Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros











Intervalo de año de publicación
1.
Front Pharmacol ; 15: 1453205, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39376605

RESUMEN

Isoalantolactone (ISA) is a sesquiterpene lactone that could be isolated from Inula helenium as well as many other herbal plants belonging to Asteraceae. Over the past 2 decades, lots of researches have been made on ISA, which owns multiple pharmacological effects, such as antimicrobial, anticancer, anti-inflammatory, neuroprotective, antidepressant-like activity, as well as others. The anticancer effects of ISA involve proliferation inhibition, ROS overproduction, apoptosis induction and cell cycle arrest. Through inhibiting NF-κB signaling, ISA exerts its anti-inflammatory effects which are involved in the neuroprotection of ISA. This review hackled the reported pharmacological effects of ISA and associated mechanisms, providing an update on understanding its potential in drug development.

2.
Aging (Albany NY) ; 162024 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-39382942

RESUMEN

Testicular cancer, a highly prevalent malignancy among young adults, has witnessed an alarming rise in recent decades. This study delves into the therapeutic potential of isoalantolactone (IATL), a natural product extracted from Inula helenium and Inula racemosa, against testicular cancer. Employing MTT assays and flow cytometry, we observed a dose-dependent reduction in cell viability and induction of cell cycle arrest at sub-G1 phase with increasing IATL concentrations. Furthermore, Annexin V/PI dual staining revealed IATL-induced apoptosis. Human Apoptosis Array analysis demonstrated IATL's influence on HIF-1α and TNF R1 expression, implicating its role in cancer cell growth and death regulation. Next-generation sequencing (NGS) and pathway analysis highlighted the involvement of ferroptosis and HIF-1 signaling in IATL-mediated effects. Western blotting validated the downregulation of key proteins associated with apoptosis inhibition and activation, confirming IATL's potential as an anticancer agent. Moreover, IATL induced ferroptosis by modulating expression levels of GPX4, xCT, NRF2, and HO-1. Our findings shed light on IATL's multifaceted anticancer mechanisms, emphasizing its potential as a therapeutic candidate for testicular cancer.

3.
Eur J Med Chem ; 277: 116765, 2024 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-39146833

RESUMEN

Conventional chemotherapy, especially with natural anticancer drugs, usually suffers from poor bioavailability and low tumor accumulation. To address these limitations, we developed a novel approach for modifying natural products in which amphiphilic hydroxamic acid hybrids based on a natural product: isoalantolactone (IAL) were rationally designed. Compound 18 is identified as a highly potent dual signal transducer and activator of transcription 3 (STAT3)/histone deacetylases (HDAC) inhibitor and induces autophagy and apoptosis. 18 exhibits higher antitumor potency than IAL and the hydroxamic acid SAHA in vitro and in vivo. Furthermore, 18 self-assembled in water to form nanoparticles (18 NPs), which facilitated the accumulation of drugs in tumor tissues and promoted their cellular uptake, resulting in superior anticancer efficacy compared to free 18. Compared to drug-drug conjugates, hydroxamic acid hybrids have a smaller molecular weight and can synergize with various anticancer drugs. Overall, these findings indicate that 18 utilizing nanomedicines and dual-target drugs provide an efficient strategy for the rational design of dual-target drugs and the modification of natural products.


Asunto(s)
Antineoplásicos , Apoptosis , Ensayos de Selección de Medicamentos Antitumorales , Inhibidores de Histona Desacetilasas , Ácidos Hidroxámicos , Nanopartículas , Factor de Transcripción STAT3 , Factor de Transcripción STAT3/antagonistas & inhibidores , Factor de Transcripción STAT3/metabolismo , Humanos , Ácidos Hidroxámicos/química , Ácidos Hidroxámicos/farmacología , Ácidos Hidroxámicos/síntesis química , Nanopartículas/química , Inhibidores de Histona Desacetilasas/química , Inhibidores de Histona Desacetilasas/farmacología , Inhibidores de Histona Desacetilasas/síntesis química , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Animales , Apoptosis/efectos de los fármacos , Relación Estructura-Actividad , Proliferación Celular/efectos de los fármacos , Ratones , Estructura Molecular , Línea Celular Tumoral , Relación Dosis-Respuesta a Droga , Histona Desacetilasas/metabolismo , Lactonas/química , Lactonas/farmacología , Lactonas/síntesis química
4.
Transl Oncol ; 46: 101971, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38797019

RESUMEN

Cholangiocarcinoma (CCA) is a devastating malignancy characterized by aggressive tumor growth and limited treatment options. Dysregulation of the Hippo signaling pathway and its downstream effector, Yes-associated protein (YAP), has been implicated in CCA development and progression. In this study, we investigated the effects of Isoalantolactone (IALT) on CCA cells to elucidate its effect on YAP activity and its potential clinical significance. Our findings demonstrate that IALT exerts cytotoxic effects, induces apoptosis, and modulates YAP signaling in SNU478 cells. We further confirmed the involvement of the canonical Hippo pathway by generating LATS1/LATS2 knockout cells, highlighting the dependence of IALT-mediated apoptosis and YAP phosphorylation on the Hippo-LATS signaling axis. In addition, IALT suppressed cell growth and migration, partially dependent on YAP-TEAD activity. These results provide insights into the therapeutic potential of targeting YAP in CCA and provide a rationale for developing of YAP-targeted therapies for this challenging malignancy.

5.
Phytother Res ; 38(6): 2800-2817, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38526171

RESUMEN

BACKGROUND AND AIM: Although the anti-cancer activity of isoalantolactone (IATL) has been extensively studied, the anti-melanoma effects of IATL are still unknown. Here, we have investigated the anti-melanoma effects and mechanism of action of IATL. MTT and crystal violet staining assays were performed to detect the inhibitory effect of IATL on melanoma cell viability. Apoptosis and cell cycle arrest induced by IATL were examined using flow cytometry. The molecular mechanism of IATL was explored by Western blotting, confocal microscope analysis, molecular docking, and cellular thermal shift assay (CETSA). A B16F10 allograft mouse model was constructed to determine the anti-melanoma effects of IATL in vivo. The results showed that IATL exerted anti-melanoma effects in vitro and in vivo. IATL induced cytoprotective autophagy in melanoma cells by inhibiting the PI3K/AKT/mTOR signaling. Moreover, IATL inhibited STAT3 activation both in melanoma cells and allograft tumors not only by binding to the SH2 domain of STAT3 but also by suppressing the activity of its upstream kinase Src. These findings demonstrate that IATL exerts anti-melanoma effects via inhibiting the STAT3 and PI3K/AKT/mTOR signaling pathways, and provides a pharmacological basis for developing IATL as a novel phytotherapeutic agent for treating melanoma clinically.


Asunto(s)
Melanoma Experimental , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Factor de Transcripción STAT3 , Transducción de Señal , Serina-Treonina Quinasas TOR , Animales , Factor de Transcripción STAT3/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Ratones , Transducción de Señal/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Línea Celular Tumoral , Melanoma Experimental/tratamiento farmacológico , Melanoma Experimental/metabolismo , Apoptosis/efectos de los fármacos , Ratones Endogámicos C57BL , Humanos , Furanos/farmacología , Simulación del Acoplamiento Molecular , Supervivencia Celular/efectos de los fármacos , Melanoma/tratamiento farmacológico , Melanoma/metabolismo , Autofagia/efectos de los fármacos , Sesquiterpenos
6.
J Mol Model ; 29(9): 280, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37581864

RESUMEN

CONTEXT: [3+2] cycloaddition processes between isoalantolactone (ISALL) and diazocyclopropane (DCYP), have been surveyed exercising the MEDT, reactivity indices, reactions, and activation energies, are computed. In an investigation of conceptual DFT indices, DCYP behaves as a nucleophile in this reaction, whereas ISALL acts as an electrophile. This cyclization is stereo-, chemo-, and regiospecific, as demonstrated by the activation and reaction energies, in clear agreement with the experiment's results. The mechanism for this [3+2] cycloaddition is occurring in two steps, according to ELF analysis. METHODS: For the purposes of this investigation, all computations were performed using the Gaussian 09 program. The optimization was completed using Berny's computational gradient optimization approach with the basis set 6-311G(d,p) and wB97XD functional. Frequency computations were utilized to characterize and locate stationary points where the transition phases have just one imaginary frequency and all frequencies for the reactants and products are positive. After evaluating the effect of dichloromethane (DCM) as a reaction solvent, the stationary point optimization was updated using the polarizable continuum model (PCM) developed by the Tomasi team. The electron localization function (ELF) has been examined within the context of topological investigations using Multiwfn software with a 0.05 grid step.

7.
Int J Mol Sci ; 24(15)2023 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-37569773

RESUMEN

Cisplatin is a potent chemotherapeutic drug for ovarian cancer (OC) treatment. However, its efficacy is significantly limited due to the development of cisplatin resistance. Although the acquisition of cisplatin resistance is a complex process involving various molecular alterations within cancer cells, the increased reliance of cisplatin-resistant cells on glycolysis has gained increasing attention. Isoalantolactone, a sesquiterpene lactone isolated from Inula helenium L., possesses various pharmacological properties, including anticancer activity. In this study, isoalantolactone was investigated as a potential glycolysis inhibitor to overcome cisplatin resistance in OC. Isoalantolactone effectively targeted key glycolytic enzymes (e.g., lactate dehydrogenase A, phosphofructokinase liver type, and hexokinase 2), reducing glucose consumption and lactate production in cisplatin-resistant OC cells (specifically A2780 and SNU-8). Importantly, it also sensitized these cells to cisplatin-induced apoptosis. Isoalantolactone-cisplatin treatment regulated mitogen-activated protein kinase and AKT pathways more effectively in cisplatin-resistant cells than individual treatments. In vivo studies using cisplatin-sensitive and resistant OC xenograft models revealed that isoalantolactone, either alone or in combination with cisplatin, significantly suppressed tumor growth in cisplatin-resistant tumors. These findings highlight the potential of isoalantolactone as a novel glycolysis inhibitor for treating cisplatin-resistant OC. By targeting the dysregulated glycolytic pathway, isoalantolactone offers a promising approach to overcoming drug resistance and enhancing the efficacy of cisplatin-based therapies.

8.
Eur J Pharmacol ; 955: 175917, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37473982

RESUMEN

Secretory diarrhea caused by bacteria and viruses is usually accompanied by activation of the cystic fibrosis transmembrane conductance regulator (CFTR) and calcium-activated Cl- channels (CaCCs) in the intestinal epithelium. Inhibition of CFTR and CaCCs activities significantly reduces fluid losses and intestinal motility in diarrheal diseases. For this reason, CFTR and CaCCs are potential targets of therapeutic drug screening. Here, we reported that the sesquiterpene lactones, alantolactone (AL) and isoalantolactone (iAL), significantly inhibited ATP and Eact-induced short-circuit currents in T84, HT-29 and Fischer rat thyroid (FRT) cells expressing transmembrane protein 16A (TMEM16A) in a concentration-dependent manner. AL and iAL also inhibited the CaCC-mediated short-circuit currents induced by carbachol in the mouse colons. Both compounds inhibited forskolin-induced currents in T84 cells but did not significantly affect mouse colons. In vivo studies indicated that AL and iAL attenuated gastrointestinal motility and decreased watery diarrhea in rotavirus-infected neonatal mice. Preliminary mechanism studies showed that AL and iAL inhibited CaCCs at least partially by inhibiting Ca2+ release and basolateral membrane K+ channels activity. These findings suggest a new pharmacological activity of sesquiterpene lactone compounds that might lead to the development of treatments for rotaviral secretory diarrhea.


Asunto(s)
Rotavirus , Sesquiterpenos , Ratas , Ratones , Animales , Regulador de Conductancia de Transmembrana de Fibrosis Quística , Diarrea/tratamiento farmacológico , Diarrea/metabolismo , Canales de Cloruro/metabolismo , Mucosa Intestinal/metabolismo , Ratas Endogámicas F344 , Lactonas/farmacología , Lactonas/uso terapéutico , Sesquiterpenos/farmacología , Sesquiterpenos/uso terapéutico , Sesquiterpenos/metabolismo , Cloruros/metabolismo
9.
Psychopharmacology (Berl) ; 240(8): 1775-1787, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37400661

RESUMEN

RATIONALE: The management of depression continues to be challenging despite the variety of available antidepressants. Herbal medicines are used in many cultures but lack stringent testing to understand their efficacy and mechanism of action. Isoalantolactone (LAT) from Elecampane (Inula helenium) improved the chronic social defeat stress (CSDS)-induced anhedonia-like phenotype in mice comparable to fluoxetine, a selective serotonin reuptake inhibitor (SSRI). OBJECTIVES: Compare the effects of LAT and fluoxetine on depression-like behaviors in mice exposed to CSDS. RESULT: The CSDS-induced decrease in protein expression of postsynaptic density (PSD95), brain derived neurotrophic factor (BDNF), and glutamate receptor subunit-1 (GluA1) in the prefrontal cortex was restored by LAT. LAT showed robust anti-inflammatory activity and can lessen the increase in IL-6 and TNF-α caused by CSDS. CSDS altered the gut microbiota at the taxonomic level, resulting in significant changes in α- and ß-diversity. LAT treatment reestablished the bacterial abundance and diversity and increased the production of butyric acid in the gut that was inhibited by CSDS. The levels of butyric acid were negatively correlated with the abundance of Bacteroidetes, and positively correlated with those of Proteobacteria and Firmicutes across all treatment groups. CONCLUSIONS: The current data suggest that, similar to fluoxetine, LAT show antidepressant-like effects in mice exposed to CSDS through the modulation of the gut-brain axis.


Asunto(s)
Depresión , Fluoxetina , Animales , Ratones , Depresión/tratamiento farmacológico , Depresión/metabolismo , Fluoxetina/farmacología , Derrota Social , Eje Cerebro-Intestino , Ácido Butírico , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Estrés Psicológico/tratamiento farmacológico , Estrés Psicológico/metabolismo , Ratones Endogámicos C57BL
10.
Cell Cycle ; 22(12): 1407-1420, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37202916

RESUMEN

Isoalantolactone (Iso) is a bioactive lactone isolated from the root of Inula helenium L, which has been reported to have many pharmacological effects. To investigate the role and mechanism of isoalantolactone in chronic myeloid leukemia (CML), we first investigated isoalantolactone's anti-proliferative effects on imatinib-sensitive and imatinib-resistant CML cells by CCK8. Flow cytometry was used to detect isoalantolactone-induced cell apoptosis. Survivin was overexpressed in KBM5 and KBM5T315I cells using the lentivirus vector pSIN-3×flag-PURO. In KBM5 and KBM5T315I cells, shRNA was used to knockdown survivin. Cellular Thermal Shift Assay (CETSA) was used to detect the interaction between isoalantolactone and survivin. The ubiquitin of survivin induced by isoalantolactone was detected through immunoprecipitation. Quantitative polymerase-chain reaction (Q-PCR) and western blotting were used to detect the levels of mRNA and protein. Isoalantolactone inhibits the proliferation and promotes apoptosis of imatinib-resistant CML cells. Although isoalantolactone inhibits the proteins of BCR-ABL and survivin, it cannot inhibit survivin and BCR-ABL mRNA levels. Simultaneously, it was shown that isoalantolactone can degrade survivin protein by increasing ubiquitination. It was demonstrated that isoalantolactone-induced survivin mediated downregulation of BCR-ABL protein. It was also revealed that isoalantolactone triggered BCR-ABL protein degradation via caspase-3. Altogether, isoalantolactone inhibits survivin through the ubiquitin proteasome pathway, and mediates BCR-ABL downregulation in a caspase-3 dependent manner. These data suggest that isoalantolactone is a natural compound, which can be used as a potential drug to treat TKI-resistant CML.


Asunto(s)
Resistencia a Antineoplásicos , Leucemia Mielógena Crónica BCR-ABL Positiva , Humanos , Mesilato de Imatinib/farmacología , Mesilato de Imatinib/uso terapéutico , Survivin , Caspasa 3 , Proliferación Celular , Proteínas de Fusión bcr-abl , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Leucemia Mielógena Crónica BCR-ABL Positiva/metabolismo , Apoptosis , ARN Mensajero , Ubiquitinas/farmacología , Ubiquitinas/uso terapéutico , Línea Celular Tumoral
11.
J Pharm Pharmacol ; 75(5): 585-592, 2023 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-36940405

RESUMEN

OBJECTIVES: To review the pharmacokinetics, pharmacological action and mechanism of isoalantolactone (IAL). Explore the therapeutic potential of isoalantolactone.Keywords including isoalantolactone, pharmacological effects, pharmacokinetic and toxicity were used for literature search in PubMed, Excerpta Medica Database (EMBASE) and Web of Science, to identify articles published from 1992 to 2022. KEY FINDINGS: IAL has a great many obiological activities such as anti-inflammatory, antioxidant, antitumour, neuroprotection, with no obvious toxicity. This review suggests that IAL exerts different pharmacological effects with different mechanisms of action at different doses, and may be a potential drug candidate to treat inflammatory diseases, neurodegenerative diseases and cancer, with medicinal value. SUMMARY: IAL has various pharmacological activities and medicinal values. However, further research is needed to determine its specific intracellular action sites and targets, so as to fully understand its therapeutic mechanism and provide a reference for the treatment of related diseases.


Asunto(s)
Neoplasias , Sesquiterpenos , Humanos , Neoplasias/tratamiento farmacológico , Antiinflamatorios/farmacología , Sesquiterpenos/farmacología
12.
Acta Biochim Biophys Sin (Shanghai) ; 55(1): 62-71, 2023 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-36727416

RESUMEN

Ovarian cancer is one of leading causes of cancer death in gynecological tumor. Isoalantolactone (IL), present in several medicinal plants, exhibits various biological activities, and its mechanism underlying anti-ovarian cancer activity needs to be further investigated. Here, we find that IL inhibits the proliferation of SKOV-3 and OVCAR-3 cells by causing G2/M phase arrest and inducing apoptosis. Moreover, IL decreases intracellular glutathione (GSH) level, and induces reactive oxygen species (ROS) generation in SKOV-3 cells. Furthermore, IL induces inactivation of Akt which is required for the cytotoxicity of IL. In addition, overexpression of Akt attenuates the IL-induced growth inhibition and ROS generation. GSH supplementation moderately increases the expression of phospho-Akt. Further investigation reveals that pretreatment with L-buthionine-sulfoximine (a GSH biosynthesis inhibitor) restores the Akt-mediated attenuation of growth inhibition induced by IL. Moreover, co-treatment with IL and wortmannin (an Akt pathway inhibitor) increases the growth inhibition attenuated by pretreatment with N-acetyl-L-cysteine (a precursor for GSH biosynthesis). These results indicate that inactivation of Akt and downregulation of GSH level induced by IL are related to each other. In conclusion, combined targeting Akt and GSH is an effective strategy for cancer therapy and IL can be a promising anticancer agent for further exploration.


Asunto(s)
Apoptosis , Neoplasias Ováricas , Humanos , Femenino , Proteínas Proto-Oncogénicas c-akt/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Línea Celular Tumoral , Neoplasias Ováricas/tratamiento farmacológico , Glutatión/metabolismo , Proliferación Celular
13.
Biomed Pharmacother ; 160: 114315, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36716661

RESUMEN

Gastric ulcer (GU) is one of the most prevalent digestive system diseases in humans, and it has been linked to inflammation. Previous studies have demonstrated the anti-inflammatory potential of isoalantolactone (IAL), a sesquiterpene lactone isolated from Radix Inulae. However, the pharmacological effects of IAL on GU and its mechanism of action are still unclear. Hence, the present study is aimed to investigate the anti-inflammatory potential of IAL on GU. Firstly, we assessed the effect of IAL on ethanol-induced injury of human gastric epithelial cells and the levels of inflammatory cytokines in cell culture supernatants. Then, the anti-inflammatory effects of IAL were confirmed in vivo using zebrafish inflammation models. Furthermore, the mechanism of IAL against GU was preliminarily discussed through network pharmacology and molecular docking studies. Quantitative real-time PCR assays were also used to confirm the mechanism of IAL action. ALB, EGFR, SRC, HSP90AA1, and CASP3 were found for the first time as the key targets of the IAL anti-GU. PI3K-Akt signaling pathway and Th17 cell differentiation were identified to play a crucial role in the anti-GU effects of IAL. In conclusion, we found that IAL has anti-inflammatory effects both in vitro and in vivo, and showed potential protective effects against ethanol-induced GU.


Asunto(s)
Sesquiterpenos , Úlcera Gástrica , Animales , Humanos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Úlcera Gástrica/inducido químicamente , Úlcera Gástrica/tratamiento farmacológico , Úlcera Gástrica/prevención & control , Etanol/farmacología , Simulación del Acoplamiento Molecular , Pez Cebra/metabolismo , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Inflamación/prevención & control , Transducción de Señal , Sesquiterpenos/farmacología , Sesquiterpenos/uso terapéutico , Antiinflamatorios/uso terapéutico
14.
Chem Biodivers ; 19(12): e202200486, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36263992

RESUMEN

Inula racemosa, a resourceful critically endangered medicinal herb in the Himalayas is traditionally utilized to cure various human disorders. The species is a wealthy source of sesquiterpene lactones has many pharmacological properties. To quantify and identify the best genetic stocks for a maximum build-up of desired metabolites (isoalantolactone and alantolactone) among existent cytotypes in the species, LC-MS/MS analysis was made. The other comprehensive experiments carried out at present included detailed meiotic examinations of different populations collected from different areas of Kashmir Himalayas. The results presented the occurrence of variable chromosome numbers as n=10 and n=20 in different populations, but the tetraploid cytotype (n=20) is new for the species. The LC-MS/MS investigation revealed significant variability in the content of sesquiterpene lactones in different plant tissues (stem, leaf, and root). An upsurge in the quantity of isoalantolactone and alantolactone was noticed with increasing ploidy levels along the increasing altitudes. Therefore, a habit to accumulate abundant quantities of secondary metabolites and increased adaptability by species/cytotypes thriving at higher altitudes is seen among tetraploid cytotypes during the present investigation. Also, the chromosomal variations seem to enhance the flexibility of polyploid species primarily at upper elevations. Thus, the present study strongly provides quantification of elite cytotypes/chemotypes with optimum concentration of secondary metabolites.


Asunto(s)
Inula , Plantas Medicinales , Sesquiterpenos , Humanos , Inula/química , Plantas Medicinales/genética , Cromatografía Liquida , Tetraploidía , Espectrometría de Masas en Tándem , Sesquiterpenos/farmacología , Fitoquímicos , Análisis Citogenético
15.
Cells ; 11(18)2022 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-36139502

RESUMEN

Parkinson's disease (PD) is a neurodegenerative disease in which neuronal apoptosis and associated inflammation are involved in its pathogenesis. However, there is still no specific treatment that can stop PD progression. Isoalantolactone (IAL) plays a role in many inflammation-related diseases. However, its effect and mechanism in PD remain unclear. In this study, results showed that IAL administration ameliorated 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-induced PD-related pathological impairment and decreased motor activity in mice. Results from in vitro mechanistic studies showed that IAL regulated apoptosis-related proteins by activating the AKT/Nrf2 pathway, thereby suppressing the apoptosis of SN4741 cells induced by N-methyl-4-phenylpyridinium Iodide (MPP+). On the other hand, IAL inhibited LPS-induced release of pro-inflammatory mediators in BV2 cells by activating the AKT/Nrf2/HO-1 pathway and inhibiting the NF-κB pathway. In addition, IAL protected SN4741 from microglial activation-mediated neurotoxicity. Taken together, these results highlight the beneficial role of IAL as a novel therapy and potential PD drug due to its pharmacological profile.


Asunto(s)
Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Animales , Ratones , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/efectos adversos , 1-Metil-4-fenilpiridinio , Apoptosis , Inflamación/metabolismo , Mediadores de Inflamación/metabolismo , Yoduros/efectos adversos , Lipopolisacáridos/efectos adversos , Ratones Endogámicos C57BL , Factor 2 Relacionado con NF-E2 , FN-kappa B/metabolismo , Enfermedad de Parkinson/metabolismo , Proteínas Proto-Oncogénicas c-akt , Pirrolidinas , Sesquiterpenos
16.
Front Pharmacol ; 13: 903599, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35645799

RESUMEN

Colorectal cancer (CRC) is an aggressive cancer. Isoalantolactone (IATL) has been reported to exert cytotoxicity against various cancer cells, but not CRC. In this study, we explored the anti-CRC effects and mechanism of action of IATL in vitro and in vivo. Our results demonstrated that IATL inhibited proliferation by inducing G0/G1 phase cell cycle arrest, apoptosis and autophagy in CRC cells. Repression of autophagy with autophagy inhibitors chloroquine (CQ) and Bafilomycin A1 (Baf-A1) enhanced the anti-CRC effects of IATL, suggesting that IATL induces cytoprotective autophagy in CRC cells. Mechanistic studies revealed that IATL lowered protein levels of phospho-AKT (Ser473), phospho-mTOR (Ser2448), phospho-70S6K (Thr421/Ser424) in CRC cells. Inhibition of AKT and mTOR activities using LY294002 and rapamycin, respectively, potentiated the inductive effects of IATL on autophagy and cell death. In vivo studies showed that IATL suppressed HCT116 tumor growth without affecting the body weight of mice. In consistent with the in vitro results, IATL lowered protein levels of Bcl-2, Bcl-XL, phospho-AKT (Ser473), phospho-mTOR (Ser2448), and phsopho-70S6K (Thr421/Ser424), whereas upregulated protein levels of cleaved-PARP and LC3B-II in HCT116 tumors. Collectively, our results demonstrated that in addition to inhibiting proliferation, inducing G0/G1-phase cell cycle arrest and apoptosis, IATL initiates cytoprotective autophagy in CRC cells by inhibiting the AKT/mTOR signaling pathway. These findings provide an experimental basis for the evaluation of IATL as a novel medication for CRC treatment.

17.
Front Oncol ; 12: 813854, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35145916

RESUMEN

Colon cancer is one of the most common cancer in the world. Doxorubicin (DOX) is a classical anti-tumor drug which widely used in treatment of cancers, however, high toxicity limited its further clinical application. Thus, it is urgent to find new drugs with low toxicity and high efficiency to treat colon cancer. Isoalantolactone (IATL), an isomeric sesquiterpene lactone isolated from the plant of inula helenium, has been reported to have anti-cancer activity against a variety of cancer cells. However, the function of IATL in colon cancer remains unclear. Here, we demonstrated that IATL inhibited colon cancer cell growth by increasing cellular reactive oxygen species (ROS) production. Further study showed that ROS accumulation contributed to DNA damage and JNK signaling pathway activation. In addition, we found that IATL markedly enhanced DOX-induced cell cytotoxicity in colon cancer cells. IATL in combination with DOX significantly increased the ROS production, induced DNA damage and activated JNK signaling pathway. Taken together, our data suggested that combined treatment with IATL and DOX may serve as a potential therapeutics for colon cancer.

18.
Pharmaceutics ; 13(10)2021 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-34683920

RESUMEN

Isoalantolactone (IALT) is one of the isomeric sesquiterpene lactones isolated from the roots of Inula helenium L. IALT is known to possess various biological and pharmacological activities, but its anti-cancer mechanisms are not well understood. The aim of the present study was to investigate the anti-proliferative effects of IALT in human hepatocellular carcinoma (HCC) cells and to evaluate the potential anti-cancer mechanisms. Our results demonstrated that IALT treatment concentration-dependently suppressed the cell survival of HCC Hep3B cells, which was associated with the induction of apoptosis. IALT increased the expression of death-receptor-related proteins, activated caspases, and induced Bid truncation, subsequently leading to cleavage of poly (ADP-ribose) polymerase. In addition, IALT contributed to the cytosolic release of cytochrome c by destroying mitochondrial integrity, following an increase in the Bax/Bcl-2 expression ratio. However, IALT-mediated growth inhibition and apoptosis were significantly attenuated in the presence of a pan-caspase inhibitor, suggesting that IALT induced caspase-dependent apoptosis in Hep3B cells. Moreover, IALT activated the mitogen-activated protein kinases signaling pathway, and the anti-cancer effect of IALT was significantly diminished in the presence of a potent c-Jun N-terminal kinase (JNK) inhibitor. IALT also improved the generation of intracellular reactive oxygen species (ROS), whereas the ROS inhibitor significantly abrogated IALT-induced growth reduction, apoptosis, and JNK activation. Furthermore, ROS-dependent apoptosis was revealed as a mechanism involved in the anti-cancer activity of IALT in a 3D multicellular tumor spheroid model of Hep3B cells. Taken together, our findings indicate that IALT exhibited anti-cancer activity in HCC Hep3B cells by inducing ROS-dependent activation of the JNK signaling pathway.

19.
Mol Med Rep ; 24(4)2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34368878

RESUMEN

Isoalantolactone (IAL), a sesquiterpene lactone, has anti­inflammatory activity in lipopolysaccharide (LPS)­induced sepsis. However, it remains to be elucidated whether IAL influences asthmatic inflammation. The present study found that IAL inhibited ovalbumin (OVA)­induced asthmatic inflammation and attenuated OVA­induced eosinophil infiltration, immunoglobulin E generation and the production of interleukin (IL)­4, IL­5, C­C motif chemokine ligand (CCL)17 and CCL22. In addition, IAL treatment with IL­4 reduced the expression of arginase­1, Ym­1, CCL17 and CCL22 in bone marrow­derived macrophages in vitro. Furthermore, IAL inhibited IL­4­induced STAT6 phosphorylation and the expression of peroxisome proliferator­activated receptor Î³ and Krüppel­like factor 4. Collectively, the results suggested that IAL attenuated asthmatic inflammation and is a potential therapeutic agent for the treatment of asthma.


Asunto(s)
Asma/metabolismo , Inflamación/tratamiento farmacológico , Factor 4 Similar a Kruppel/metabolismo , Macrófagos/metabolismo , Ovalbúmina/efectos adversos , PPAR gamma/metabolismo , Factor de Transcripción STAT6/metabolismo , Sesquiterpenos/farmacología , Animales , Antiasmáticos/farmacología , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Quimiocina CCL17/metabolismo , Citocinas/metabolismo , Femenino , Humanos , Inmunoglobulina E/metabolismo , Inflamación/metabolismo , Interleucina-4/metabolismo , Lipopolisacáridos/farmacología , Pulmón/metabolismo , Pulmón/patología , Ratones , Ratones Endogámicos BALB C , Sesquiterpenos/uso terapéutico
20.
Front Cell Dev Biol ; 9: 632779, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33959604

RESUMEN

Prostate cancer is the most common malignancy among men worldwide. Platinum (II)-based chemotherapy has been used to treat a number of malignancies including prostate cancer. However, the potential of cisplatin for treating prostate cancer is restricted owing to its limited efficacy and toxic side effects. Combination therapies have been proposed to increase the efficacy and reduce the toxic side effects. In the present study, we investigated how isoalantolactone (IATL), a sesquiterpene lactone extracted from the medicinal plant Inula helenium L., acts synergistically with cisplatin on human prostate cancer cells. We show that IATL significantly increased cisplatin-induced growth suppression and apoptosis in human prostate cancer cells. Mechanistically, the combined treatment resulted in an excessive accumulation of intracellular reactive oxygen species (ROS), which leads to the activation of endoplasmic reticulum (ER) stress and the JNK signaling pathway in human prostate cancer cells. Pretreatment of cells with the ROS scavenger N-acetylcysteine (NAC) significantly abrogated the combined treatment-induced ROS accumulation and cell apoptosis. In addition, the activation of ER stress and the JNK signaling pathway prompted by IATL and cisplatin was also reversed by NAC pretreatment. In vivo, we found that IATL combined with cisplatin showed the strongest antitumor effects compared with single agents. These results support the notion that IATL and cisplatin combinational treatment may be more effective for treating prostate cancer than cisplatin alone.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA