Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27.304
Filtrar
1.
Biomaterials ; 312: 122721, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39106817

RESUMEN

Silver nanoparticles (AgNPs) are a potential antiviral agent due to their ability to disrupt the viral particle or alter the virus metabolism inside the host cell. In vitro, AgNPs exhibit antiviral activity against the most common human respiratory viruses. However, their capacity to modulate immune responses during respiratory viral infections has yet to be explored. This study demonstrates that administering AgNPs directly into the lungs prior to infection can reduce viral loads and therefore virus-induced cytokines in mice infected with influenza virus or murine pneumonia virus. The prophylactic effect was diminished in mice with depleted lymphoid cells. We showed that AgNPs-treatment resulted in the recruitment and activation of lymphocytes in the lungs, particularly natural killer (NK) cells. Mechanistically, AgNPs enhanced the ability of alveolar macrophages to promote both NK cell migration and IFN-γ production. By contrast, following infection, in mice treated with AgNPs, NK cells exhibited decreased activation, indicating that these nanoparticles can regulate the potentially deleterious activation of these cells. Overall, the data suggest that AgNPs may possess prophylactic antiviral properties by recruiting and controlling the activation of lymphoid cells through interaction with alveolar macrophages.


Asunto(s)
Células Asesinas Naturales , Pulmón , Nanopartículas del Metal , Infecciones por Orthomyxoviridae , Plata , Animales , Plata/química , Plata/farmacología , Nanopartículas del Metal/química , Pulmón/virología , Pulmón/patología , Pulmón/efectos de los fármacos , Infecciones por Orthomyxoviridae/prevención & control , Infecciones por Orthomyxoviridae/tratamiento farmacológico , Infecciones por Orthomyxoviridae/virología , Ratones , Células Asesinas Naturales/efectos de los fármacos , Macrófagos Alveolares/efectos de los fármacos , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/virología , Ratones Endogámicos C57BL , Linfocitos/efectos de los fármacos , Linfocitos/metabolismo , Antivirales/farmacología , Antivirales/uso terapéutico , Femenino , Activación de Linfocitos/efectos de los fármacos
2.
Biomaterials ; 312: 122736, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39121728

RESUMEN

The resurgence of influenza viruses as a significant global threat emphasizes the urgent need for innovative antiviral strategies beyond existing treatments. Here, we present the development and evaluation of a novel super-multivalent sialyllactosylated filamentous phage, termed t-6SLPhage, as a potent entry blocker for influenza A viruses. Structural variations in sialyllactosyl ligands, including linkage type, valency, net charge, and spacer length, were systematically explored to identify optimal binding characteristics against target hemagglutinins and influenza viruses. The selected SLPhage equipped with optimal ligands, exhibited exceptional inhibitory potency in in vitro infection inhibition assays. Furthermore, in vivo studies demonstrated its efficacy as both a preventive and therapeutic intervention, even when administered post-exposure at 2 days post-infection, under 4 lethal dose 50% conditions. Remarkably, co-administration with oseltamivir revealed a synergistic effect, suggesting potential combination therapies to enhance efficacy and mitigate resistance. Our findings highlight the efficacy and safety of sialylated filamentous bacteriophages as promising influenza inhibitors. Moreover, the versatility of M13 phages for surface modifications offers avenues for further engineering to enhance therapeutic and preventive performance.


Asunto(s)
Antivirales , Animales , Antivirales/farmacología , Antivirales/química , Humanos , Perros , Infecciones por Orthomyxoviridae/prevención & control , Infecciones por Orthomyxoviridae/virología , Infecciones por Orthomyxoviridae/tratamiento farmacológico , Virus de la Influenza A/efectos de los fármacos , Virus de la Influenza A/fisiología , Células de Riñón Canino Madin Darby , Inovirus/efectos de los fármacos , Oseltamivir/farmacología , Oseltamivir/química , Ratones , Gripe Humana/virología , Gripe Humana/tratamiento farmacológico , Ratones Endogámicos BALB C , Ácido N-Acetilneuramínico/química , Ácido N-Acetilneuramínico/metabolismo , Femenino
3.
Bull Emerg Trauma ; 12(2): 47-57, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39224473

RESUMEN

Objective: This study aimed to compare the clinical risks and outcomes of COVID-19 and influenza. Methods: The search for relevant articles was conducted using both a database search method and a manual search, which involved searching through the reference lists of articles related to the topic for additional studies. The Quality assessment was carried out using the Newcastle Ottawa tool, and the data analysis was conducted using the Review Manager Software (RevMan 5.4.1). Results: The meta-analysis results indicated that COVID-19 patients had similar lengths of hospital stays (SMD: -0.25; 95% CI: -0.60-0.11; p=0.17). However, COVID-19 patients had significantly higher mortality rates (RR: 0.28; 95% CI: 0.21-0.37; p<0.0001), in-hospital complications (RR: 0.57; 95% CI: 0.50-0.65; p<0.00001), intensive care unit (ICU) admissions (OR: 0.48; 95% CI: 0.37-0.61; p<0.00001), length of ICU stay (SMD: -0.45; 95% CI: -0.83-0.06; p=0.02), and mechanical ventilation use (OR: 0.36; 95% CI: 0.28-0.46; p<0.00001). Conclusion: The findings suggested that COVID-19 was more severe than influenza. Therefore, "flu-like" symptoms should not be dismissed without a clear diagnosis, especially during the winter when influenza is more prevalent.

4.
Open Forum Infect Dis ; 11(9): ofae456, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39220659

RESUMEN

Background: In China, the 2022-2023 influenza season began earlier and was characterized by higher levels of influenza activity and co-circulation of various respiratory pathogens compared with seasons before the coronavirus disease 2019 (COVID-19) pandemic. Timely and precise estimates of influenza vaccine effectiveness (IVE) against infections can be used to guide public health measures. Methods: A test-negative study was conducted to estimate IVE against laboratory-confirmed influenza using data from the CHinese Electronic health Records Research in Yinzhou (CHERRY) study that prospectively integrated laboratory, vaccination, and health administrative data in Yinzhou, southern China. We included patients who presented influenza-like illness and received nucleic acid tests and/or antigen tests between October 2023 and March 2024. Estimates of IVE were adjusted for age, gender, month of specimen submitted, chronic comorbidities, and hospitalization status. Results: A total of 205 028 participants, including 96 298 influenza cases (7.6% vaccinated) and 108 730 influenza-negative controls (13.4% vaccinated), were eligible for this analysis. The estimates of IVE were 49.4% (95% CI, 47.8%-50.9%), 41.9% (95% CI, 39.8%-44.0%), and 59.9% (95% CI, 57.9%-61.9%) against overall influenza, influenza A, and influenza B, respectively. A lower IVE was observed for individuals aged 7-17 years (38.6%), vs 45.8% for 6 months-6 years, 46.7% for 18-64 years, and 46.1% for ≥65 years. Vaccination reduced the risk of infection by 44.4% among patients with chronic comorbidities. IVEs varied by epidemic weeks with the changes in influenza activity levels and the switch of dominant influenza strains. Conclusions: Influenza vaccination in the 2023-2024 season was protective against infection for the entire population.

5.
Vaccine X ; 20: 100543, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39221180

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease (COVID-19), rapidly spread across the globe in 2019. With the emergence of the Omicron variant, COVID-19 shifted into an endemic phase. Given the anticipated rise in cases during the fall and winter seasons, the strategy of implementing seasonal booster vaccines for COVID-19 is becoming increasingly valuable to protect public health. This practice already exists for seasonal influenza vaccines to combat annual influenza seasons. Our goal was to investigate an easily modifiable vaccine platform for seasonal use against SARS-CoV-2. In this study, we evaluated the genetically modified influenza virus ΔNA(RBD) as an intranasal vaccine candidate for COVID-19. This modified virus was engineered to replace the coding sequence for the neuraminidase (NA) protein with a membrane-anchored form of the receptor binding domain (RBD) protein of SARS-CoV-2. We designed experiments to assess the protection of ΔNA(RBD) in K18-hACE2 mice using lethal (Delta) and non-lethal (Omicron) challenge models. Controls of COVID-19 mRNA vaccine and our lab's previously described intranasal virus like particle vaccine were used as comparisons. Immunization with ΔNA(RBD) expressing ancestral RBD elicited high anti-RBD IgG levels in the serum of mice, high anti-RBD IgA in lung tissue, and improved survival after Delta variant challenge. Modifying ΔNA(RBD) to express Omicron variant RBD shifted variant-specific antibody responses and limited viral burden in the lungs of mice after Omicron variant challenge. Overall, this data suggests that ΔNA(RBD) could be an effective intranasal vaccine platform that generates mucosal and systemic immunity towards SARS-CoV-2.

6.
Phytochemistry ; : 114270, 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39222866

RESUMEN

The genus Valeriana is used in traditional Chinese medicine to treat nervous disorders, sleep disorders, epilepsy and skin diseases. A large number of sesquiterpenoids from this genus have been found to exhibit anti-inflammatory, antiproliferative, anti-influenza virus and neuroprotective activities. In order to discover more sesquiterpenoids with structural diversity and bioactivity from Valeriana plants, fifteen sesquiterpenoids, including ten undescribed ones, valernaenes A-J (1, 5-7, 9-11 and 13-15), were isolated from the roots and rhizomes of Valeriana officinalis var. latifolia. Their structures were elucidated by extensive spectroscopic techniques (1D, 2D NMR and HRESIMS) and electronic circular dichroism (ECD) calculation. Structurally, valernaenes C (6) and D (7) were two caryophyllane-type norsesquiterpenoids. In addition, valernaenes A (1) and F (10) exhibited anti-influenza virus activity with EC50 values of 38.76 ± 1.44 and 23.01 ± 4.89 µM, respectively. Furthermore, caryophyllenol A (2) showed promoting effect on nerve growth factor (NGF)-mediated neurite outgrowth in PC12 cells with differentiation rate of 12.26% at a concentration of 10 µM. This study not only enriched the structural diversity of sesquiterpenoids in the genus Valeriana, but also provided theoretical basis for the discovery of anti-influenza virus and neuroprotective agents from this genus.

7.
J Am Coll Cardiol ; 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39222895

RESUMEN

BACKGROUND: Influenza virus may cause severe infection in patients with heart failure. It is known that influenza infection is associated with increased morbidity and mortality in patients with heart failure. However, less is known about the excess burden of morbidity and mortality caused by influenza infection in patients with heart failure at a population level. OBJECTIVES: To estimate the excess burden of morbidity and mortality as determined by annual excess number of deaths and hospitalizations associated with influenza infection in patients with heart failure in Denmark. METHODS: We collected nationwide data on weekly number of deaths and hospitalizations among patients with heart failure in Denmark and weekly estimates of influenza circulation as determined by the proportion of positive influenza samples analyzed at all Danish Hospitals. These data were correlated in a time series linear regression model and this model was used to estimate the annual excess number of deaths and hospitalizations attributable to influenza circulation among patients with heart failure in Denmark. The model also included data on weekly mean temperature and restricted cubic spline terms to account for seasonality and trends over time. RESULTS: Data were available from 2010 to 2018 encompassing 8 influenza seasons with an annual mean of 25180 samples tested for influenza at Danish hospitals. Among an annual mean of 70570 patients with heart failure, our model estimated that influenza activity was associated with an annual excess of 250 all cause deaths (95%CI 144-489) corresponding to 2.6% of all all-cause deaths (95%CI 1.5% - 5.1%) in patients with heart failure. Similarly, influenza activity was associated with an annual excess of 115 cardiovascular deaths (95%CI 62-244) corresponding to 2.9% of all cardiovascular deaths (95%CI 1.5% - 6.1%). Influenza activity was also associated with an annual excess of 251 hospitalizations for pneumonia or influenza (95%CI 107-533) corresponding to 5.0% of all hospitalizations for pneumonia or influenza. CONCLUSIONS: Our results indicate that influenza activity likely causes substantial morbidity and mortality among patients with heart failure. Notably, our study suggests that approximately 2.6% of all deaths and 5.0% of all hospitalizations with influenza or pneumonia may be attributed to influenza in patients with heart failure.

8.
J Am Geriatr Soc ; 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39230284

RESUMEN

BACKGROUND: Influenza vaccines are available to help protect persons aged ≥65 years, who experience thousands of influenza hospitalizations annually. Because some influenza vaccines may work better than others, we sought to assess benefit of high-dose (HD), adjuvanted (ADJ), and recombinant (RIV) influenza vaccines ("enhanced influenza vaccines") compared with standard-dose unadjuvanted influenza vaccines (SD) and with one another for prevention of influenza-associated hospitalizations among persons aged ≥65 years. METHODS: We searched MEDLINE, Embase, CINAHL, Scopus, and Cochrane Library to identify randomized or observational studies published between January 1990 and October 2023 and reporting relative vaccine effectiveness (rVE) of HD, ADJ, or RIV for prevention of influenza-associated hospitalizations among adults aged ≥65 years. We extracted study data, assessed risk of bias, and conducted random-effects network meta-analysis and meta-regression. RESULTS: We identified 32 studies with 90 rVE estimates from five randomized and 27 observational studies (71,459,918 vaccinated participants). rVE estimates varied across studies and influenza seasons. Pooled rVE from randomized studies was 20% (95% CI -54 to 59) and 25% (95% CI -19 to 53) for ADJ and HD compared with SD, respectively; rVE was 6% (95% CI -109 to 58) for HD compared with ADJ; these differences were not statistically significant. In observational studies, ADJ, HD, and RIV conferred modestly increased protection compared with SD (rVE ranging from 10% to 19%), with no significant differences between HD, ADJ, and RIV. With enhanced vaccines combined, rVE versus SD was 18% (95% CI 3 to 32) from randomized and 11% (95% CI 8 to 14) from observational evidence. Meta-regression of observational studies suggested that those requiring laboratory confirmation of influenza reported greater benefit of enhanced vaccines. CONCLUSIONS: HD, ADJ, and RIV provided stronger protection than SD against influenza hospitalizations among older adults. No differences in benefit were observed in comparisons of enhanced influenza vaccines with one another.

9.
J Virol ; : e0011924, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39225467

RESUMEN

Between 2013 and 2018, the novel A/Anhui/1/2013 (AH/13)-lineage H7N9 virus caused at least five waves of outbreaks in humans, totaling 1,567 confirmed human cases in China. Surveillance data indicated a disproportionate distribution of poultry infected with this AH/13-lineage virus, and laboratory experiments demonstrated that this virus can efficiently spread among chickens but not among Pekin ducks. The underlying mechanism of this selective transmission remains unclear. In this study, we demonstrated the absence of Neu5Gc expression in chickens across all respiratory and gastrointestinal tissues. However, Neu5Gc expression varied among different duck species and even within the tissues of the same species. The AH/13-lineage viruses exclusively bind to acetylneuraminic acid (Neu5Ac), in contrast to wild waterbird H7 viruses that bind both Neu5Ac and N-glycolylneuraminic acid (Neu5Gc). The level of Neu5Gc expression influences H7 virus replication and facilitates adaptive mutations in these viruses. In summary, our findings highlight the critical role of Neu5Gc in affecting the host range and interspecies transmission dynamics of H7 viruses among avian species.IMPORTANCEMigratory waterfowl, gulls, and shorebirds are natural reservoirs for influenza A viruses (IAVs) that can occasionally spill over to domestic poultry, and ultimately humans. This study showed wild-type H7 IAVs from waterbirds initially bind to glycan receptors terminated with N-acetylneuraminic acid (Neu5Ac) or N-glycolylneuraminic acid (Neu5Gc). However, after enzootic transmission in chickens, the viruses exclusively bind to Neu5Ac. The absence of Neu5Gc expression in gallinaceous poultry, particularly chickens, exerts selective pressure, shaping IAV populations, and promoting the acquisition of adaptive amino acid substitutions in the hemagglutinin protein. This results in the loss of Neu5Gc binding and an increase in virus transmissibility in gallinaceous poultry, particularly chickens. Consequently, the transmission capability of these poultry-adapted H7 IAVs in wild water birds decreases. Timely intervention, such as stamping out, may help reduce virus adaptation to domestic chicken populations and lower the risk of enzootic outbreaks, including those caused by IAVs exhibiting high pathogenicity.

11.
Emerg Microbes Infect ; : 2399970, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39221587

RESUMEN

Multiple genotypes of highly pathogenic avian influenza (HPAI) H5 clade 2.3.4.4b viruses have caused epizootics in wild birds and poultry. The HPAI H5N1 genotype C virus caused a modest epizootic, whereas the occurrence of the HPAI H5N1 genotype AB virus in 2021 resulted in the largest avian influenza epizootic in Europe to date. Here we studied the pathogenicity of two HPAI H5N1 viruses by experimentally infecting chickens, Pekin ducks, Eurasian wigeons and Barnacle geese. Our study demonstrates that pathogenicity of the H5N1-2021-AB virus is lower in Pekin ducks, Eurasian wigeons and Barnacle geese compared to the H5N1-2020-C virus, whereas virus shedding was high for both viruses. After inoculation with H5N1-2021-C viral antigen expression was higher in the brain of Pekin ducks, Eurasian wigeons and Barnacle geese, which caused higher mortality compared to inoculation with H5N1-2021-AB virus. Subclinical infections occurred in Pekin ducks and Eurasian wigeons and mortality was reduced in Barnacle geese after inoculation with H5N1-2021-AB virus while H5N1-2020-C virus caused high morbidity and mortality in these species. This H5N1-2021-AB virus trait may have contributed to efficient spread of the virus in wild bird populations. Therefore, high mortality, virus shedding and long-lasting viral antigen expression found in Barnacle geese may have increased the risk for introduction into poultry.

12.
Emerg Microbes Infect ; : 2400530, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39221652

RESUMEN

AbstractMultiple genetic variants of H1 and H3 influenza A viruses (IAVs) circulate concurrently in US swine farms. Understanding the spatial transmission patterns of IAVs among these farms is crucial for developing effective control strategies and mitigating the emergence of novel IAVs. In this study, we analyzed 1,909 IAV genomic sequences from 785 US swine farms, representing 33 farming systems across 12 states, primarily in the Midwest from 2004 to 2023. Bayesian phylogeographic analyses were performed to identify the dispersal patterns of both H1 and H3 virus genetic lineages and to elucidate their spatial migration patterns within and between different systems. Our results showed that both intra-system and inter-system migrations occurred between the swine farms, with intra-system migrations being more frequent. However, migration rates for H1 and H3 IAVs were similar between intra-system and inter-system migration events. Spatial migration patterns aligned with expected pig movement across different compartments of swine farming systems. Sow-Farms were identified as key sources of viruses, with bi-directional migration observed between these farms and other parts of the system, including Wean-to-Finish and Gilt-Development-Units. High intra-system migration was detected across farms in the same region, while spread to geographically distant intra- and inter- system farms was less frequently. These findings suggest that prioritizing resources towards systems frequently confronting influenza problems and targeting pivotal source farms, such as sow farms, could be an effective strategy for controlling influenza in US commercial swine operations.

13.
Emerg Microbes Infect ; : 2400546, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39221898

RESUMEN

AbstractThe vast majority of data obtained from sequence analysis of influenza A viruses (IAVs) have revealed that nonstructural 1 (NS1) proteins from H1N1 swine, H3N8 equine, H3N2 avian and the correspondent subtypes from dogs have a conserved four C-terminal amino acid motif when independent cross-species transmission occurs between these species. To test the influence of the C-terminal amino acid motifs of NS1 protein on the replication and virulence of IAVs, we systematically generated 7 recombinants, which carried naturally truncated NS1 proteins, and their last four C-terminal residues were replaced with PEQK and SEQK (for H1N1), EPEV and KPEI (for H3N8) and ESEV and ESEI (for H3N2) IAVs. Another recombinant was generated by removing the C-terminal residues by reverse genetics. Remarkably, the ESEI and KPEI motifs circulating in canines largely contributed efficient replication in cultured cells and these had enhanced virulence. In contrast, the avian ESEV motif was only responsible for high pathogenicity in mice. We examined the effects of these motifs upon interferon (IFN) induction. The 7 mutant viruses replicated in vitro in an IFN-independent manner, and the canine SEQK motif was able to induced higher levels of IFN-ß in human cell lines. These findings shed further new light on the role of the four C-terminal residues in replication and virulence of IAVs and suggest that these motifs can modulate viral replication in a species-specific manner.

14.
BMC Infect Dis ; 24(1): 918, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39232670

RESUMEN

BACKGROUND: On March 16th 2024, the first case of Human infection with avian influenza H10N3 since the end of the global COVID-19 Pandemic was reported in Kunming, China. To enhance comprehension of the source of infection and risk factors of the H10N3 virus infection, this case report summarizes the clinical features, epidemiological investigation, and laboratory test results. Provides recommendations for the prevention and control of Human infection with avian influenza H10N3. CASE PRESENTATION: A 51-year-old male with a history of COVID-19 infection and a smoking habit of 30 years, worked in livestock breeding and was exposed to sick and dead poultry before falling ill with fever and chills on 28th February 2024. A week later, he was diagnosed with severe pneumonia, influenza, and respiratory failure by the Third People's Hospital of Kunming(KM-TPH). He was discharged on 17th April and none of his 6 close contacts showed any symptoms of illness. Environmental samples taken from the epidemic spot revealed that peacock feces tested positive for avian influenza sub-type H9 and waterfowl specimens showed positive results for avian influenza sub-type H5. Gene sequencing conducted on positive specimens from the patient's respiratory tract by the Chinese Centre for Disease Control and Prevention (CCDC) showed a high degree of similarity (98.6-99.5%) with the strain responsible for the second global case of human infected with H10N3 (reported from Zhejiang, China 2022). CONCLUSIONS: According to the available epidemiological information, there is limited evidence to suggest that H10N3 viruses are excessively lethal. However, adaptive site mutations have been observed in the H10N3 isoform of mammals. While it is unlikely that the H10N3 virus will spread among humans, the possibility of additional cases cannot be entirely ruled out. Symptoms of human infection with H10N3 avian influenza are similar to those of common respiratory infections, which may result in them being overlooked during initial clinical consultations. Therefore, it is essential to improve surveillance of the H10 sub-type of avian influenza and to increase the awareness of hospital-related workers of cases of pneumonia of unknown origin.


Asunto(s)
COVID-19 , Gripe Aviar , Gripe Humana , Humanos , Masculino , Persona de Mediana Edad , Gripe Humana/virología , Animales , Gripe Aviar/virología , COVID-19/epidemiología , China/epidemiología , Aves de Corral/virología , Virus de la Influenza A/genética , Virus de la Influenza A/aislamiento & purificación , SARS-CoV-2/genética , Filogenia
15.
Virol Sin ; 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39233140

RESUMEN

Influenza B viruses (IBVs) primarily infect humans and are a common cause of respiratory infections in humans. Here, to systematically analyze the antigenicity of the IBVs Hemagglutinin (HA) protein, 31 B/Victoria and 19 B/Yamagata representative circulating strains were selected from Global Initiative of Sharing All Influenza Data (GISAID), and pseudotyped viruses were constructed with the vesicular stomatitis virus system. Guinea pigs were immunized with three doses of vaccines (one dose of DNA vaccines following two doses of pseudotyped virus vaccines) of the seven IBV vaccine strains, and neutralizing antibodies against the pseudotyped viruses were tested. By comparing differences between various vaccine strains, we constructed several pseudotyped viruses that contained various mutations based on vaccine strain BV-21. The vaccine strains showed good neutralization levels against the epidemic virus strains of the same year, with neutralization titers ranging from 370 to 840, while the level of neutralization against viruses prevalent in previous years decreased 1-10-fold. Each of the high-frequency epidemic strains of B/Victoria and B/Yamagata not only induced high neutralizing titers, but also had broadly neutralizing effects against virus strains of different years, with neutralizing titers ranging from 1000 to 7200. R141G, D197N, and R203K were identified as affecting the antigenicity of IBV. In this study, pseudotyped virus system was used to monitor the cross-neutralizing efficacy of high-frequency epidemic strains and vaccine strains recommended by the World Health Organization. Additionally, we identified three mutation sites that can seriously affect the antigenicity of B/Victoria vaccine strains. These mutation sites provide valuable references for the selection and design of a universal IBV vaccine strain in the future.

16.
Front Public Health ; 12: 1398680, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39234099

RESUMEN

Introduction: Influenza vaccination is one of the most important strategies for preventing influenza. However, the influenza vaccination rate in China remains low. During the COVID-19 pandemic, people held different attitudes toward the COVID-19 vaccine. In the post-pandemic era, do the varying attitudes toward the COVID-19 vaccine affect the intention to receive influenza vaccination? Methods: Based on the influence of presumed influence (IPI) model and spillover effects, this study employed structural equation modeling for multi-group comparison to analyze questionnaires from 613 participants, using instruments such as the Perceived Media Influence on Others Scale (PMIO), the Susceptibility to Influenza Scale (SI), and the Attitude toward Influenza Vaccine Scale (AIV). Results: The key findings are as follows: (1) Information exposure to the influenza vaccine significantly influences perceived media influence on others. (2) Perceived media influence on others does not directly impact the intention to receive influenza vaccination but rather affects it through attitude toward the influenza vaccine. (3) Moreover, multi-group analyses revealed differences in the IPI model among audiences with different attitudes toward the COVID-19 vaccine. These differences demonstrated that prior attitudes toward the COVID-19 vaccine can influence attitudes toward similar influenza vaccines, thus demonstrating the existence of spillover effects. Conclusion: Attitude toward the COVID-19 vaccine can influence the intention to receive the influenza vaccination. Those with a negative attitude toward the COVID-19 vaccine are significantly influenced by susceptibility to influenza. Perceived media influence affects the intention to receive the influenza vaccination among those with a positive attitude toward the COVID-19 vaccine.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Vacunas contra la Influenza , Gripe Humana , Intención , Humanos , Vacunas contra la Influenza/administración & dosificación , Femenino , Masculino , Adulto , COVID-19/prevención & control , Gripe Humana/prevención & control , China , Vacunas contra la COVID-19/administración & dosificación , Encuestas y Cuestionarios , Persona de Mediana Edad , Vacunación/psicología , Vacunación/estadística & datos numéricos , Conocimientos, Actitudes y Práctica en Salud , SARS-CoV-2 , Adulto Joven , Anciano
17.
J Med Microbiol ; 73(9)2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39229885

RESUMEN

Introduction. Recently, the incidence of Mycoplasma pneumoniae (M. pneumoniae) infection in children has been increasing annually. Early differential diagnosis of M. pneumoniae infection can not only avoid the abuse of antibiotics, but also is essential for early treatment and reduction of transmission.Gap statement. The change of routine blood parameters may have important clinical significance for the diagnosis of M. pneumoniae infection, but it has not been reported so far.Aim. This study aims to establish a predictive model for M. pneumoniae infection and explore the changes and clinical value of routine blood parameters in children with M. pneumoniae infection, serving as auxiliary indicators for the diagnosis and differentiation of clinical M. pneumoniae infection.Methodology. A total of 770 paediatric patients with respiratory tract infections were enrolled in this study, including 360 in the M. pneumoniae group, 40 in the SARS-CoV-2 group, 200 in the influenza A virus group, and 170 in the control group. The differences of routine blood parameters among all groups were compared, and risk factors were analysed using multivariate logistics analysis, and the diagnostic efficacy of differential indicators using ROC curves.Results. This study revealed that Mono% (OR: 3.411; 95% CI: 1.638-7.102; P=0.001) was independent risk factor associated with M. pneumoniae infection, and Mono% (AUC=0.786, the optimal cutoff at 7.8%) had a good discriminative ability between patients with M. pneumoniae infection and healthy individuals. Additionally, Mono% (OR: 0.424; 95% CI: 0.231-0.781; P=0.006) and Lymp% (OR: 0.430; 95% CI: 0.246-0.753; P=0.003) were independent risk factors for distinguishing M. pneumoniae infection from influenza A virus infection, and the Lymp% (AUC=0.786, the optimal cutoff at 22.1%) and Net% (AUC=0.761, the optimal cutoff at 65.2%) had good discriminative abilities between M. pneumoniae infection and influenza A infection. Furthermore, platelet distribution width (OR: 0.680; 95% CI: 0.538-0.858; P=0.001) was independent risk factor for distinguishing M. pneumoniae infection from SARS-CoV-2 infection. Meanwhile, the ROC curve demonstrated that PDW (AUC=0.786, the optimal cutoff at 15%) has a good ability to differentiate between M. pneumoniae infection and SARS-CoV-2 infection.Conclusion. This study demonstrates that routine blood parameters can be used as auxiliary diagnostic indicators for M. pneumoniae infection and provide reference for the diagnosis and differentiation of clinical M. pneumoniae infection.


Asunto(s)
Mycoplasma pneumoniae , Neumonía por Mycoplasma , Humanos , Neumonía por Mycoplasma/diagnóstico , Neumonía por Mycoplasma/sangre , Neumonía por Mycoplasma/microbiología , Femenino , Masculino , Preescolar , Niño , Mycoplasma pneumoniae/aislamiento & purificación , COVID-19/diagnóstico , COVID-19/sangre , Lactante , Curva ROC , Factores de Riesgo , Diagnóstico Diferencial , Adolescente , Infecciones del Sistema Respiratorio/diagnóstico , Infecciones del Sistema Respiratorio/microbiología , Infecciones del Sistema Respiratorio/sangre , SARS-CoV-2/aislamiento & purificación
18.
Artículo en Inglés | MEDLINE | ID: mdl-39228288

RESUMEN

INTRODUCTION: Lower respiratory tract infections (LRTI) remain a significant global cause of mortality and disability. Viruses constitute a substantial proportion of LRTI cases, with their pandemic potential posing a latent threat. After the SARS-CoV-2 pandemic, the resurgence of other respiratory viruses, including Influenza and Respiratory Syncytial Virus responsible for LRTI has been observed especially in susceptible populations. AREAS COVERED: This review details the inflammatory mechanisms associated with three primary respiratory viruses: SARS-CoV-2, Influenza, and Respiratory Syncytial Virus (RSV). The focus will be on elucidating the activation of inflammatory pathways, understanding cellular contributions to inflammation, exploring the role of interferon and induced cell death in the response to these pathogens and detailing viral evasion mechanisms. Furthermore, the distinctive characteristics of each virus will be explained. EXPERT OPINION: The study of viral pneumonia, notably concerning SARS-CoV-2, Influenza, and RSV, offers critical insights into infectious and inflammatory mechanisms with wide-ranging implications. Addressing current limitations, such as diagnostic accuracy and understanding host-virus interactions, requires collaborative efforts and investment in technology. Future research holds promise for uncovering novel therapeutic targets, exploring host microbiome roles, and addressing long-term sequelae. Integrating advances in molecular biology and technology will shape the evolving landscape of viral pneumonia research, potentially enhancing global public health outcomes.

19.
Front Immunol ; 15: 1437267, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39229259

RESUMEN

Background: Concomitant administration of COVID-19, influenza, and pneumococcal vaccines could reduce the burden on healthcare systems. However, the immunogenicity and safety of various combinations of a third booster dose of SARS-CoV-2 inactivated vaccine (CoronaVac), inactivated quadrivalent influenza vaccine (IIV4), and 23-valent pneumococcal polysaccharide vaccine (PPV23), particularly in different age groups, is still unknown. Methods: A phase 4, randomized, open-label, controlled trial was conducted in Beijing, China. 636 healthy adults were divided into two age groups (18-59 and ≥60 years) and randomized equally into three groups: CoronaVac and IIV4 followed by PPV23; CoronaVac and PPV23 followed by IIV4; or CoronaVac followed by IIV4 and PPV23, with a 28-day interval between vaccinations. Immunogenicity was evaluated by measuring antibody titers, and safety was monitored. ClinicalTrials.gov Identifier: NCT05298800. Results: Co-administration of a third dose of CoronaVac, IIV4, and PPV23 in any combination was safe. Among adults aged 18-59, co-administration with PPV23 maintained non-inferiority of antibody levels for CoronaVac and IIV4, despite a slight reduction in antibody responses. This reduction was not observed in participants ≥60 years. Furthermore, co-administration of IIV4 and PPV23 affected seroconversion rates for both vaccines. Conclusions: Co-administration of the third dose of SARS-CoV-2 inactivated vaccine with the influenza vaccine, followed by PPV23, may be optimal for adults aged 18-59. In adults ≥60, all vaccine combinations were immunogenic, suggesting a flexible vaccination approach. Since antibody measurements were taken 28 days post-vaccination, ongoing surveillance is essential to assess the longevity of the immune responses.


Asunto(s)
Anticuerpos Antivirales , Vacunas contra la COVID-19 , COVID-19 , Inmunización Secundaria , Inmunogenicidad Vacunal , Vacunas contra la Influenza , Vacunas Neumococicas , SARS-CoV-2 , Humanos , Persona de Mediana Edad , Vacunas Neumococicas/inmunología , Vacunas Neumococicas/administración & dosificación , Vacunas Neumococicas/efectos adversos , Masculino , Femenino , Vacunas contra la COVID-19/inmunología , Vacunas contra la COVID-19/administración & dosificación , Vacunas contra la COVID-19/efectos adversos , Adulto , COVID-19/prevención & control , COVID-19/inmunología , Vacunas contra la Influenza/inmunología , Vacunas contra la Influenza/efectos adversos , Vacunas contra la Influenza/administración & dosificación , Anciano , SARS-CoV-2/inmunología , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Adulto Joven , Vacunas de Productos Inactivados/inmunología , Vacunas de Productos Inactivados/administración & dosificación , Vacunas de Productos Inactivados/efectos adversos , Adolescente , China , Gripe Humana/prevención & control , Gripe Humana/inmunología
20.
Sci Rep ; 14(1): 20418, 2024 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-39223292

RESUMEN

The epidemic and outbreaks of influenza B Victoria lineage (Bv) during 2019-2022 led to an analysis of genetic, epitopes, charged amino acids and Bv outbreaks. Based on the National Influenza Surveillance Network (NISN), the Bv 72 strains isolated during 2019-2022 were selected by spatio-temporal sampling, then were sequenced. Using the Compare Means, Correlate and Cluster, the outbreak data were analyzed, including the single nucleotide variant (SNV), amino acid (AA), epitope, evolutionary rate (ER), Shannon entropy value (SV), charged amino acid and outbreak. With the emergence of COVID-19, the non-pharmaceutical interventions (NPIs) made Less distant transmission and only Bv outbreak. The 2021-2022 strains in the HA genes were located in the same subset, but were distinct from the 2019-2020 strains (P < 0.001). The codon G → A transition in nucleotide was in the highest ratio but the transversion of C → A and T → A made the most significant contribution to the outbreaks, while the increase in amino acid mutations characterized by polar, acidic and basic signatures played a key role in the Bv epidemic in 2021-2022. Both ER and SV were positively correlated in HA genes (R = 0.690) and NA genes (R = 0.711), respectively, however, the number of mutations in the HA genes was 1.59 times higher than that of the NA gene (2.15/1.36) from the beginning of 2020 to 2022. The positively selective sites 174, 199, 214 and 563 in HA genes and the sites 73 and 384 in NA genes were evolutionarily selected in the 2021-2022 influenza outbreaks. Overall, the prevalent factors related to 2021-2022 influenza outbreaks included epidemic timing, Tv, Ts, Tv/Ts, P137 (B → P), P148 (B → P), P199 (P → A), P212 (P → A), P214 (H → P) and P563 (B → P). The preference of amino acid mutations for charge/pH could influence the epidemic/outbreak trends of infectious diseases. Here was a good model of the evolution of infectious disease pathogens. This study, on account of further exploration of virology, genetics, bioinformatics and outbreak information, might facilitate further understanding of their deep interaction mechanisms in the spread of infectious diseases.


Asunto(s)
Brotes de Enfermedades , Evolución Molecular , Gripe Humana , Mutación , Polimorfismo de Nucleótido Simple , Humanos , Gripe Humana/epidemiología , Gripe Humana/virología , Gripe Humana/genética , Virus de la Influenza B/genética , Aminoácidos/genética , Epítopos/genética , Filogenia , Sustitución de Aminoácidos , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA