéutico , Medicina Tradicional China/métodos
10.
Cell Chem Biol ; 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39106869

RESUMEN

The septin cytoskeleton is primarily known for roles in cell division and host defense against bacterial infection. Despite recent insights, the full breadth of roles for septins in host defense is poorly understood. In macrophages, Shigella induces pyroptosis, a pro-inflammatory form of cell death dependent upon gasdermin D (GSDMD) pores at the plasma membrane and cell surface protein ninjurin-1 (NINJ1) for membrane rupture. Here, we discover that septins promote macrophage pyroptosis induced by lipopolysaccharide (LPS)/nigericin and Shigella infection, but do not affect cytokine expression or release. We observe that septin filaments assemble at the plasma membrane, and cleavage of GSDMD is impaired in septin-depleted cells. We found that septins regulate mitochondrial dynamics and the expression of NINJ1. Using a Shigella-zebrafish infection model, we show that septin-mediated pyroptosis is an in vivo mechanism of infection control. The discovery of septins as a mediator of pyroptosis may inspire innovative anti-bacterial and anti-inflammatory treatments.

11.
Eur J Immunol ; : e2451135, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39086059

RESUMEN

Inflammasomes are essential for host defense, recognizing foreign or stress signals to trigger immune responses, including maturation of IL-1 family cytokines and pyroptosis. Here, NLRP1 is emerging as an important sensor of viral infection in barrier tissues. NLRP1 is activated by various stimuli, including viral double-stranded (ds) RNA, ribotoxic stress, and inhibition of dipeptidyl peptidases 8 and 9 (DPP8/9). However, certain viruses, most notably the vaccinia virus, have evolved strategies to subvert inflammasome activation or effector functions. Using the modified vaccinia virus Ankara (MVA) as a model, we investigated how the vaccinia virus inhibits inflammasome activation. We confirmed that the early gene F1L plays a critical role in inhibiting NLRP1 inflammasome activation. Interestingly, it blocks dsRNA and ribotoxic stress-dependent NLRP1 activation without affecting its DPP9-inhibition-mediated activation. Complementation and loss-of-function experiments demonstrated the sufficiency and necessity of F1L in blocking NLRP1 activation. Furthermore, we found that F1L-deficient, but not wild-type MVA, induced ZAKα activation. Indeed, an F1L-deficient virus was found to disrupt protein translation more prominently than an unmodified virus, suggesting that F1L acts in part upstream of ZAKα. These findings underscore the inhibitory role of F1L on NLRP1 inflammasome activation and provide insight into viral evasion of host defenses and the intricate mechanisms of inflammasome activation.

12.
Zhongguo Gu Shang ; 37(7): 684-8, 2024 Jul 25.
Artículo en Chino | MEDLINE | ID: mdl-39104069

RESUMEN

OBJECTIVE: To investigate the changes and clinical significance of NOD like receptor protein 3 (NLRP3) inflammasomes and related factors in patients with spinal fractures complicated with acute spinal cord injury (SCI). METHODS: Eighty-six spinal fracture patients complicated with acute SCI admitted to hospital from June 2019 to March 2022 were selected as SCI group, There were 48 males and 38 females, with an average age of (43.48±6.58) years old. And 100 healthy volunteers who underwent physical examination during the same time were selected as control group, including 56 males patients and 44 females patients, with an average age of (45.13±6.43) years old. Peripheral blood mononuclear cell (PBMC) were collected, and the mRNA expressions of NLRP3 and Caspase-1 were detected. Serum was collected and the levels of interleukin (IL)- 1ß, IL-18 were detected. According to Frankel's grade, the SCI group was divided into complete injury patients and incomplete injury patients, and according to the Japanese Orthopedic Society (JOA) grade, the SCI group was divided into good prognosis group and poor prognosis group. The difference of NLRP3, Caspase-1, IL-1ß, IL-18 among groups were compared, the influencing factors for poor prognosis in SCI patients was analyzed by Logistic regression. RESULTS: The mRNA expression levels of NLRP3 (1.41±0.33) and Caspase-1 (1.44±0.35) in PBMC and the levels of IL-1ß(45.34±13.22) pg·ml-1, IL-18(40.95±8.77) pg·ml-1 in serum of SCI group were higher than those of the control group[(1.00±0.19), (1.00±0.16), (16.58±4.24) pg·ml-1, (12.57±3.68) pg·ml-1] (P<0.05). The mRNA expression levels of NLRP3(1.63±0.34) and Caspase-1 (1.67±0.27) in PBMC and the levels of IL-1ß(51.09±11.10) pg·ml-1, IL-18 (47.65±7.93) pg·ml-1 in serum of patients with complete injury in the SCI group were higher than those of patients with incomplete injury [(1.31±0.27), (1.34±0.33), (42.85±13.36) pg·ml-1, (38.05±7.48) pg·ml-1](P<0.05). The mRNA expression levels of NLRP3 (1.66±0.31) and Caspase-1 (1.72±0.31)in PBMC and the levels of IL-1ß(51.21±11.31) pg·ml-1, IL-18 (45.70±7.25) pg·ml-1 in serum, the proportion of complete injury(21 patients), and the proportion of spinal cord edema or bleeding of patients(15 patients) with poor prognosis in the SCI group were higher than those of patients with good prognosis[(1.28±0.26), (1.37±0.36), (42.79±13.25) pg·ml-1、(38.90±8.63) pg·ml-1, 5、20 cases](P<0.05). Complete injury and the mRNA expression of NLRP3 in PBMC were the influencing factors for poor prognosis in the SCI group (P<0.05). CONCLUSION: The activation of NLRP3 inflammasomes in patients with spinal fractures complicated with acute SCI is associated with worsening injury and poor prognosis, and NLRP3 expression can serve as a marker for evaluating prognosis.


Asunto(s)
Caspasa 1 , Inflamasomas , Interleucina-18 , Interleucina-1beta , Proteína con Dominio Pirina 3 de la Familia NLR , Traumatismos de la Médula Espinal , Fracturas de la Columna Vertebral , Humanos , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Masculino , Femenino , Traumatismos de la Médula Espinal/complicaciones , Traumatismos de la Médula Espinal/sangre , Adulto , Persona de Mediana Edad , Interleucina-18/sangre , Interleucina-1beta/sangre , Interleucina-1beta/genética , Caspasa 1/sangre , Fracturas de la Columna Vertebral/sangre , Fracturas de la Columna Vertebral/complicaciones , Leucocitos Mononucleares/metabolismo , Pronóstico , Relevancia Clínica
13.
Front Aging Neurosci ; 16: 1388654, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39109268

RESUMEN

Background: Blood inflammatory biomarkers have emerged as important tools for diagnosing, assessing treatment responses, and predicting neurodegenerative diseases. This study evaluated the associations between blood inflammatory biomarkers and brain tissue volume loss in elderly people. Methods: This study included 111 participants (age 67.86 ± 8.29 years; 32 men and 79 women). A battery of the following blood inflammatory biomarkers was measured, including interleukin 1-beta (IL1ß), NACHT, LRR, and PYD domains-containing protein 3 (NLRP3), monomer Aß42 (mAß), oligomeric Aß42 (oAß), miR155, neurite outgrowth inhibitor A (nogo-A), phosphorylated tau (P-tau), and total tau (T-tau). Three-dimensional T1-weight images (3D T1WI) of all participants were prospectively obtained and segmented into gray matter and white matter to measure the gray matter volume (GMV), white matter volume (WMV), and gray-white matter boundary tissue volume (gwBTV). The association between blood biomarkers and tissue volumes was assessed using voxel-based and region-of-interest analyses. Results: GMV and gwBTV significantly decreased as the levels of IL1ß and T-tau increased, while no significant association was found between the level of P-tau and the three brain tissue volumes. Three brain tissue volumes were negatively correlated with the levels of IL1ß, P-tau, and T-tau in the hippocampus. Specifically, IL1ß and T-tau levels showed a distinct negative association with the three brain tissue volume losses in the hippocampus. In addition, gwBTV was negatively associated with the level of NLRP3. Conclusion: The observed association between brain tissue volume loss and elevated levels of IL1ß and T-tau suggests that these biomarkers in the blood may serve as potential biomarkers of cognitive impairment in elderly people. Thus, IL1ß and T-tau could be used to assess disease severity and monitor treatment response after diagnosis in elderly people who are at risk of cognitive decline.

14.
Cell Mol Immunol ; 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39107476

RESUMEN

Everyone knows that an infection can make you feel sick. Although we perceive infection-induced changes in metabolism as a pathology, they are a part of a carefully regulated process that depends on tissue-specific interactions between the immune system and organs involved in the regulation of systemic homeostasis. Immune-mediated changes in homeostatic parameters lead to altered production and uptake of nutrients in circulation, which modifies the metabolic rate of key organs. This is what we experience as being sick. The purpose of sickness metabolism is to generate a metabolic environment in which the body is optimally able to fight infection while denying vital nutrients for the replication of pathogens. Sickness metabolism depends on tissue-specific immune cells, which mediate responses tailored to the nature and magnitude of the threat. As an infection increases in severity, so do the number and type of immune cells involved and the level to which organs are affected, which dictates the degree to which we feel sick. Interestingly, many alterations associated with metabolic disease appear to overlap with immune-mediated changes observed following infection. Targeting processes involving tissue-specific interactions between activated immune cells and metabolic organs therefore holds great potential for treating both people with severe infection and those with metabolic disease. In this review, we will discuss how the immune system communicates in situ with organs involved in the regulation of homeostasis and how this communication is impacted by infection.

15.
Arch Toxicol ; 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39120795

RESUMEN

Arsenic, a well-known hazardous toxicant, has been found in recent years to act as an environmental endocrine disruptor that accumulates in various endocrine organs, impeding the normal physiological functions of these organs and altering hormone secretion levels. Moreover, some research has demonstrated a correlation between arsenic exposure and thyroid functions, suggesting that arsenic has a toxicological effect on the thyroid gland. However, the specific type of thyroid gland damage caused by arsenic exposure and its potential molecular mechanism remain poorly understood. In this study, the toxic effects of sodium arsenite (NaAsO2) exposure at different doses (0, 2.5, 5.0 and 10.0 mg/kg bw) and over different durations (12, 24 and 36 weeks) on thyroid tissue and thyroid hormone levels in Sprague‒Dawley (SD) rats were investigated, and the specific mechanisms underlying the effects were also explored. Our results showed that NaAsO2 exposure can cause accumulation of this element in the thyroid tissue of rats. More importantly, chronic exposure to NaAsO2 significantly upregulated the expression of NLRP3 inflammasome-related proteins in thyroid tissue, leading to pyroptosis of thyroid cells and subsequent development of thyroid dysfunction, inflammatory injury, epithelial-mesenchymal transition (EMT), and even fibrotic changes in the thyroid glands of SD rats. These findings increase our understanding of the toxic effects of arsenic exposure on the thyroid gland and its functions.

16.
Mol Cell Neurosci ; 130: 103956, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39097250

RESUMEN

Microglia are immune cells that play important roles in the formation of the innate immune response within the central nervous system (CNS). The NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome is a multiple protein complex that is crucial for innate immunity, and excessive activation of the inflammasome for various reasons contributes to the pathogenesis of neurodegenerative diseases (NDs). ß2-adrenoceptor agonists have become the focus of attention in studies on NDs due to the high synthesis of ß2-adrenoceptors in the central nervous system (CNS). Promising results have been obtained from these studies targeting anti-inflammatory and neuroprotective effects. Formoterol is an effective, safe for long-term use, and FDA-approved ß2-adrenoceptor agonist with demonstrated anti-inflammatory features in the CNS. In this study, we researched the effects of formoterol on LPS/ATP-stimulated NLRP3 inflammasome activation, pyroptosis, NF-κB, autophagy, and ESCRT-III-mediated plasma membrane repair pathways in the N9 microglia cells. The results showed that formoterol, through the IκBα/NF-κB axis, significantly inhibited NLRP3 inflammasome activation, reduced the level of active caspase-1, secretion of IL-1ß and IL-18 proinflammatory cytokine levels, and the levels of pyroptosis. Additionally, we showed that formoterol activates autophagy, autophagosome formation, and ESCRT-III-mediated plasma membrane repair, which are significant pathways in the inhibition of NLRP3 inflammasome activation and pyroptosis. Our study suggests that formoterol efficaciously prevents the NLRP3 inflammasome activation and pyroptosis in microglial cells regulation through IκBα/NF-κB, autophagy, autophagosome formation, and ESCRT-III-mediated plasma membrane repair.

17.
J Ethnopharmacol ; 335: 118680, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39117021

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Ulcerative colitis (UC) is a disease involving the enteric canal which is characterised by chronisch inflammatory reaction. Coptisine (COP), the distinctive component of Coptis chinensis Franch., is famous for its anti-inflammation, antioxidation, anti-bacteria, and anti-cancer. Earlier researches certified that COP is a prospective remedy for colitis, but the mechanism of colitis and the therapeutical target of COP are deficiently elucidated. AIM OF THIS STUDY: In this follow-up study, we adopted dextran sulfate sodium (DSS)-elicited UC model to further elucidate the possible mechanism of COP on UC in mice. MATERIALS AND METHODS: COP and the positive drug sulfasalazine (SASP) were administered by oral gavage in DSS-induced colitis mouse model. Oxidative stress, inflammatory cytokines, intestinal barrier permeability, protein expression of the TXNIP/NLRP3 inflammasome pathway and intestinal microbiome structure were assessed. RESULTS: Among this investigation, our team discovered that COP could mitigate DSS-elicited UC in murines, with prominent amelioration in weight loss, disease activity index, intestinal permeability (serum diamine oxidase and D-lactate), contracted colonal length and histologic alterations. Furthermore, COP greatly lowered the generation of pro-inflammatory factors, malondialdehyde (MDA) activity and reactive oxygen species (ROS) level, while increased superoxide dismutase (SOD) activity in colonal tissues. Additionally, COP downmodulated the proteic expressions of thioredoxin-interacting protein (TXNIP), NOD-like receptor protein 3 (NLRP3), apoptosis-associated speck-like protein (ASC), caspase-1, IL-1ß and IL-18. Enteric microbiome sequencing displayed that DSS and COP tremendously influenced the constitution and diversity of enteric microbes in DSS-elicited UC murines. Besides, COP elevated the abundance of probiotic bacteria Bacteroidota, Akkermansia_muciniphila and Bacteroides_acidifaciens, lowered the proportions of potential pathogenic bacteria, such as Lachnospiraceae, Acetatifactor_muris, Clostridium_XlVa, Alistipes and Oscillibacter, and reduced the ratio of Bacillota/Bacteroidota, which vastly helped to reverse the enteric microbiome to a balanceable condition. Alterations in these bacteria were strongly correlated with the colitis relative index. CONCLUSION: The mechanism of COP against UC is connected with the suppression of TXNIP/NLRP3 inflammasome signalling pathway and the adjustment of the enteric microbiome profiles. The proofs offer new understandings upon the anti-UC function of COP, which might be a prospective candidate against UC.

18.
Int J Mol Med ; 54(4)2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39092571

RESUMEN

Following the publication of the above article, the authors drew to the attention of the Editorial Office that, after having reviewed all the figures and the data of their drawing software, they discovered that the pictures in the 'Control' and 'DEX' groups of Fig. 4D on p. 904 had been incorrectly imported into Fig. 6 on p. 905 when assembling this figure, effectively replacing the original and correctly placed images in Fig. 6D and E. The original (and correct) version of Fig. 6 is shown on the next page. All the authors agree with the publication of this Corrigendum, and express their gratitude to the Editor of International Journal of Molecular Medicine for allowing them the opportunity to publish this; furthermore, they apologize to the readership of the Journal for any inconvenience caused. [International Journal of Molecular Medicine 41: 899­907, 2018; DOI: 10.3892/ijmm.2017.3297].

19.
Surv Ophthalmol ; 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39097172

RESUMEN

We provide an overview of the expanding literature on the role of cytokines and immune mediators in pathophysiology of age-related macular degeneration (AMD). Although many immunological mediators have been linked to AMD pathophysiology, the broader mechanistic picture remains unclear with substantial variations in the levels of evidence supporting these mediators. Therefore, we reviewed the literature considering the varying levels of supporting evidence. A Medical Subject Headings (MeSH) term-based literature research was conducted in September, 2023, consisting of the MeSH terms "cytokine" and "Age-related macular degeneration" connected by the operator "AND". After screening the publications by title, abstract, and full text, a total of 146 publications were included. The proinflammatory cytokines IL-1ß (especially in basic research studies), IL-6, IL-8, IL-18, TNF-α, and MCP-1 are the most extensively characterised cytokines/chemokines, highlighting the role of local inflammasome activation and altered macrophage function in the AMD pathophysiology. Among the antiinflammatory mediators IL-4, IL-10, and TGF-ß were found to be the most extensively characterised, with IL-4 driving and IL-10 and TGF-ß suppressing disease progression. Despite the extensive literature on this topic, a profound understanding of AMD pathophysiology has not yet been achieved. Therefore, further studies are needed to identify potential therapeutic targets, followed by clinical studies.

20.
Chem Pharm Bull (Tokyo) ; 72(8): 751-761, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39143008

RESUMEN

Gout is the second largest metabolic disease worldwide after diabetes, with acute gouty arthritis as most common symptom. Xanthine oxidase (XOD) and the NOD like receptor-3 (NLRP3) inflammasome are the key targets for acute gout treatment. Chlorogenic acid has been reported with a good anti-inflammatory activity, and Apigenin showed an excellent potential in XOD inhibition. Therefore, a series of chlorogenic acid-apigenin (CA) conjugates with varying linkers were designed and synthesized as dual XOD/NLRP3 inhibitors, and their activities both in XOD and NLRP3 inhibition were evaluated. An in vitro study of XOD inhibitory activity revealed that the majority of CA conjugates exhibited favorable XOD inhibitory activity. Particularly, the effects of compounds 10c and 10d, with an alkyl linker on the apigenin moiety, were stronger than that of allopurinol. The selected CA conjugates also demonstrated a favorable anti-inflammatory activity in RAW264.7 cells. Furthermore, compound 10d, which showed the optimal activity both in XOD inhibition and anti-inflammatory, was chosen and its inhibitory ability on NLRP3 and related proinflammatory cytokines was further tested. Compound 10d effectively reduced NLRP3 expression and the secretion of interluekin-1ß (IL-1ß) and tumor necrosis factor-α (TNF-α) with an activity stronger than the positive control isoliquiritigenin (ISL). Based on these findings, compound 10d exhibits dual XOD/NLRP3 inhibitory activity and, therefore, the therapeutic effects on acute gout is worthy of further study.


Asunto(s)
Apigenina , Ácido Clorogénico , Supresores de la Gota , Proteína con Dominio Pirina 3 de la Familia NLR , Animales , Ratones , Apigenina/farmacología , Apigenina/química , Apigenina/síntesis química , Proteína con Dominio Pirina 3 de la Familia NLR/antagonistas & inhibidores , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Células RAW 264.7 , Ácido Clorogénico/farmacología , Ácido Clorogénico/química , Ácido Clorogénico/síntesis química , Supresores de la Gota/farmacología , Supresores de la Gota/síntesis química , Supresores de la Gota/química , Supresores de la Gota/uso terapéutico , Relación Estructura-Actividad , Xantina Oxidasa/antagonistas & inhibidores , Xantina Oxidasa/metabolismo , Estructura Molecular , Gota/tratamiento farmacológico , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Antiinflamatorios/síntesis química , Antiinflamatorios/farmacología , Antiinflamatorios/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA