Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
1.
Part Fibre Toxicol ; 21(1): 29, 2024 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-39107780

RESUMEN

BACKGROUND: Microplastics have been detected in the atmosphere as well as in the ocean, and there is concern about their biological effects in the lungs. We conducted a short-term inhalation exposure and intratracheal instillation using rats to evaluate lung disorders related to microplastics. We conducted an inhalation exposure of polypropylene fine powder at a low concentration of 2 mg/m3 and a high concentration of 10 mg/m3 on 8-week-old male Fischer 344 rats for 6 h a day, 5 days a week for 4 weeks. We also conducted an intratracheal instillation of polypropylene at a low dose of 0.2 mg/rat and a high dose of 1.0 mg/rat on 12-week-old male Fischer 344 rats. Rats were dissected from 3 days to 6 months after both exposures, and bronchoalveolar lavage fluid (BALF) and lung tissue were collected to analyze lung inflammation and lung injury. RESULTS: Both exposures to polypropylene induced a persistent influx of inflammatory cells and expression of CINC-1, CINC-2, and MPO in BALF from 1 month after exposure. Genetic analysis showed a significant increase in inflammation-related factors for up to 6 months. The low concentration in the inhalation exposure of polypropylene also induced mild lung inflammation. CONCLUSION: These findings suggest that inhaled polypropylene, which is a microplastic, induces persistent lung inflammation and has the potential for lung disorder. Exposure to 2 mg/m3 induced inflammatory changes and was thought to be the Lowest Observed Adverse Effect Level (LOAEL) for acute effects of polypropylene. However, considering the concentration of microplastics in a real general environment, the risk of environmental hazards to humans may be low.


Asunto(s)
Líquido del Lavado Bronquioalveolar , Exposición por Inhalación , Pulmón , Microplásticos , Neumonía , Polipropilenos , Ratas Endogámicas F344 , Animales , Masculino , Polipropilenos/toxicidad , Microplásticos/toxicidad , Exposición por Inhalación/efectos adversos , Líquido del Lavado Bronquioalveolar/citología , Líquido del Lavado Bronquioalveolar/inmunología , Líquido del Lavado Bronquioalveolar/química , Pulmón/efectos de los fármacos , Pulmón/inmunología , Pulmón/metabolismo , Pulmón/patología , Neumonía/inducido químicamente , Ratas
2.
Ecotoxicol Environ Saf ; 283: 116838, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39128447

RESUMEN

The number of individuals with underlying medical conditions has been increasing steadily. These individuals are relatively vulnerable to harmful external factors. But it has not been proven that the effects of hazardous chemicals may differ depending on their physicochemical properties. This study determines the toxic effects of two chemicals with high indoor exposure risk and different physicochemical properties on an underlying disease model. A pulmonary arterial hypertension (PAH) model was constructed by a single subcutaneous injection of monocrotaline (MCT; 60 mg/kg) into Sprague-Dawley rats. After three weeks, formaldehyde (FA; 2.5 mg/kg) and polyhexamethylene guanidine (PHMG; 0.05 mg/kg) were administered once via intratracheal instillation, and rats were necropsied one week later. Exposure to FA and PHMG affected organ weight and the Fulton and toxicity indices in rats induced with PAH. FA promoted bronchial injury and aggravated PAH, while PHMG only induced alveolar injury. Additionally, the differentially expressed genes were altered following exposure to FA and PHMG, as were the associated diseases (cardiovascular disease and pulmonary fibrosis, respectively). In conclusion, inhaled chemicals with different physicochemical properties can cause damage to organs, such as the lungs and heart, and can aggravate underlying diseases. This study elucidates indoor inhaled exposure-induced toxicities and alerts patients with pre-existing diseases to the harmful chemicals.


Asunto(s)
Modelos Animales de Enfermedad , Formaldehído , Lesión Pulmonar , Ratas Sprague-Dawley , Animales , Ratas , Masculino , Lesión Pulmonar/inducido químicamente , Lesión Pulmonar/patología , Formaldehído/toxicidad , Guanidinas/toxicidad , Monocrotalina/toxicidad , Exposición por Inhalación , Pulmón/efectos de los fármacos , Pulmón/patología , Hipertensión Arterial Pulmonar/inducido químicamente , Sustancias Peligrosas/toxicidad
3.
Toxicology ; 506: 153874, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38955312

RESUMEN

During the manufacture and use of aluminium (aluminum), inhalation exposure may occur. We reviewed the pulmonary toxicity of this metal including its toxicokinetics. The normal serum/plasma level based on 17 studies was 5.7 ± 7.7 µg Al/L (mean ± SD). The normal urine level based on 15 studies was 7.7 ± 5.3 µg/L. Bodily fluid and tissue levels during occupational exposure are also provided, and the urine level was increased in aluminium welders (43 ± 33 µg/L) based on 7 studies. Some studies demonstrated that aluminium from occupational exposure can remain in the body for years. Excretion pathways include urine and faeces. Toxicity studies were mostly on aluminium flakes, aluminium oxide and aluminium chlorohydrate as well as on mixed exposure, e.g. in aluminium smelters. Endpoints affected by pulmonary aluminium exposure include body weight, lung function, lung fibrosis, pulmonary inflammation and neurotoxicity. In men exposed to aluminium oxide particles (3.2 µm) for two hours, lowest observed adverse effect concentration (LOAEC) was 4 mg Al2O3/m3 (= 2.1 mg Al/m3), based on increased neutrophils in sputum. With the note that a similar but not statistically significant increase was seen during control exposure. In animal studies LOAECs start at 0.3 mg Al/m3. In intratracheal instillation studies, all done with aluminium oxide and mainly nanomaterials, lowest observed adverse effect levels (LOAELs) started at 1.3 mg Al/kg body weight (bw) (except one study with a LOAEL of ∼0.1 mg Al/kg bw). The collected data provide information regarding hazard identification and characterisation of pulmonary exposure to aluminium.


Asunto(s)
Aluminio , Exposición por Inhalación , Pulmón , Exposición Profesional , Humanos , Aluminio/toxicidad , Aluminio/farmacocinética , Animales , Exposición por Inhalación/efectos adversos , Exposición Profesional/efectos adversos , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Toxicocinética , Contaminantes Ocupacionales del Aire/toxicidad , Contaminantes Ocupacionales del Aire/farmacocinética
4.
Front Biosci (Landmark Ed) ; 29(6): 217, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38940047

RESUMEN

BACKGROUND: Although umbilical cord mesenchymal stem cell (UCMSC) infusion has been proposed as a promising strategy for the treatment of acute lung injury (ALI), the parameters of UCMSC transplantation, such as infusion routes and doses, need to be further optimized. METHODS: In this study, we compared the therapeutic effects of UCMSCs transplanted via intravenous injection and intratracheal instillation on lipopolysaccharide-induced ALI using a rat model. Following transplantation, levels of inflammatory factors in serum; neutrophils, total white blood cells, and lymphocytes in bronchoalveolar lavage fluid (BALF); and lung damage levels were analyzed. RESULTS: The results indicated that UCMSCs administered via both intravenous and intratracheal routes were effective in alleviating ALI, as determined by analyses of arterial blood gas, lung histopathology, BALF contents, and levels of inflammatory factors. Comparatively, the intratracheal instillation of UCMSCs was found to result in lower levels of lymphocytes and total proteins in BALF, whereas greater reductions in the serum levels of tumor necrosis factor α (TNF-α) and interleukin 1ß (IL-1ß) were detected in rats receiving intravenously injected stem cells. CONCLUSIONS: Our findings in this study provide convincing evidence to indicate the efficacy of UCMSC therapy in the treatment of ALI mediated via different delivery routes, thereby providing a reliable theoretical basis for further clinical studies. Moreover, these findings imply that the effects obtained using the two assessed delivery routes for UCMSC transplantation are mediated via different mechanisms, which could be attributable to different cellular or molecular targets.


Asunto(s)
Lesión Pulmonar Aguda , Lipopolisacáridos , Trasplante de Células Madre Mesenquimatosas , Ratas Sprague-Dawley , Cordón Umbilical , Animales , Lesión Pulmonar Aguda/terapia , Lesión Pulmonar Aguda/inducido químicamente , Trasplante de Células Madre Mesenquimatosas/métodos , Cordón Umbilical/citología , Ratas , Masculino , Líquido del Lavado Bronquioalveolar/citología , Células Madre Mesenquimatosas/citología , Factor de Necrosis Tumoral alfa/sangre , Factor de Necrosis Tumoral alfa/metabolismo , Inyecciones Intravenosas
5.
Future Microbiol ; 19(12): 1055-1070, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-38913747

RESUMEN

Aim: Animal models of fatal pneumonia caused by Streptococcus pneumoniae (Spn) have not been reliably generated using many strains of less virulent serotypes.Materials & methods: Pulmonary infection of a less virulent Spn serotype1 strain in the immunocompetent mice was established via the intratracheal aerosolization (ITA) route. The survival, local and systemic bacterial spread, pathological changes and inflammatory responses of this model were compared with those of mice challenged via the intratracheal instillation, intranasal instillation and intraperitoneal injection routes.Results: ITA and intratracheal instillation both induced fatal pneumonia; however, ITA resulted in better lung bacterial deposition and distribution, pathological homogeneity and delivery efficiency.Conclusion: ITA is an optimal route for developing animal models of severe pulmonary infections.


What is this article about? Streptococcus pneumoniae (Spn), a type of bacteria, can cause serious illness and death in otherwise healthy people. One way that we study pneumonia is using animals. However, pneumonia in animals infected with Spn in the laboratory does not mimic that in humans very well. To study this illness, we need a new way to set up a proper animal model.What were the results? This study set up a method called intratracheal aerosolization (ITA). In ITA, bacteria can form small droplets called aerosols and reach the deepest parts of a mouse's lung. ITA can cause deadly illness in mice infected with Spn, even if the mice are healthy.What do the results of the study mean? The ITA method could be a useful tool to set up animal models of serious pneumonia with less virulent bacteria.


Asunto(s)
Aerosoles , Modelos Animales de Enfermedad , Pulmón , Neumonía Neumocócica , Streptococcus pneumoniae , Animales , Streptococcus pneumoniae/patogenicidad , Ratones , Neumonía Neumocócica/microbiología , Neumonía Neumocócica/mortalidad , Neumonía Neumocócica/patología , Neumonía Neumocócica/inmunología , Pulmón/microbiología , Pulmón/patología , Virulencia , Femenino
6.
Toxics ; 12(4)2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38668513

RESUMEN

Diesel exhaust particles (DEPs) contribute to air pollution exposure-related adverse health impacts. Here, we examined in vitro, and in vivo toxicities of DEPs from a Caterpillar C11 heavy-duty diesel engine emissions using ultra-low-sulfur diesel (ULSD) and biodiesel blends (20% v/v) of canola (B20C), soy (B20S), or tallow-waste fry oil (B20T) in ULSD. The in vitro effects of DEPs (DEPULSD, DEPB20C, DEPB20S, and DEPB20T) in exposed mouse monocyte/macrophage cells (J774A.1) were examined by analyzing the cellular cytotoxicity endpoints (CTB, LDH, and ATP) and secreted proteins. The in vivo effects were assessed in BALB/c mice (n = 6/group) exposed to DEPs (250 µg), carbon black (CB), or saline via intratracheal instillation 24 h post-exposure. Bronchoalveolar lavage fluid (BALF) cell counts, cytokines, lung/heart mRNA, and plasma markers were examined. In vitro cytotoxic potencies (e.g., ATP) and secreted TNF-α were positively correlated (p < 0.05) with in vivo inflammatory potency (BALF cytokines, lung/heart mRNA, and plasma markers). Overall, DEPULSD and DEPB20C appeared to be more potent compared to DEPB20S and DEPB20T. These findings suggested that biodiesel blend-derived DEP potencies can be influenced by biodiesel sources, and inflammatory process- was one of the potential underlying toxicity mechanisms. These observations were consistent across in vitro and in vivo exposures, and this work adds value to the health risk analysis of cleaner fuel alternatives.

7.
Antioxidants (Basel) ; 13(3)2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38539816

RESUMEN

Cytokine storm and ROS overproduction in the lung always lead to acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) in a very short time. Effectively controlling cytokine storm release syndrome (CRS) and scavenging ROS are key to the prevention and treatment of ALI/ARDS. In this work, the naringin nanoparticles (Nar-NPs) were prepared by the emulsification and evaporation method; then, the mesenchymal stem cell membranes (CMs) were extracted and coated onto the surface of the Nar-NPs through the hand extrusion method to obtain the biomimetic CM@Nar-NPs. In vitro, the CM@Nar-NPs showed good dispersity, excellent biocompatibility, and biosafety. At the cellular level, the CM@Nar-NPs had excellent abilities to target inflamed macrophages and the capacity to scavenge ROS. In vivo imaging demonstrated that the CM@Nar-NPs could target and accumulate in the inflammatory lungs. In an ALI mouse model, intratracheal (i.t.) instillation of the CM@Nar-NPs significantly decreased the ROS level, inhibited the proinflammatory cytokines, and remarkably promoted the survival rate. Additionally, the CM@Nar-NPs increased the expression of M2 marker (CD206), and decreased the expression of M1 marker (F4/80) in septic mice, suggesting that the Nar-modulated macrophages polarized towards the M2 subtype. Collectively, this work proves that a mesenchymal stem cell membrane-based biomimetic nanoparticle delivery system could efficiently target lung inflammation via i.t. administration; the released payload inhibited the production of inflammatory cytokines and ROS, and the Nar-modulated macrophages polarized towards the M2 phenotype which might contribute to their anti-inflammation effects. This nano-system provides an excellent pneumonia-treated platform with satisfactory biosafety and has great potential to effectively deliver herbal medicine.

8.
Toxicol Sci ; 199(1): 149-159, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38366927

RESUMEN

Large-scale production and waste of plastic materials have resulted in widespread environmental contamination by the breakdown product of bulk plastic materials to micro- and nanoplastics (MNPs). The small size of these particles enables their suspension in the air, making pulmonary exposure inevitable. Previous work has demonstrated that xenobiotic pulmonary exposure to nanoparticles during gestation leads to maternal vascular impairments, as well as cardiovascular dysfunction within the fetus. Few studies have assessed the toxicological consequences of maternal nanoplastic (NP) exposure; therefore, the objective of this study was to assess maternal and fetal health after a single maternal pulmonary exposure to polystyrene NP in late gestation. We hypothesized that this acute exposure would impair maternal and fetal cardiovascular function. Pregnant rats were exposed to nanopolystyrene on gestational day 19 via intratracheal instillation. 24 h later, maternal and fetal health outcomes were evaluated. Cardiovascular function was assessed in dams using vascular myography ex vivo and in fetuses in vivo function was measured via ultrasound. Both fetal and placental weight were reduced after maternal exposure to nanopolystyrene. Increased heart weight and vascular dysfunction in the aorta were evident in exposed dams. Maternal exposure led to vascular dysfunction in the radial artery of the uterus, a resistance vessel that controls blood flow to the fetoplacental compartment. Function of the fetal heart, fetal aorta, and umbilical artery after gestational exposure was dysregulated. Taken together, these data suggest that exposure to NPs negatively impacts maternal and fetal health, highlighting the concern of MNPs exposure on pregnancy and fetal development.


Asunto(s)
Exposición Materna , Poliestirenos , Animales , Embarazo , Femenino , Poliestirenos/toxicidad , Exposición Materna/efectos adversos , Nanopartículas/toxicidad , Ratas Sprague-Dawley , Pulmón/efectos de los fármacos , Pulmón/irrigación sanguínea , Ratas , Feto/efectos de los fármacos , Intercambio Materno-Fetal , Exposición por Inhalación/efectos adversos , Placenta/efectos de los fármacos , Placenta/irrigación sanguínea
9.
Toxicol Res ; 40(1): 163-177, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38223673

RESUMEN

There is still little literature data on the toxicity and safety of the commonly used molybdenum (Mo) disulfide which is present in the working as well as living environments. Thus, an experiment was carried out involving rats, with single and repeated intratracheal exposure (in the latter case, 7 administrations at 2-week intervals with the analysis performed after 90 days) to lower (1.5 mg Mo kg-1 b.w.) and higher (5 mg Mo kg-1 b.w.) doses of molybdenum(IV) sulfide nanoparticles (MoS2-NPs) and microparticles (MoS2-MPs). The analysis of Mo concentrations in the tail and heart blood as well as in soft tissues (lung, liver, spleen, brain), after mineralization and bioimaging, was meant to facilitate an assessment of its accumulation and potential effects on the body following short- and long-term exposure. The multi-compartment model with an exponential curve of Mo concentration over time with different half-lives for the distribution and elimination phases of MoS2-MPs and MoS2-NPs was observed. After 24 h of exposure, a slight increase in Mo concentration in blood was observed. Next, Mo concentration indicated a decrease in blood concentration from 24 h to day 14 (the Mo concentration before the second administration), below the pre-exposure concentration. The next phase was linear, less abrupt and practically flat, but with an increasing trend towards the end of the experiment. Significantly higher Mo concentrations in MoS2-NPs and MoS2-MPs was found in the lungs of repeatedly exposed rats compared to those exposed to a single dose. The analysis of Mo content in the liver and the spleen tissue showed a slightly higher concentration for MoS2-NPs compared to MoS2-MPs. The results for the brain were below the calculated detection limit. Results were consistent with results obtained by bioimaging technique.

10.
J Appl Toxicol ; 44(4): 595-608, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37968889

RESUMEN

In this study, molybdenum(IV) sulfide (MoS2 ) nanoparticles (97 ± 32 nm) and microparticles (1.92 ± 0.64 µm) stabilized with poly (vinylpolypyrrolidone) (PVP) were administered intratracheally to male and female rats (dose of 1.5 or 5 mg/kg bw), every 14 days for 90 days (seven administrations in total). Blood parameters were assessed during and at the end of the study (hematology, biochemistry including glucose, albumins, uric acid, urea, high density lipoprotein HDL, total cholesterol, triglycerides, aspartate transaminase, and alanine transaminase ALT). Bronchoalveolar lavage fluid (BALF) analyses included cell viability, biochemistry (total protein concentration, lactate dehydrogenase, and glutathione peroxidase activity), and cytokine levels (tumor necrosis factor α, TNF-α, macrophage inflammatory protein 2-alpha, MIP-2, and cytokine-induced neutrophil chemoattractant-2, CINC-2). Tissues were subjected to routine histopathological and electron microscopy (STEM) examinations. No overt signs of chronic toxicity were observed. Differential cell counts in BALF revealed no significant differences between the animal groups. An increase in MIP-2 and a decrease in TNF-α were observed in BALF in the exposed males. The histopathological changes in the lung evaluated according to a developed classification system (based on severity of inflammation, range 0-4, with 4 indicating the most severe changes) showed average histopathological score of 1.33 for animals exposed to nanoparticles and microparticles at the lower dose, 1.72 after exposure to nanoparticles at the higher dose, and 2.83 for animals exposed to microparticles at the higher dose. In summary, it was shown that nanosized and microsized MoS2 can trigger dose-dependent inflammatory reactions in the lungs of rats after multiple intratracheal instillation irrespective of the animal sex. Some evidence indicates a higher lung pro-inflammatory potential of the microform.


Asunto(s)
Nanopartículas , Neumonía , Femenino , Ratas , Masculino , Animales , Molibdeno/toxicidad , Molibdeno/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Pulmón , Líquido del Lavado Bronquioalveolar , Citocinas/metabolismo , Neumonía/inducido químicamente , Nanopartículas/toxicidad , Inflamación/patología , Sulfuros/toxicidad
11.
Environ Toxicol ; 39(4): 2304-2315, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38148711

RESUMEN

Cigarette smoke induces an inflammatory response in the lungs by recruiting inflammatory cells, leading to lung diseases such as lung cancer, chronic obstructive pulmonary disease, and pulmonary fibrosis. Existing inhalation exposure methods for assessing the adverse effects of cigarette smoke require expensive equipment and are labor-intensive. Therefore, we attempted to develop a novel method to assess these adverse effects using intratracheal instillation (ITI) of whole cigarette smoke condensate (WCSC). The WCSC (0, 5, 10, or 20 mg/mL) was administered by ITI once daily for 6 or 12 days using an automatic video instillator. Repeated WCSC ITI increased the lung weight, and monocyte chemoattractant protein-1 (MCP-1), neutrophil, and lymphocyte levels within bronchoalveolar lavage fluid compared to the control. In the histopathological analysis of the lung tissue, a mild inflammatory response was observed in the 6 and 12 days 20 mg/mL WCSC exposure groups. The genome-wide RNA-seq expression patterns revealed that inflammatory and immune response-related genes, such as the chemokine signaling pathway, Th1/Th2 cell differentiation, and cytokine-cytokine receptor interaction, were employed following WCSC exposure. In addition, MCP-1 was time-dependent and increased in the 10 mg/mL exposure group compared to the control group. These results suggested that the WCSC might induce the potential pulmonary inflammatory response. Furthermore, we proposed that ITI may be a rapid and effective method of evaluating the adverse effects of WCSC within a short exposure period (less than 2 weeks), and it can be used to evaluate cigarette inhalation toxicity studies as an alternative method.


Asunto(s)
Fumar Cigarrillos , Enfermedades Pulmonares , Enfermedad Pulmonar Obstructiva Crónica , Ratas , Animales , Pulmón , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Enfermedades Pulmonares/patología , Líquido del Lavado Bronquioalveolar
12.
Drug Discov Ther ; 17(6): 404-408, 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38143076

RESUMEN

The effects of acute intratracheal administration of electrolyzed reduced water (ERW; alkaline electrolyzed water) were investigated in rats. In this study, no deaths or near-deaths were recorded in either group, namely those treated with ERW or purified water (maximum doses of 900 mg/kg). The main symptoms observed in the rats were decreased spontaneous movements and abnormal breath sounds, which were considered to be transient symptoms caused by intratracheal administration. In addition, low values of alkaline phosphatase, total protein and lactate dehydrogenase were found in BALF tests, but these values were considered to be of low toxicological significance, since they are usually high in the presence of lung inflammation or cellular damage. This suggests that the alkalinity of ERW partially contributes to broken peptide bonds in proteins. There were no significant increases in bronchoalveolar lavage fluid protein in either group. ERW did not cause an increase in the influx of neutrophils, eosinophils, basophils, or lymphocytes, suggesting that intratracheal administration of ERW did not cause lung inflammation. ERW did not cause abnormalities in the body or pathological changes in the lungs. Aggregates of alveolar macrophages, as a measure of inflammation, were observed in both groups. These may be transient symptoms due to intratracheal administration, not due to ERW toxicity. This study confirmed the safety of intratracheal ERW infusion and demonstrated the low risk of acute toxicity for inhalation exposure to ERW aerosol or vapor. Therefore, ERW may be an effective air purifier against viruses or bacteria.


Asunto(s)
Neumonía , Agua , Ratas , Animales , Agua/farmacología , Pulmón , Líquido del Lavado Bronquioalveolar , Administración por Inhalación
13.
Crit Rev Toxicol ; 53(8): 441-479, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37850621

RESUMEN

The mechanisms of particle-induced pathogenesis in the lung remain poorly understood. Neutrophilic inflammation and oxidative stress in the lung are hallmarks of toxicity. Some investigators have postulated that oxidative stress from particle surface reactive oxygen species (psROS) on the dust produces the toxicopathology in the lungs of dust-exposed animals. This postulate was tested concurrently with the studies to elucidate the toxicity of lunar dust (LD), which is believed to contain psROS due to high-speed micrometeoroid bombardment that fractured and pulverized lunar surface regolith. Results from studies of rats intratracheally instilled (ITI) with three LDs (prepared from an Apollo-14 lunar regolith), which differed 14-fold in levels of psROS, and two toxicity reference dusts (TiO2 and quartz) indicated that psROS had no significant contribution to the dusts' toxicity in the lung. Reported here are results of further investigations by the LD toxicity study team on the toxicological role of oxidants in alveolar neutrophils that were harvested from rats in the 5-dust ITI study and from rats that were exposed to airborne LD for 4 weeks. The oxidants per neutrophils and all neutrophils increased with dose, exposure time and dust's cytotoxicity. The results suggest that alveolar neutrophils play a critical role in particle-induced injury and toxicity in the lung of dust-exposed animals. Based on these results, we propose an adverse outcome pathway (AOP) for particle-associated lung disease that centers on the crucial role of alveolar neutrophil-derived oxidant species. A critical review of the toxicology literature on particle exposure and lung disease further supports a neutrophil-centric mechanism in the pathogenesis of lung disease and may explain previously reported animal species differences in responses to poorly soluble particles. Key findings from the toxicology literature indicate that (1) after exposures to the same dust at the same amount, rats have more alveolar neutrophils than hamsters; hamsters clear more particles from their lungs, consequently contributing to fewer neutrophils and less severe lung lesions; (2) rats exposed to nano-sized TiO2 have more neutrophils and more severe lesions in their lungs than rats exposed to the same mass-concentration of micron-sized TiO2; nano-sized dust has a greater number of particles and a larger total particle-cell contact surface area than the same mass of micron-sized dust, which triggers more alveolar epithelial cells (AECs) to synthesize and release more cytokines that recruit a greater number of neutrophils leading to more severe lesions. Thus, we postulate that, during chronic dust exposure, particle-inflicted AECs persistently release cytokines, which recruit neutrophils and activate them to produce oxidants resulting in a prolonged continuous source of endogenous oxidative stress that leads to lung toxicity. This neutrophil-driven lung pathogenesis explains why dust exposure induces more severe lesions in rats than hamsters; why, on a mass-dose basis, nano-sized dusts are more toxic than the micron-sized dusts; why lung lesions progress with time; and why dose-response curves of particle toxicity exhibit a hockey stick like shape with a threshold. The neutrophil centric AOP for particle-induced lung disease has implications for risk assessment of human exposures to dust particles and environmental particulate matter.


Asunto(s)
Polvo , Enfermedades Pulmonares , Cricetinae , Ratas , Humanos , Animales , Neutrófilos/patología , Pulmón , Citocinas/toxicidad , Oxidantes/toxicidad , Tamaño de la Partícula
14.
Cancer Immunol Immunother ; 72(12): 4457-4470, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37796299

RESUMEN

BACKGROUND: The inducible Kras/p53 lung adenocarcinoma mouse model, which faithfully recapitulates human disease, is routinely initiated by the intratracheal instillation of a virus-based Cre recombinase delivery system. Handling virus-based delivery systems requires elevated biosafety levels, e.g., biosafety level 2 (BSL-2). However, in experimental animal research facilities, following exposure to viral vectors in a BSL-2 environment, rodents may not be reclassified to BSL-1 according to standard practice, preventing access to small animal micro-computed tomography (micro-CT) scanners that are typically housed in general access areas such as BSL-1 rooms. Therefore, our goal was to adapt the protocol so that the Cre-induced KP mouse model could be handled under BSL-1 conditions during the entire procedure. RESULTS: The Kras-Lox-STOP-Lox-G12D/p53 flox/flox (KP)-based lung adenocarcinoma mouse model was activated by intratracheal instillation of either an adenoviral-based or a gutless, adeno-associated viral-based Cre delivery system. Tumor growth was monitored over time by micro-CT. We have successfully substituted the virus-based Cre delivery system with a commercially available, gutless, adeno-associated, Cre-expressing vector that allows the KP mouse model to be handled and imaged in a BSL-1 facility. By optimizing the anesthesia protocol and switching to a microscope-guided vector instillation procedure, productivity was increased and procedure-related complications were significantly reduced. In addition, repeated micro-CT analysis of individual animals allowed us to monitor tumor growth longitudinally, dramatically reducing the number of animals required per experiment. Finally, we documented the evolution of tumor volume for different doses, which revealed that individual tumor nodules induced by low-titer AAV-Cre transductions can be monitored over time by micro-CT. CONCLUSION: Modifications to the anesthesia and instillation protocols increased the productivity of the original KP protocol. In addition, the switch to a gutless, adeno-associated, Cre-expressing vector allowed longitudinal monitoring of tumor growth under BSL-1 conditions, significantly reducing the number of animals required for an experiment, in line with the 3R principles.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Ratones , Animales , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Proteínas Proto-Oncogénicas p21(ras)/genética , Dependovirus/genética , Microtomografía por Rayos X , Proteína p53 Supresora de Tumor , Contención de Riesgos Biológicos , Modelos Animales de Enfermedad , Vectores Genéticos/genética
15.
Part Fibre Toxicol ; 20(1): 37, 2023 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-37770972

RESUMEN

BACKGROUND: Carbon fibers are high aspect ratio structures with diameters on the submicron scale. Vapor grown carbon fibers are contained within multi-walled carbon tubes, with VGCF™-H commonly applied as a conductive additive in lithium-ion batteries. However, several multi-walled carbon fibers, including MWNT-7, have been reported to induce lung carcinogenicity in rats. This study investigated the carcinogenic potential of VGCF™-H fibers in F344 rats of both sexes with the vapor grown carbon fibers VGCF™-H and MWNT-7 over 2 years. The carbon fibers were administered to rats by intratracheal instillation at doses of 0, 0.016, 0.08, and 0.4 mg/kg (total doses of 0, 0.128, 0.64, and 3.2 mg/kg) once per week for eight weeks and the rats were observed for up to 2 years after the first instillation. RESULTS: Histopathological examination showed the induction of malignant mesothelioma on the pleural cavity with dose-dependent increases observed at 0, 0.128, 0.64, and 3.2 mg/kg in rats of both sexes that were exposed to MWNT-7. On the other hand, only two cases of pleural malignant mesothelioma were observed in the VGCF™-H groups; both rats that received 3.2 mg/kg in male. The animals in the MWNT-7 groups either died or became moribund earlier than those in the VGCF™-H groups, which is thought related to the development of malignant mesothelioma. The survival rates were higher in the VGCF™-H group, and more carbon fibers were observed in the pleural lavage fluid (PLF) of the MWNT-7 groups. These results suggest that malignant mesothelioma is related to the transfer of carbon fibers into the pleural cavity. CONCLUSIONS: The intratracheal instillation of MWNT-7 clearly led to carcinogenicity in both male and female rats at all doses. The equivocal evidence for carcinogenic potential that was observed in male rats exposed to VGCF™-H was not seen in the females. The differences in the carcinogenicities of the two types of carbon fibers are thought due to differences in the number of carbon fibers reaching the pleural cavity. The results indicate that the carcinogenic activity of VGCF™-H is lower than that of MWNT-7.


Asunto(s)
Neoplasias Pulmonares , Mesotelioma Maligno , Ratas , Masculino , Femenino , Animales , Mesotelioma Maligno/patología , Ratas Endogámicas F344 , Fibra de Carbono/toxicidad , Pulmón , Neoplasias Pulmonares/inducido químicamente , Carcinógenos/toxicidad , Carcinógenos/química
16.
Nanomaterials (Basel) ; 13(14)2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37513116

RESUMEN

Despite intensive toxicological studies of carbon nanotubes (CNTs) over the last two decades, only a few studies have demonstrated their pulmonary carcinogenicities in chronic animal experiments, and the underlying molecular mechanisms are still unclear. To obtain molecular insights into CNT-induced lung carcinogenicity, we performed a transcriptomic analysis using a set of lung tissues collected from rats in a 2-year study, in which lung tumors were induced by repeated intratracheal instillations of a multiwalled carbon nanotube, MWNT-7. The RNA-seq-based transcriptome identified a large number of significantly differentially expressed genes at Year 0.5, Year 1, and Year 2. Ingenuity Pathway Analysis revealed that macrophage-elicited signaling pathways such as phagocytosis, acute phase response, and Toll-like receptor signaling were activated throughout the experimental period. At Year 2, cancer-related pathways including ERBB signaling and some axonal guidance signaling pathways such as EphB4 signaling were perturbed. qRT-PCR and immunohistochemistry indicated that several key molecules such as Osteopontin/Spp1, Hmox1, Mmp12, and ERBB2 were markedly altered and/or localized in the preneoplastic lesions, suggesting their participation in the induction of lung cancer. Our findings support a scenario of inflammation-induced carcinogenesis and contribute to a better understanding of the molecular mechanism of MWCNT carcinogenicity.

17.
Basic Clin Pharmacol Toxicol ; 133(3): 265-278, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37312155

RESUMEN

Inhalation studies are the gold standard for assessing the toxicity of airborne materials. They require considerable time, special equipment, and large amounts of test material. Intratracheal instillation is considered a screening and hazard assessment tool as it is simple, quick, allows control of the applied dose, and requires less test material. The particle-induced pulmonary inflammation and acute phase response in mice caused by intratracheal instillation or inhalation of molybdenum disulphide or tungsten particles were compared. End points included neutrophil numbers in bronchoalveolar lavage fluid, Saa3 mRNA levels in lung tissue and Saa1 mRNA levels in liver tissue, and SAA3 plasma protein. Acute phase response was used as a biomarker for the risk of cardiovascular disease. Intratracheal instillation of molybdenum disulphide or tungsten particles did not produce pulmonary inflammation, while molybdenum disulphide particles induced pulmonary acute phase response with both exposure methods and systemic acute phase response after intratracheal instillation. Inhalation and intratracheal instillation showed similar dose-response relationships for pulmonary and systemic acute phase response when molybdenum disulphide was expressed as dosed surface area. Both exposure methods showed similar responses for molybdenum disulphide and tungsten, suggesting that intratracheal instillation can be used for screening particle-induced acute phase response and thereby particle-induced cardiovascular disease.


Asunto(s)
Enfermedades Cardiovasculares , Tungsteno , Animales , Ratones , Reacción de Fase Aguda/inducido químicamente , ARN Mensajero
18.
Nanotoxicology ; 17(3): 270-288, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37126100

RESUMEN

Carbon nanotubes (CNTs) are nanomaterials presenting an occupational inhalation risk during production or handling. The International Agency for Research on Cancer classified one CNT, Mitsui-7 (MWNT-7), as 'possibly carcinogenic to humans'. In recognition of their similarities, a proposal has been submitted to the risk assessment committee of ECHA to classify all fibers with 'Fibre Paradigm' (FP)-compatible dimensions as carcinogenic. However, there is a lack of clarity surrounding the toxicity of fibers that do not fit the FP criteria. In this study, we compared the effects of the FP-compatible Mitsui-7, to those of NM-403, a CNT that is too short and thin to fit the paradigm. Female Sprague Dawley rats deficient for p53 (GMO) and wild type (WT) rats were exposed to the two CNTs (0.25 mg/rat/week) by intratracheal instillation. Animals (GMO and WT) were exposed weekly for four consecutive weeks and were sacrificed 3 days or 8 months after the last instillation. Exposure to both CNTs induced acute lung inflammation. However, persistent inflammation at 8 months was only observed in the lungs of rats exposed to NM-403. In addition to the persistent inflammation, NM-403 stimulated hyperplasic changes in rat lungs, and no adenomas or carcinomas were detected. The degree and extent of hyperplasia was significantly more pronounced in GMO rats. These results suggest that CNT not meeting the FP criteria can cause persistent inflammation and hyperplasia. Consequently, their health effects should be carefully assessed.


Asunto(s)
Nanotubos de Carbono , Animales , Femenino , Ratas , Hiperplasia/patología , Inflamación , Exposición por Inhalación , Pulmón , Nanotubos de Carbono/toxicidad , Ratas Sprague-Dawley , Proteína p53 Supresora de Tumor/genética
19.
Int J Mol Sci ; 24(9)2023 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-37176090

RESUMEN

Industrial production generates aerosols of complex composition, including an ultrafine fraction. This is typical for mining and metallurgical industries, welding processes, and the production and recycling of electronics, batteries, etc. Since nano-sized particles are the most dangerous component of inhaled air, in this study we aimed to establish the impact of the chemical nature and dose of nanoparticles on their cytotoxicity. Suspensions of CuO, PbO, CdO, Fe2O3, NiO, SiO2, Mn3O4, and SeO nanoparticles were obtained by laser ablation. The experiments were conducted on outbred female albino rats. We carried out four series of a single intratracheal instillation of nanoparticles of different chemical natures at doses ranging from 0.2 to 0.5 mg per animal. Bronchoalveolar lavage was taken 24 h after the injection to assess its cytological and biochemical parameters. At a dose of 0.5 mg per animal, cytotoxicity in the series of nanoparticles changed as follows (in decreasing order): CuO NPs > PbO NPs > CdO NPs > NiO NPs > SiO2 NPs > Fe2O3 NPs. At a lower dose of 0.25 mg per animal, we observed a different pattern of cytotoxicity of the element oxides under study: NiO NPs > Mn3O4 NPs > CuO NPs > SeO NPs. We established that the cytotoxicity increased non-linearly with the increase in the dose of nanoparticles of the same chemical element (from 0 to 0.5 mg per animal). An increase in the levels of intracellular enzymes (amylase, AST, ALT, LDH) in the supernatant of the bronchoalveolar lavage fluid indicated a cytotoxic effect of nanoparticles. Thus, alterations in the cytological parameters of the bronchoalveolar lavage and the biochemical characteristics of the supernatant can be used to predict the danger of new nanomaterials based on their comparative assessment with the available tested samples of nanoparticles.


Asunto(s)
Nanopartículas del Metal , Metaloides , Nanopartículas , Animales , Femenino , Nanopartículas del Metal/toxicidad , Nanopartículas del Metal/química , Nanopartículas/toxicidad , Óxidos/química , Dióxido de Silicio , Ratas
20.
Food Chem Toxicol ; 175: 113735, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36935073

RESUMEN

Iron oxide nanoparticles (Fe2O3 NPs), produced in track traffic system and a wide range of industrial production, poses a great threat to human health. However, there is little research about the mechanism of Fe2O3 NPs toxicity on respiratory system. Rag1-/- mice which lack functional T and B cells were intratracheally challenged with Fe2O3 NPs, and interleukin (IL)-33 as an activator of group 2 innate lymphoid cells (ILC2s) to observe ILC2s changes. The lung inflammatory response to Fe2O3 NPs was alleviated in Rag1-/- mice compared with wild type (WT) mice. Infiltration of inflammatory cells and collagen deposition in tissue, leukocyte numbers (neutrophils, macrophages and lymphocytes), cytokine levels, such as IL-6, IL-13 and thymic stromal lymphopoietin (TSLP), and expression of Toll-like receptor (TLR)2, TLR4, and downstream myeloid differentiation factor (MyD)88, nuclear factor (NF)-κB and tumor necrosis factor (TNF)-α were decreased in lungs. Fe2O3 NPs markedly elevated ILC2s compared with the control, but ILC2s numbers were much lower compared with IL-33 in both WT and Rag1-/- mice. Furthermore, ILC2s amounts were strongly greater in Rag1-/- mice than WT mice. Our results suggested that Fe2O3 NPs induced sub-chronic pulmonary inflammation, which is majorly dependent on T cells and B cells rather than ILC2s.


Asunto(s)
Neumonía , Linfocitos T , Ratones , Humanos , Animales , Linfocitos T/metabolismo , Linfocitos/metabolismo , Inmunidad Innata , Neumonía/metabolismo , Pulmón/metabolismo , Citocinas/metabolismo , Proteínas de Homeodominio/metabolismo , Nanopartículas Magnéticas de Óxido de Hierro
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA