Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 331
Filtrar
1.
Plants (Basel) ; 13(12)2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38931104

RESUMEN

In this study, processing tomato (Solanum lycopersicum L.) 'Ligeer 87-5' was hydroponically cultivated under 100 mM NaCl to simulate salt stress. To investigate the impacts on ion homeostasis, osmotic regulation, and redox status in tomato seedlings, different endogenous levels of ascorbic acid (AsA) were established through the foliar application of 0.5 mM AsA (NA treatment), 0.25 mM lycorine (LYC, an inhibitor of AsA synthesis; NL treatment), and a combination of LYC and AsA (NLA treatment). The results demonstrated that exogenous AsA significantly increased the activities and gene expressions of key enzymes (L-galactono-1,4-lactone dehydrogenase (GalLDH) and L-galactose dehydrogenase (GalDH)) involved in AsA synthesis in tomato seedling leaves under NaCl stress and NL treatment, thereby increasing cellular AsA content to maintain its redox status in a reduced state. Additionally, exogenous AsA regulated multiple ion transporters via the SOS pathway and increased the selective absorption of K+, Ca2+, and Mg2+ in the aerial parts, reconstructing ion homeostasis in cells, thereby alleviating ion imbalance caused by salt stress. Exogenous AsA also increased proline dehydrogenase (ProDH) activity and gene expression, while inhibiting the activity and transcription levels of Δ1-pyrroline-5-carboxylate synthetase (P5CS) and ornithine-δ-aminotransferase (OAT), thereby reducing excessive proline content in the leaves and alleviating osmotic stress. LYC exacerbated ion imbalance and osmotic stress caused by salt stress, which could be significantly reversed by AsA application. Therefore, exogenous AsA application increased endogenous AsA levels, reestablished ion homeostasis, maintained osmotic balance, effectively alleviated the inhibitory effect of salt stress on tomato seedling growth, and enhanced their salt tolerance.

2.
Sci Total Environ ; 944: 173838, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-38879025

RESUMEN

The excessive accumulation of dibutyl phthalate (DBP) in soil poses a serious threat to soil ecosystems and crop safety production. Electrokinetic-assisted phytoremediation (EKPR) has been considered as a potential technology for remediating organic contaminated soils. In order to investigate the effect of different electric fields on removal efficiency of DBP, three kinds of electric fields were set up in this study (1 V·cm-1, 2 V·cm-1 and 3 V·cm-1). The results showed that 59 % of DBP in soil was removed by maize (Zea mays L.) within 20 d in low-intensity electric field (1 V·cm-1), and the accumulation of DBP in maize tissues decreased significantly compared to the non-electrified treatment group. Interestingly, it could be observed that the low-intensity electric field could maintain ion homeostasis and improve the photosynthetic efficiency of the plant, thereby relieving the inhibition of DBP on plant growth and increasing the chlorophyll content (94.1 %) of maize. However, the removal efficiency of DBP by maize decreased significantly under the medium-intensity (2 V·cm-1) and high-intensity electric field (3 V·cm-1). Moreover, the important roles of soil enzyme and rhizosphere bacterial community in low-electric field were also investigated and discussed. This study provided a new perspective for exploring the mechanism of removing DBP through EKPR.


Asunto(s)
Biodegradación Ambiental , Dibutil Ftalato , Contaminantes del Suelo , Zea mays , Zea mays/metabolismo , Contaminantes del Suelo/metabolismo , Dibutil Ftalato/metabolismo , Suelo/química
3.
Cancer Med ; 13(11): e7291, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38826119

RESUMEN

BACKGROUND: We previously reported that metastases are generally characterized by a core program of gene expression that activates tissue remodeling/vascularization, alters ion homeostasis, induces the oxidative metabolism, and silences extracellular matrix interactions. This core program distinguishes metastases from their originating primary tumors as well as from their destination host tissues. Therefore, the gene products involved are potential targets for anti-metastasis drug treatment. METHODS: Because the silencing of extracellular matrix interactions predisposes to anoiks in the absence of active survival mechanisms, we tested inhibitors against the other three components. RESULTS: Individually, the low-specificity VEGFR blocker pazopanib (in vivo combined with marimastat), the antioxidant dimethyl sulfoxide (or the substitute atovaquone, which is approved for internal administration), and the ionic modulators bumetanide and tetrathiomolybdate inhibited soft agar colony formation by breast and pancreatic cancer cell lines. The individual candidate agents have a record of use in humans (with limited efficacy when administered individually) and are available for repurposing. In combination, the effects of these drugs were additive or synergistic. In two mouse models of cancer (utilizing 4T1 cells or B16-F10 cells), the combination treatment with these medications, applied immediately (to prevent metastasis formation) or after a delay (to suppress established metastases), dramatically reduced the occurrence of disseminated foci. CONCLUSIONS: The combination of tissue remodeling inhibitors, suppressors of the oxidative metabolism, and ion homeostasis modulators has very strong promise for the treatment of metastases by multiple cancers.


Asunto(s)
Indazoles , Pirimidinas , Sulfonamidas , Animales , Humanos , Ratones , Sulfonamidas/farmacología , Sulfonamidas/uso terapéutico , Sulfonamidas/administración & dosificación , Línea Celular Tumoral , Pirimidinas/farmacología , Pirimidinas/uso terapéutico , Pirimidinas/administración & dosificación , Femenino , Indazoles/farmacología , Indazoles/uso terapéutico , Indazoles/administración & dosificación , Metástasis de la Neoplasia , Molibdeno/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
4.
Plants (Basel) ; 13(11)2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38891337

RESUMEN

Studies on obligate halophytes combining eco-physiological techniques and proteomic analysis are crucial for understanding salinity tolerance mechanisms but are limited. We thus examined growth, water relations, ion homeostasis, photosynthesis, oxidative stress mitigation and proteomic responses of an obligate halophyte Suaeda fruticosa to increasing salinity under semi-hydroponic culture. Most biomass parameters increased under moderate (300 mmol L-1 of NaCl) salinity, while high (900 mmol L-1 of NaCl) salinity caused some reduction in biomass parameters. Under moderate salinity, plants showed effective osmotic adjustment with concomitant accumulation of Na+ in both roots and leaves. Accumulation of Na+ did not accompany nutrient deficiency, damage to photosynthetic machinery and oxidative damage in plants treated with 300 mmol L-1 of NaCl. Under high salinity, plants showed further decline in sap osmotic potential with higher Na+ accumulation that did not coincide with a decline in relative water content, Fv/Fm, and oxidative damage markers (H2O2 and MDA). There were 22, 54 and 7 proteins in optimal salinity and 29, 46 and 8 proteins in high salinity treatment that were up-regulated, down-regulated or exhibited no change, respectively, as compared to control plants. These data indicate that biomass reduction in S. fruticosa at high salinity might result primarily from increased energetic cost rather than ionic toxicity.

5.
Front Plant Sci ; 15: 1419764, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38938633

RESUMEN

Introduction: The ongoing global expansion of salt-affected land is a significant factor, limiting the growth and yield of crops, particularly rice (Oryza sativa L). This experiment explores the mitigation of salt-induced damage in rice (cv BRRI dhan100) following the application of plant growth-promoting rhizobacteria (PGPR). Methods: Rice seedlings, at five- and six-weeks post-transplanting, were subjected to salt stress treatments using 50 and 100 mM NaCl at seven-day intervals. Bacterial cultures consisting of endophytic PGPR (Bacillus subtilis and B. aryabhattai) and an epiphytic PGPR (B. aryabhattai) were administered at three critical stages: transplantation of 42-day-old seedlings, vegetative stage at five weeks post-transplantation, and panicle initiation stage at seven weeks post-transplantation. Results: Salt stress induced osmotic stress, ionic imbalances, and oxidative damage in rice plants, with consequent negative effects on growth, decrease in photosynthetic efficiency, and changes in hormonal regulation, along with increased methylglyoxal (MG) toxicity. PGPR treatment alleviated salinity effects by improving plant antioxidant defenses, restoring ionic equilibrium, enhancing water balance, increasing nutrient uptake, improving photosynthetic attributes, bolstering hormone synthesis, and enhancing MG detoxification. Discussion: These findings highlight the potential of PGPR to bolster physiological and biochemical functionality in rice by serving as an effective buffer against salt stress-induced damage. B. subtilis showed the greatest benefits, while both the endophytic and epiphytic B. aryabhattai had commendable effects in mitigating salt stress-induced damage in rice plants.

6.
Fundam Res ; 4(2): 353-361, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38933504

RESUMEN

The ionic environment of body fluids influences nervous functions for maintaining homeostasis in organisms and ensures normal perceptual abilities and reflex activities. Neural reflex activities, such as limb movements, are closely associated with potassium ions (K+). In this study, we developed artificial synaptic devices based on ion concentration-adjustable gels for emulating various synaptic plasticities under different K+ concentrations in body fluids. In addition to performing essential synaptic functions, potential applications in information processing and associative learning using short- and long-term plasticity realized using ion concentration-adjustable gels are presented. Artificial synaptic devices can be used for constructing an artificial neural pathway that controls artificial muscle reflex activities and can be used for image pattern recognition. All tests show a strong relationship with ion homeostasis. These devices could be applied to neuromorphic robots and human-machine interfaces.

7.
ACS Chem Neurosci ; 15(11): 2132-2143, 2024 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-38743904

RESUMEN

Element dysregulation is a pathophysiologic hallmark of ischemic stroke. Prior characterization of post-stroke element dysregulation in the photothrombotic model demonstrated significant element changes for ions that are essential for the function of the neurovascular unit. To characterize the dynamic changes during the early hyperacute phase (<6 h), we employed a temporary large-vessel occlusion stroke model. The middle cerebral artery was temporarily occluded for 30 min in male C57BL/6 mice, and coronal brain sections were prepared for histology and X-ray fluorescence microscopy from 5 to 120 min post-reperfusion. Ion dysregulation was already apparent by 5 min post-reperfusion, evidenced by reduced total potassium in the lesion. Later time points showed further dysregulation of phosphorus, calcium, copper, and zinc. By 60 min post-reperfusion, the central portion of the lesion showed pronounced element dysregulation and could be differentiated from a surrounding region of moderate dysregulation. Despite reperfusion, the lesion continued to expand dynamically with increasing severity of element dysregulation throughout the time course. Given that the earliest time point investigated already demonstrated signs of ion disruption, we anticipate such changes may be detectable even earlier. The profound ion dysregulation at the tissue level after reperfusion may contribute to hindering treatments aimed at functional recovery of the neurovascular unit.


Asunto(s)
Infarto de la Arteria Cerebral Media , Ratones Endogámicos C57BL , Animales , Masculino , Ratones , Infarto de la Arteria Cerebral Media/metabolismo , Homeostasis/fisiología , Accidente Cerebrovascular/metabolismo , Calcio/metabolismo , Modelos Animales de Enfermedad , Zinc/metabolismo , Encéfalo/metabolismo , Encéfalo/patología , Accidente Cerebrovascular Isquémico/metabolismo , Accidente Cerebrovascular Isquémico/patología , Potasio/metabolismo , Cobre/metabolismo , Iones/metabolismo
8.
J Hazard Mater ; 473: 134610, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38776812

RESUMEN

Mg-K homeostasis is essential for plant response to abiotic stress, but its regulation remains largely unknown. MsWRKY44 cloned from alfalfa was highly expressed in leaves and petioles. Overexpression of it inhibited alfalfa growth, and promoted leaf senescence and alfalfa sensitivities to acid and Al stresses. The leaf tips, margins and interveins of old leaves occurred yellow spots in MsWRKY44-OE plants under pH4.5 and pH4.5 +Al conditions. Meanwhile, Mg-K homeostasis was substantially changed with reduction of K accumulation and increases of Mg as well as Al accumulation in shoots of MsWRKY44-OE plants. Further, MsWRKY44 was found to directly bind to the promoters of MsMGT7 and MsCIPK23, and positively activated their expression. Transiently overexpressed MsMGT7 and MsCIPK23 in tobacco leaves increased the Mg and Al accumulations but decreased K accumulation. These results revealed a novel regulatory module MsWRKY44-MsMGT7/MsCIPK23, which affects the transport and accumulation of Mg and K in shoots, and promotes alfalfa sensitivities to acid and Al stresses.


Asunto(s)
Aluminio , Homeostasis , Magnesio , Medicago sativa , Proteínas de Plantas , Brotes de la Planta , Potasio , Estrés Fisiológico , Medicago sativa/genética , Medicago sativa/metabolismo , Medicago sativa/efectos de los fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Brotes de la Planta/metabolismo , Brotes de la Planta/efectos de los fármacos , Potasio/metabolismo , Aluminio/toxicidad , Magnesio/metabolismo , Plantas Modificadas Genéticamente , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Hojas de la Planta/metabolismo , Hojas de la Planta/efectos de los fármacos , Nicotiana/genética , Nicotiana/metabolismo , Nicotiana/efectos de los fármacos , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Ácidos/metabolismo
9.
Trends Biochem Sci ; 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38816278

RESUMEN

Calcium is a crucial second messenger in the cell that is stored in organelles including lysosomes. Proteins that facilitate calcium entry to the lysosome were unknown. A recent report by Zajac et al. identified TMEM165 as a proton-activated calcium importer on the lysosome, thus discovering a key player in subcellular calcium homeostasis.

10.
New Phytol ; 243(2): 506-508, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38794831

Asunto(s)
Fotosíntesis , Iones
11.
BMC Plant Biol ; 24(1): 365, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38706002

RESUMEN

BACKGROUND: In plants, GABA plays a critical role in regulating salinity stress tolerance. However, the response of soybean seedlings (Glycine max L.) to exogenous gamma-aminobutyric acid (GABA) under saline stress conditions has not been fully elucidated. RESULTS: This study investigated the effects of exogenous GABA (2 mM) on plant biomass and the physiological mechanism through which soybean plants are affected by saline stress conditions (0, 40, and 80 mM of NaCl and Na2SO4 at a 1:1 molar ratio). We noticed that increased salinity stress negatively impacted the growth and metabolism of soybean seedlings, compared to control. The root-stem-leaf biomass (27- and 33%, 20- and 58%, and 25- and 59% under 40- and 80 mM stress, respectively]) and the concentration of chlorophyll a and chlorophyll b significantly decreased. Moreover, the carotenoid content increased significantly (by 35%) following treatment with 40 mM stress. The results exhibited significant increase in the concentration of hydrogen peroxide (H2O2), malondialdehyde (MDA), dehydroascorbic acid (DHA) oxidized glutathione (GSSG), Na+, and Cl- under 40- and 80 mM stress levels, respectively. However, the concentration of mineral nutrients, soluble proteins, and soluble sugars reduced significantly under both salinity stress levels. In contrast, the proline and glycine betaine concentrations increased compared with those in the control group. Moreover, the enzymatic activities of ascorbate peroxidase, monodehydroascorbate reductase, glutathione reductase, and glutathione peroxidase decreased significantly, while those of superoxide dismutase, catalase, peroxidase, and dehydroascorbate reductase increased following saline stress, indicating the overall sensitivity of the ascorbate-glutathione cycle (AsA-GSH). However, exogenous GABA decreased Na+, Cl-, H2O2, and MDA concentration but enhanced photosynthetic pigments, mineral nutrients (K+, K+/Na+ ratio, Zn2+, Fe2+, Mg2+, and Ca2+); osmolytes (proline, glycine betaine, soluble sugar, and soluble protein); enzymatic antioxidant activities; and AsA-GSH pools, thus reducing salinity-associated stress damage and resulting in improved growth and biomass. The positive impact of exogenously applied GABA on soybean plants could be attributed to its ability to improve their physiological stress response mechanisms and reduce harmful substances. CONCLUSION: Applying GABA to soybean plants could be an effective strategy for mitigating salinity stress. In the future, molecular studies may contribute to a better understanding of the mechanisms by which GABA regulates salt tolerance in soybeans.


Asunto(s)
Ácido Ascórbico , Glutatión , Glycine max , Plantones , Ácido gamma-Aminobutírico , Ácido gamma-Aminobutírico/metabolismo , Plantones/efectos de los fármacos , Plantones/metabolismo , Plantones/fisiología , Glycine max/efectos de los fármacos , Glycine max/metabolismo , Glycine max/fisiología , Ácido Ascórbico/metabolismo , Glutatión/metabolismo , Minerales/metabolismo , Tolerancia a la Sal/efectos de los fármacos , Estrés Salino/efectos de los fármacos , Clorofila/metabolismo , Salinidad
13.
Biosci Rep ; 44(5)2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38573803

RESUMEN

Chloride is a key anion involved in cellular physiology by regulating its homeostasis and rheostatic processes. Changes in cellular Cl- concentration result in differential regulation of cellular functions such as transcription and translation, post-translation modifications, cell cycle and proliferation, cell volume, and pH levels. In intracellular compartments, Cl- modulates the function of lysosomes, mitochondria, endosomes, phagosomes, the nucleus, and the endoplasmic reticulum. In extracellular fluid (ECF), Cl- is present in blood/plasma and interstitial fluid compartments. A reduction in Cl- levels in ECF can result in cell volume contraction. Cl- is the key physiological anion and is a principal compensatory ion for the movement of the major cations such as Na+, K+, and Ca2+. Over the past 25 years, we have increased our understanding of cellular signaling mediated by Cl-, which has helped in understanding the molecular and metabolic changes observed in pathologies with altered Cl- levels. Here, we review the concentration of Cl- in various organs and cellular compartments, ion channels responsible for its transportation, and recent information on its physiological roles.


Asunto(s)
Cloruros , Humanos , Cloruros/metabolismo , Animales , Homeostasis , Canales de Cloruro/metabolismo , Canales de Cloruro/genética , Transducción de Señal , Líquido Extracelular/metabolismo , Transporte Iónico
14.
Eur Biophys J ; 53(4): 193-203, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38647543

RESUMEN

Na+/H+ antiporters facilitate the exchange of Na+ for H+ across the cytoplasmic membrane in prokaryotic and eukaryotic cells. These transporters are crucial to maintain the homeostasis of sodium ions, consequently pH, and volume of the cells. Therefore, sodium/proton antiporters are considered promising therapeutic targets in humans. The Na+/H+ antiporter in Escherichia coli (Ec-NhaA), a prototype of cation-proton antiporter (CPA) family, transports two protons and one sodium (or Li+) in opposite direction. Previous mutagenesis experiments on Ec-NhaA have proposed Asp164, Asp163, and Asp133 amino acids with the significant implication in functional and structural integrity and create site for ion-binding. However, the mechanism and the sites for the binding of the two protons remain unknown and controversial which could be critical for pH regulation. In this study, we have explored the role of Glu78 in the regulation of pH by Ec-NhaA. Although we have created various mutants, E78C has shown a considerable effect on the stoichiometry of NhaA and presented comparable phenotypes. The ITC experiment has shown the binding of ~ 5 protons in response to the transport of one lithium ion. The phenotype analysis on selective medium showed a significant expression compared to WT Ec-NhaA. This represents the importance of Glu78 in transporting the H+ across the membrane where a single mutation with Cys amino acid alters the number of H+ significantly maintaining the activity of the protein.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Ácido Glutámico , Mutagénesis Sitio-Dirigida , Intercambiadores de Sodio-Hidrógeno , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Ácido Glutámico/metabolismo , Ácido Glutámico/química , Intercambiadores de Sodio-Hidrógeno/genética , Intercambiadores de Sodio-Hidrógeno/química , Intercambiadores de Sodio-Hidrógeno/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Concentración de Iones de Hidrógeno , Intercambio Iónico , Modelos Moleculares
15.
FEBS Lett ; 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38658177

RESUMEN

Arabidopsis thaliana possesses two different ion-export mechanisms in the plastid inner envelope membrane. Due to a genome duplication, the transport proteins are encoded by partly redundant loci: K+-efflux antiporter1 (KEA1) and KEA2 and mechanosensitive channel of small conductance-like2 (MSL2) and MSL3. Thus far, a functional link between these two mechanisms has not been established. Here, we show that kea1msl2 loss-of-function mutants exhibit phenotypes such as slow growth, reduced photosynthesis and changes in chloroplast morphology, several of which are distinct from either single mutants and do not resemble kea1kea2 or msl2msl3 double mutants. Our data suggest that KEA1 and MSL2 function in concert to maintain plastid ion homeostasis and osmoregulation. Their interplay is critical for proper chloroplast development, organelle function, and plant performance.

16.
Plant Sci ; 344: 112090, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38636812

RESUMEN

Vacuoles are the largest membrane-bound organelles in plant cells, critical for development and environmental responses. Vacuolar dynamics indicate reversible changes of vacuoles in morphology, size, or numbers. In this review, we summarize current understandings of vacuolar dynamics in different types of plant cells, biological processes associated with vacuolar dynamics, and regulators controlling vacuolar dynamics. Specifically, we point out the possibility that vacuolar dynamics play key roles in cell division and differentiation, which are controlled by the nucleus. Finally, we propose three routes through which vacuolar dynamics actively participate in nucleus-controlled cellular activities.


Asunto(s)
Diferenciación Celular , División Celular , Células Vegetales , Vacuolas , Vacuolas/metabolismo , Vacuolas/fisiología , División Celular/fisiología , Células Vegetales/fisiología , Núcleo Celular/fisiología , Núcleo Celular/metabolismo
17.
ACS Infect Dis ; 10(4): 1185-1200, 2024 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-38499199

RESUMEN

New drugs with novel modes of action are needed to safeguard malaria treatment. In recent years, millions of compounds have been tested for their ability to inhibit the growth of asexual blood-stage Plasmodium falciparum parasites, resulting in the identification of thousands of compounds with antiplasmodial activity. Determining the mechanisms of action of antiplasmodial compounds informs their further development, but remains challenging. A relatively high proportion of compounds identified as killing asexual blood-stage parasites show evidence of targeting the parasite's plasma membrane Na+-extruding, H+-importing pump, PfATP4. Inhibitors of PfATP4 give rise to characteristic changes in the parasite's internal [Na+] and pH. Here, we designed a "pH fingerprint" assay that robustly identifies PfATP4 inhibitors while simultaneously allowing the detection of (and discrimination between) inhibitors of the lactate:H+ transporter PfFNT, which is a validated antimalarial drug target, and the V-type H+ ATPase, which was suggested as a possible target of the clinical candidate ZY19489. In our pH fingerprint assays and subsequent secondary assays, ZY19489 did not show evidence for the inhibition of pH regulation by the V-type H+ ATPase, suggesting that it has a different mode of action in the parasite. The pH fingerprint assay also has the potential to identify protonophores, inhibitors of the acid-loading Cl- transporter(s) (for which the molecular identity(ies) remain elusive), and compounds that act through inhibition of either the glucose transporter PfHT or glycolysis. The pH fingerprint assay therefore provides an efficient starting point to match a proportion of antiplasmodial compounds with their mechanisms of action.


Asunto(s)
Antimaláricos , Antagonistas del Ácido Fólico , Antimaláricos/farmacología , Antimaláricos/química , Plasmodium falciparum/metabolismo , Homeostasis , Proteínas de Transporte de Membrana/metabolismo , Iones/metabolismo , Antagonistas del Ácido Fólico/metabolismo , Concentración de Iones de Hidrógeno , ATPasas de Translocación de Protón/metabolismo
18.
Front Plant Sci ; 15: 1364826, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38504893

RESUMEN

Marginal lands, such as those with saline soils, have potential as alternative resources for cultivating dedicated biomass crops used in the production of renewable energy and chemicals. Optimum utilization of marginal lands can not only alleviate the competition for arable land use with primary food crops, but also contribute to bioenergy products and soil improvement. Miscanthus sacchariflorus and M. lutarioriparius are prominent perennial plants suitable for sustainable bioenergy production in saline soils. However, their responses to salt stress remain largely unexplored. In this study, we utilized 318 genotypes of M. sacchariflorus and M. lutarioriparius to assess their salt tolerance levels under 150 mM NaCl using 14 traits, and subsequently established a mini-core elite collection for salt tolerance. Our results revealed substantial variation in salt tolerance among the evaluated genotypes. Salt-tolerant genotypes exhibited significantly lower Na+ content, and K+ content was positively correlated with Na+ content. Interestingly, a few genotypes with higher Na+ levels in shoots showed improved shoot growth characteristics. This observation suggests that M. sacchariflorus and M. lutarioriparius adapt to salt stress by regulating ion homeostasis, primarily through enhanced K+ uptake, shoot Na+ exclusion, and Na+ sequestration in shoot vacuoles. To evaluate salt tolerance comprehensively, we developed an assessment value (D value) based on the membership function values of the 14 traits. We identified three highly salt-tolerant, 50 salt-tolerant, 127 moderately salt-tolerant, 117 salt-sensitive, and 21 highly salt-sensitive genotypes at the seedling stage by employing the D value. A mathematical evaluation model for salt tolerance was established for M. sacchariflorus and M. lutarioriparius at the seedling stage. Notably, the mini-core collection containing 64 genotypes developed using the Core Hunter algorithm effectively represented the overall variability of the entire collection. This mini-core collection serves as a valuable gene pool for future in-depth investigations of salt tolerance mechanisms in Miscanthus.

19.
Heliyon ; 10(5): e26920, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38468963

RESUMEN

The aim of the study is to examine the relationship between oxidative bursts, their regulation with ion homeostasis, and NADPH oxidase (NOX) in different salt-sensitive maize genotypes. For this, in the first study, four differently salt-sensitive maize genotypes (BIL214 × BIL218 as tolerant, BHM-5 as sensitive, and BHM-7 and BHM-9 as moderate-tolerant) were selected on the basis of phenotype, histochemical detection of reactive oxygen species (ROS), malondialdehyde (MDA) content, and specific and in-gel activity of NOX. In the next experiment, these genotypes were further examined in 200 mM NaCl solution in half-strength Hoagland media for nine days to study salt-induced changes in NOX activity, ROS accumulation, ion and redox homeostasis, the activity of antioxidants and their isozyme responses, and to find out potential relationships among the traits. Methylglyoxal (MG) and glyoxalse enzymes (Gly I and II) were also evaluated. Fully expanded leaf samplings were collected at 0 (control), 3, 6, 9-day, and after 7 days of recovery to assay different parameters. Na+/K+, NOX, ROS, and MDA contents increased significantly with the progression of stress duration in all maize genotypes, with a significantly higher value in BHM-5 as compared to tolerant and moderate-tolerant genotypes. A continual induction of Cu/Zn-SOD was observed in BIL214 × BIL218 due to salt stress. Substantial decreases in CAT2 and CAT3 isozymes in BHM-5 might be critical for the highest H2O2 burst in that sensitive genotype under salt stress. The highest intensified POD isozymes were visualized in BHM-5, BHM-7, and BHM-9, whereas BIL214 × BIL218 showed a continual induction of POD isozymes, although GPX activity decreased in all the genotypes at 9 days. Under salt stress, the tolerant genotype BIL214 × BIL218 showed superior ASA- and GSH-redox homeostasis by keeping GR and MDHAR activity high. This genotype also had a stronger MG detoxification system by having higher glyoxalase activity. Correlation, comparative heatmap, and PCA analyses revealed positive correlations among Na+/K+, NOX, O2•-, H2O2, MG, proline, GR, GST, and Gly I activities. Importantly, the relationship depends on the salt sensitivity of the genotypes. The reduced CAT activity as well as redox homeostasis were critical to the survival of the sensitive genotype.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA