Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
BMC Genomics ; 25(1): 498, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773419

RESUMEN

BACKGROUND: The hair follicle development process is regulated by sophisticated genes and signaling networks, and the hair grows from the hair follicle. The Tianzhu white yak population exhibits differences in hair length, especially on the forehead and shoulder region. However, the genetic mechanism is still unclear. Isoform sequencing (Iso-seq) technology with advantages in long reads sequencing. Hence, we combined the Iso-seq and RNA-seq methods to investigate the transcript complexity and difference between long-haired yak (LHY) and normal-haired yak (NHY). RESULTS: The hair length measurement result showed a significant difference between LHY and NHY on the forehead and the shoulder (P-value < 0.001). The skin samples from the forehead and the shoulder of LHY and NHY were pooled for isoform sequencing (Iso-seq). We obtained numerous long transcripts, including novel isoforms, long non-coding RNA, alternative splicing events, and alternative polyadenylation events. Combined with RNA-seq data, we performed differential isoforms (DEIs) analysis between LHY and NHY. We found that some hair follicle and skin development-related DEIs, like BMP4, KRT2, IGF2R, and COL1A2 in the forehead skin; BMP1, KRT1, FGF5, COL2A1, and IGFBP5 in the shoulder skin. Enrichment analysis revealed that DEIs in both two comparable groups significantly participated in skin and hair follicle development-related pathways, like ECM-receptor interaction, focal adhesion, and PI3K-Akt signaling pathways. The results indicated that the hair follicle development of Tianzhu white yak may influence the hair length difference. Besides, the protein-protein interaction (PPI) network of DEIs showed COL2A1 and COL3A1 exhibited a high degree of centrality, and these two genes were suggested as potential candidates for the hair length growth of Tianzhu white yak. CONCLUSIONS: The results provided a comprehensive analysis of the transcriptome complexity and identified differential transcripts that enhance our understanding of the molecular mechanisms underlying the variation in hair length growth in Tianzhu white yak.


Asunto(s)
Cabello , Isoformas de Proteínas , RNA-Seq , Piel , Transcriptoma , Animales , Bovinos/genética , Piel/metabolismo , Cabello/metabolismo , Cabello/crecimiento & desarrollo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Folículo Piloso/metabolismo , Folículo Piloso/crecimiento & desarrollo , Perfilación de la Expresión Génica , Empalme Alternativo , Análisis de Secuencia de ARN
2.
Int J Mol Sci ; 24(8)2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-37108588

RESUMEN

Moso bamboo is capable of both sexual and asexual reproduction during natural growth, resulting in four distinct types of culms: the bamboo shoot-culm, the seedling stem, the leptomorph rhizome, and a long-ignored culm-the outward-rhizome. Sometimes, when the outward rhizomes break through the soil, they continue to grow longitudinally and develop into a new individual. However, the roles of alternative transcription start sites (aTSS) or termination sites (aTTS) as well as alternative splicing (AS) have not been comprehensively studied for their development. To re-annotate the moso bamboo genome and identify genome-wide aTSS, aTTS, and AS in growing culms, we utilized single-molecule long-read sequencing technology. In total, 169,433 non-redundant isoforms and 14,840 new gene loci were identified. Among 1311 lncRNAs, most of which showed a positive correlation with their target mRNAs, one-third of these IncRNAs were preferentially expressed in winter bamboo shoots. In addition, the predominant AS type observed in moso bamboo was intron retention, while aTSS and aTTS events occurred more frequently than AS. Notably, most genes with AS events were also accompanied by aTSS and aTTS events. Outward rhizome growth in moso bamboo was associated with a significant increase in intron retention, possibly due to changes in the growth environment. As different types of moso bamboo culms grow and develop, a significant number of isoforms undergo changes in their conserved domains due to the regulation of aTSS, aTTS, and AS. As a result, these isoforms may play different roles than their original functions. These isoforms then performed different functions from their original roles, contributing to the transcriptomic complexity of moso bamboo. Overall, this study provided a comprehensive overview of the transcriptomic changes underlying different types of moso bamboo culm growth and development.


Asunto(s)
Perfilación de la Expresión Génica , Transcriptoma , Empalme Alternativo , Isoformas de Proteínas/genética , Poaceae/genética , Crecimiento y Desarrollo , Regulación de la Expresión Génica de las Plantas
3.
Biol Reprod ; 108(3): 465-478, 2023 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-36477198

RESUMEN

In mammals, testis and epididymis are critical components of the male reproductive system for androgen production, spermatogenesis, sperm transportation, as well as sperm maturation. Here, we report single-molecule real-time sequencing data from the testis and epididymis of the Banna mini-pig inbred line (BMI), a promising laboratory animal for medical research. We obtained high-quality full-length transcriptomes and identified 9879 isoforms and 8761 isoforms in the BMI testis and epididymis, respectively. Most of the isoforms we identified have novel exon structures that will greatly improve the annotation of testis- and epididymis-expressed genes in pigs. We also found that 3055 genes (over 50%) were shared between BMI testis and epididymis, indicating widespread expression profiles of genes related to reproduction. We characterized extensive alternative splicing events in BMI testis and epididymis and showed that 96 testis-expressed genes and 79 epididymis-expressed genes have more than six isoforms, revealing the complexity of alternative splicing. We accurately defined the transcribed isoforms in BMI testis and epididymis by combining Pacific Biotechnology Isoform-sequencing (PacBio Iso-Seq) and Illumina RNA Sequencing (RNA-seq) techniques. The refined annotation of some key genes governing male reproduction will facilitate further understanding of the molecular mechanisms underlying BMI male sterility. In addition, the high-confident identification of 548 and 669 long noncoding RNAs (lncRNAs) in these two tissues has established a candidate gene set for future functional investigations. Overall, our study provides new insights into the role of the testis and epididymis during BMI reproduction, paving the path for further studies on BMI male infertility.


Asunto(s)
Epidídimo , Testículo , Masculino , Animales , Porcinos/genética , Testículo/metabolismo , Epidídimo/metabolismo , Porcinos Enanos/genética , Porcinos Enanos/metabolismo , Transcriptoma , Semen/metabolismo , Isoformas de Proteínas/metabolismo , Animales de Laboratorio/genética , Animales de Laboratorio/metabolismo
4.
BMC Plant Biol ; 22(1): 470, 2022 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-36192701

RESUMEN

BACKGROUND: Japanese larch (Larix kaempferi) is an economically important deciduous conifer species that grows in cool-temperate forests and is endemic to Japan. Kuril larch (L. gmelinii var. japonica) is a variety of Dahurian larch that is naturally distributed in the Kuril Islands and Sakhalin. The hybrid larch (L. gmelinii var. japonica × L. kaempferi) exhibits heterosis, which manifests as rapid juvenile growth and high resistance to vole grazing. Since these superior characteristics have been valued by forestry managers, the hybrid larch is one of the most important plantation species in Hokkaido. To accelerate molecular breeding in these species, we collected and compared full-length cDNA isoforms (Iso-Seq) and RNA-Seq short-read, and merged them to construct candidate gene as reference for both Larix species. To validate the results, candidate protein-coding genes (ORFs) related to some flowering signal-related genes ​were screened from the reference sequences, and the phylogenetic relationship with closely related species was elucidated. RESULTS: Using the isoform sequencing of PacBio RS ll and the de novo assembly of RNA-Seq short-read sequences, we identified 50,690 and 38,684 ORFs in Japanese larch and Kuril larch, respectively. BUSCO completeness values were 90.5% and 92.1% in the Japanese and Kuril larches, respectively. After comparing the collected ORFs from the two larch species, a total of 19,813 clusters, comprising 22,571 Japanese larch ORFs and 22,667 Kuril larch ORFs, were contained in the intersection of the Venn diagram. In addition, we screened several ORFs related to flowering signals (SUPPRESSER OF OVEREXPRESSION OF CO1: SOC1, LEAFY: LFY, FLOWERING Locus T: FT, CONSTANCE: CO) from both reference sequences, and very similar found in other species. CONCLUSIONS: The collected ORFs will be useful as reference sequences for molecular breeding of Japanese and Kuril larches, and also for clarifying the evolution of the conifer genome and investigating functional genomics.


Asunto(s)
Larix , ADN Complementario , Japón , Larix/genética , Filogenia , Transcriptoma
5.
Viruses ; 14(6)2022 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-35746687

RESUMEN

A novel nidovirus, CSBV Bces-Po19, was isolated from the marine fish, Japanese flounder (Paralichthys olivaceus). The viral genome was 26,597 nucleotides long and shared 98.62% nucleotide identity with CSBV WHQSR4345. PacBio Sequel and Illumina sequencing were used to perform full-length transcriptome sequencing on CSBV Bces-Po19-sensitive (S) and -resistant (R) Japanese flounder. The results of negative staining revealed bacilliform and spherical virions. There were in total 1444 different genes between CSBV Bces-Po19 S and R groups, with 935 being up-regulated and 513 being down-regulated. Metabolism-, immune-, and RNA-related pathways were significantly enriched. Furthermore, CSBV Bces-Po19 infection induced alternative splicing (AS) events in Japanese flounder; the S group had a higher numbers of AS events (12,352) than the R group (11,452). The number of long non-coding RNA (lncRNA) in the S group, on the other hand, was significantly lower than in the R group. In addition to providing valuable information that sheds more light on CSBV Bces-Po19 infection, these research findings provide further clues for CSBV Bces-Po19 prevention and treatment.


Asunto(s)
Enfermedades de los Peces , Lenguado , Nidovirales , Empalme Alternativo , Animales , Enfermedades de los Peces/genética , Proteínas de Peces/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Nidovirales/genética , Nidovirales/metabolismo , Transcriptoma
7.
Pest Manag Sci ; 78(3): 1164-1175, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34821014

RESUMEN

BACKGROUND: Metabolic resistance is a worldwide concern for weed control but has not yet been well-characterized at the genetic level. Previously, we have identified an Asia minor bluegrass (Polypogon fugax Nees ex Steud.) population AHHY exhibiting cytochrome P450 (P450)-involved metabolic resistance to fenoxaprop-P-ethyl. In this study, we aimed to confirm the metabolic fenoxaprop-P-ethyl resistance in AHHY and uncover the potential herbicide metabolism-related genes in this economically damaging weed species. RESULTS: Liquid chromatography-tandem mass spectrometry (LC-MS/MS) assays indicated the metabolic rates of fenoxaprop-P-ethyl were significantly faster in resistant (R, AHHY) than in susceptible (S, SDTS) plants. The amount of phytotoxic fenoxaprop-P peaked at 12 h after herbicide treatment (HAT) and started to decrease at 24 HAT in both biotypes. R and S plants at 24 HAT were sampled to conduct isoform-sequencing (Iso-Seq) and RNA-sequencing (RNA-Seq). A reference transcriptome containing 24 972 full-length isoforms was obtained, of which 24 329 unigenes were successfully annotated. Transcriptomic profiling identified 28 detoxifying enzyme genes constitutively and/or herbicide-induced up-regulated in R than in S plants. Real-time quantitative polymerase chain reaction (RT-qPCR) confirmed 17 genes were consistently up-regulated in R and its F1 generation plants. They were selected as potential fenoxaprop-P-ethyl metabolism-related genes, including ten P450s, one glutathione-S-transferase, one UDP-glucosyltransferase, and five adenosine triphosphate (ATP)-binding cassette transporters. CONCLUSION: This study revealed that the enhanced rates of fenoxaprop-P-ethyl metabolism in P. fugax were very likely driven by the herbicide metabolism-related genes. The transcriptome data generated by Iso-Seq combined with RNA-Seq will provide abundant gene resources for understanding the molecular mechanisms of resistance in P. fugax.


Asunto(s)
Herbicidas , Poa , Acetil-CoA Carboxilasa/genética , Cromatografía Liquida , Genes Esenciales , Resistencia a los Herbicidas/genética , Herbicidas/farmacología , Proteínas de Plantas/genética , Poa/genética , Poaceae/genética , Espectrometría de Masas en Tándem
8.
Int J Mol Sci ; 22(22)2021 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-34830333

RESUMEN

Temperature-sensitive male sterility is a heritable agronomic trait affected by genotype-environment interactions. In rapeseed (Brassica napus), Polima (pol) temperature-sensitive cytoplasmic male sterility (TCMS) is commonly used for two-line breeding, as the fertility of pol TCMS lines can be partially restored at certain temperatures. However, little is known about the underlying molecular mechanism that controls fertility restoration. Therefore, we aimed to investigate the fertility conversion mechanism of the pol TCMS line at two different ambient temperatures (16 °C and 25 °C). Our results showed that the anthers developed and produced vigorous pollen at 16 °C but not at 25 °C. In addition, we identified a novel co-transcript of orf224-atp6 in the mitochondria that might lead to fertility conversion of the pol TCMS line. RNA-seq analysis showed that 1637 genes were significantly differentially expressed in the fertile flowers of 596-L when compared to the sterile flower of 1318 and 596-H. Detailed analysis revealed that differentially expressed genes were involved in temperature response, ROS accumulation, anther development, and mitochondrial function. Single-molecule long-read isoform sequencing combined with RNA sequencing revealed numerous genes produce alternative splicing transcripts at high temperatures. Here, we also found that alternative oxidase, type II NAD(P)H dehydrogenases, and transcription factor Hsfs might play a crucial role in male fertility under the low-temperature condition. RNA sequencing and bulked segregant analysis coupled with whole-genome sequencing identified the candidate genes involved in the post-transcriptional modification of orf224. Overall, our study described a putative mechanism of fertility restoration in a pol TCMS line controlled by ambient temperature that might help utilise TCMS in the two-line breeding of Brassica crops.


Asunto(s)
Brassica napus/genética , Fitomejoramiento/métodos , Infertilidad Vegetal/genética , Proteínas de Plantas/genética , Brassica napus/metabolismo , Fertilidad/genética , Flores/genética , Flores/metabolismo , Regulación de la Expresión Génica de las Plantas , Mitocondrias/genética , Mitocondrias/metabolismo , NADPH Deshidrogenasa/genética , NADPH Deshidrogenasa/metabolismo , Proteínas de Plantas/metabolismo , Polen/genética , Polen/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Reproducción/genética , Temperatura , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Secuenciación Completa del Genoma
9.
Aquat Toxicol ; 239: 105953, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34521059

RESUMEN

The molecular mode of action underpinning the response of mollusks exposure to endocrine disrupting chemicals (EDCs) remains unclear due to a lack of available information regarding their genome. Single molecule real-time (SMRT) sequencing makes it possible to reveal molecular mechanisms by direct sequencing of full-length transcripts. In the present study, the transcriptome profile of the freshwater snail Parafossarulus striatulus after exposure to 17ß-estradiol (E2) or 17α-methyltestosterone (MT) was evaluated using SMRT sequencing strategy. In total, 216,598 non-redundant and full-length gene isoforms were generated and 106,266 isoforms were predicted with a complete open reading frame (ORF). Moreover, 60.36% of the isoforms were matched to known proteins in at least one of six databases. Differential gene expression analyses showed significantly different patterns in paired samples with different treatments. The expression levels of several membrane receptor isoforms of P. striatulus including dopamine receptor (DR), FMRFamide receptor (FMRFaR), neuropeptide Y receptor (NYR) and neuropeptide FF receptor (NFFR), but not estrogen receptor (ER) or estrogen-related receptor (ERR), were significantly affected by E2 and MT. These findings suggest that activation of membrane receptors, as well as other signaling pathways, might be critical for mediating the effects of endocrine disruption in mollusks. The transcriptome information obtained from the SMRT sequencing provides a significant contribution to the investigation of the molecular mode of action of endocrine disrupting chemicals on P. striatulus.


Asunto(s)
Disruptores Endocrinos , Contaminantes Químicos del Agua , Andrógenos , Disruptores Endocrinos/toxicidad , Estrógenos/toxicidad , Agua Dulce , Contaminantes Químicos del Agua/toxicidad
10.
Front Genet ; 12: 678625, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34322153

RESUMEN

Sphingonotus Fieber, 1852 (Orthoptera: Acrididae), is a grasshopper genus comprising approximately 170 species, all of which prefer dry environments such as deserts, steppes, and stony benchlands. In this study, we aimed to examine the adaptation of grasshopper species to arid environments. The genome size of Sphingonotus tsinlingensis was estimated using flow cytometry, and the first high-quality full-length transcriptome of this species was produced. The genome size of S. tsinlingensis is approximately 12.8 Gb. Based on 146.98 Gb of PacBio sequencing data, 221.47 Mb full-length transcripts were assembled. Among these, 88,693 non-redundant isoforms were identified with an N50 value of 2,726 bp, which was markedly longer than previous grasshopper transcriptome assemblies. In total, 48,502 protein-coding sequences were identified, and 37,569 were annotated using public gene function databases. Moreover, 36,488 simple tandem repeats, 12,765 long non-coding RNAs, and 414 transcription factors were identified. According to gene functions, 61 cytochrome P450 (CYP450) and 66 heat shock protein (HSP) genes, which may be associated with drought adaptation of S. tsinlingensis, were identified. We compared the transcriptomes of S. tsinlingensis and two other grasshopper species which were less tolerant to drought, namely Mongolotettix japonicus and Gomphocerus licenti. We observed the expression of CYP450 and HSP genes in S. tsinlingensis were higher. We produced the first full-length transcriptome of a Sphingonotus species that has an ultra-large genome. The assembly characteristics were better than those of all known grasshopper transcriptomes. This full-length transcriptome may thus be used to understand the genetic background and evolution of grasshoppers.

11.
Planta ; 253(2): 28, 2021 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-33423138

RESUMEN

MAIN CONCLUSION: A hypothetical model of drought tolerance mechanism of Larix kaempferi was established through SMRT-seq and Illumina HiSeq. Larix kaempferi is an important economic and ecological species and a major afforestation species in north-eastern China. To date, no information has been reliably derived regarding full-length cDNA sequencing information on L. kaempferi. By single-molecule long-read isoform sequencing (SMRT-seq), here we report a total of 26,153,342 subreads (21.24 Gb) and 330,371 circular consensus sequence (CCS) reads after the modification of site mismatch, and 35,414 unigenes were successfully collected. To gain deeper insights into the molecular mechanisms of L. kaempferi response to drought stress, we combined Illumina HiSeq with SMRT-seq to decode full-length transcripts. In this study, we report 27 differentially expressed genes (DEGs) involved in the perception and transmission of drought stress signals in L. kaempferi. A large number of DEGs responding to drought stress were detected in L. kaempferi, especially DEGs involved in the reactive oxygen species (ROS) scavenging, lignin biosynthesis, and sugar metabolism, and DEGs encoding drought stress proteins. We detected 73 transcription factors (TFs) under drought stress, including AP2/ERF, bZIP, TCP, and MYB. This study provides basic full sequence resources for L. kaempferi research and will help us to better understand the functions of drought-resistance genes in L. kaempferi.


Asunto(s)
Sequías , Larix , RNA-Seq , Estrés Fisiológico , Transcriptoma , China , ADN Complementario/genética , Regulación de la Expresión Génica de las Plantas , Larix/genética , Estrés Fisiológico/genética , Transcriptoma/genética
12.
Dev Comp Immunol ; 116: 103934, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33242569

RESUMEN

Hucho bleekeri is a glacial relict and critically endangered fish restricted to the Yangtze River drainage in China. The lack of basic genomic information and immune characteristics will hinder the way toward protecting this species. In the present study, we conducted the first transcriptome analysis of H. bleekeri using the combination of SMRT and Illumina sequencing technology. Transcriptome sequencing generated a total of 93,330 non-redundant full-length unigenes with a mean length of 3072 bp. A total of 92,472 (99.08%) unigenes were annotated in at least one of the Nr protein, Swiss-Prot, KEGG, KOG, GO, Nt and Pfam databases. KEGG analysis showed that a total of 7240 unigenes belonging to 28 immune pathways were annotated to the immune system category. Meanwhile, differentially expressed genes between mucosa-associated tissues (skin, gill and hindgut) and systemic-immune tissues (spleen, head kidney and liver) were obtained. Importantly, genes participating in diverse immune signalling pathways and their expression profiles in H. bleekeri were discussed. In addition, a large number of long non-coding RNAs (lncRNAs) and simple sequence repeats (SSRs) were obtained in the H. bleekeri transcriptome. The present study will provide basic genomic information for H. bleekeri and for further research on analysing the characteristics of both the innate and adaptive immune systems of this critically endangered species.


Asunto(s)
Salmonidae/genética , Transcriptoma , Animales , China , Especies en Peligro de Extinción , Perfilación de la Expresión Génica , Repeticiones de Microsatélite , Membrana Mucosa/inmunología , ARN Largo no Codificante/genética , Salmonidae/inmunología , Transducción de Señal/genética , Transducción de Señal/inmunología
13.
Front Zool ; 17: 11, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32308726

RESUMEN

BACKGROUND: Sturgeons (Acipenseriformes) are polyploid chondrostean fish that constitute an important model species for studying development and evolution in vertebrates. To better understand the mechanisms of reproduction regulation in sturgeon, this study combined PacBio isoform sequencing (Iso-Seq) with Illumina short-read RNA-seq methods to discover full-length genes involved in early gametogenesis of the Amur sturgeon, Acipenser schrenckii. RESULTS: A total of 50.04 G subread bases were generated from two SMRT cells, and herein 164,618 nonredundant full-length transcripts (unigenes) were produced with an average length of 2782 bp from gonad tissues (three testes and four ovaries) from seven 3-year-old A. schrenckii individuals. The number of ovary-specific expressed unigenes was greater than those of testis (19,716 vs. 3028), and completely different KEGG pathways were significantly enriched between the ovary-biased and testis-biased DEUs. Importantly, 60 early gametogenesis-related genes (involving 755 unigenes) were successfully identified, and exactly 50% (30/60) genes of those showed significantly differential expression in testes and ovaries. Among these, the Amh and Gsdf with testis-biased expression, and the Foxl2 and Cyp19a with ovary-biased expression strongly suggested the important regulatory roles in spermatogenesis and oogenesis of A. schrenckii, respectively. We also found the four novel Sox9 transcript variants, which increase the numbers of regulatory genes and imply function complexity in early gametogenesis. Finally, a total of 236,672 AS events (involving 36,522 unigenes) were detected, and 10,556 putative long noncoding RNAs (lncRNAs) and 4339 predicted transcript factors (TFs) were also respectively identified, which were all significantly associated with the early gametogenesis of A. schrenckii. CONCLUSIONS: Overall, our results provide new genetic resources of full-length transcription data and information as a genomic-level reference for sturgeon. Crucially, we explored the comprehensive genetic characteristics that differ between the testes and ovaries of A. schrenckii in the early gametogenesis stage, which could provide candidate genes and theoretical basis for further the mechanisms of reproduction regulation of sturgeon.

14.
Plant J ; 103(2): 843-857, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32270540

RESUMEN

Brassica napus is a recent allopolyploid derived from the hybridization of Brassica rapa (Ar Ar ) and Brassica oleracea (Co Co ). Because of the high sequence similarity between the An and Cn subgenomes, it is difficult to provide an accurate landscape of the whole transcriptome of B. napus. To overcome this problem, we applied a single-molecule long-read isoform sequencing (Iso-Seq) technique that can produce long reads to explore the complex transcriptome of B. napus at the isoform level. From the Iso-Seq data, we obtained 147 698 non-redundant isoforms, capturing 37 403 annotated genes. A total of 18.1% (14 934/82 367) of the multi-exonic genes showed alternative splicing (AS). In addition, we identified 549 long non-coding RNAs, the majority of which displayed tissue-specific expression profiles, and detected 7742 annotated genes that possessed isoforms containing alternative polyadenylation sites. Moreover, 31 591 AS events located in open reading frames (ORFs) lead to potential protein isoforms by in-frame or frameshift changes in the ORF. Illumina RNA sequencing of five tissues that were pooled for Iso-Seq was also performed and showed that 69% of the AS events were tissue-specific. Our data provide abundant transcriptome resources for a transcript isoform catalog of B. napus, which will facilitate genome reannotation, strengthen our understanding of the B. napus transcriptome and be applied for further functional genomic research.


Asunto(s)
Brassica napus/genética , Transcriptoma/genética , Empalme Alternativo/genética , Brassica napus/metabolismo , Perfilación de la Expresión Génica , Genes de Plantas/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Sistemas de Lectura Abierta/genética , Poliploidía , Alineación de Secuencia , Análisis de Secuencia de ARN , Secuenciación Completa del Genoma
15.
Front Genet ; 10: 654, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31396260

RESUMEN

Normalization of cDNA is widely used to improve the coverage of rare transcripts in analysis of transcriptomes employing next-generation sequencing. Recently, long-read technology has been emerging as a powerful tool for sequencing and construction of transcriptomes, especially for complex genomes containing highly similar transcripts and transcript-spliced isoforms. Here, we analyzed the transcriptome of sugarcane, a highly polyploidy plant genome, by PacBio isoform sequencing (Iso-Seq) of two different cDNA library preparations, with and without a normalization step. The results demonstrated that, while the two libraries included many of the same transcripts, many longer transcripts were removed, and many new generally shorter transcripts were detected by normalization. For the same input cDNA and data yield, the normalized library recovered more total transcript isoforms and number of predicted gene families and orthologous groups, resulting in a higher representation for the sugarcane transcriptome, compared to the non-normalized library. The non-normalized library, on the other hand, included a wider transcript length range with more longer transcripts above ∼1.25 kb and more transcript isoforms per gene family and gene ontology terms per transcript. A large proportion of the unique transcripts comprising ∼52% of the normalized library were expressed at a lower level than the unique transcripts from the non-normalized library, across three tissue types tested including leaf, stalk, and root. About 83% of the total 5,348 predicted long noncoding transcripts was derived from the normalized library, of which ∼80% was derived from the lowly expressed fraction. Functional annotation of the unique transcripts suggested that each library enriched different functional transcript fractions. This demonstrated the complementation of the two approaches in obtaining a complete transcriptome of a complex genome at the sequencing depth used in this study.

16.
BMC Plant Biol ; 19(1): 365, 2019 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-31426739

RESUMEN

BACKGROUND: Gossypium australe F. Mueller (2n = 2x = 26, G2 genome) possesses valuable characteristics. For example, the delayed gland morphogenesis trait causes cottonseed protein and oil to be edible while retaining resistance to biotic stress. However, the lack of gene sequences and their alternative splicing (AS) in G. australe remain unclear, hindering to explore species-specific biological morphogenesis. RESULTS: Here, we report the first sequencing of the full-length transcriptome of the Australian wild cotton species, G. australe, using Pacific Biosciences single-molecule long-read isoform sequencing (Iso-Seq) from the pooled cDNA of ten tissues to identify transcript loci and splice isoforms. We reconstructed the G. australe full-length transcriptome and identified 25,246 genes, 86 pre-miRNAs and 1468 lncRNAs. Most genes (12,832, 50.83%) exhibited two or more isoforms, suggesting a high degree of transcriptome complexity in G. australe. A total of 31,448 AS events in five major types were found among the 9944 gene loci. Among these five major types, intron retention was the most frequent, accounting for 68.85% of AS events. 29,718 polyadenylation sites were detected from 14,536 genes, 7900 of which have alternative polyadenylation sites (APA). In addition, based on our AS events annotations, RNA-Seq short reads from germinating seeds showed that differential expression of these events occurred during seed germination. Ten AS events that were randomly selected were further confirmed by RT-PCR amplification in leaf and germinating seeds. CONCLUSIONS: The reconstructed gene sequences and their AS in G. australe would provide information for exploring beneficial characteristics in G. australe.


Asunto(s)
Empalme Alternativo/genética , Gossypium/genética , Isoformas de Proteínas/genética , Transcriptoma , Perfilación de la Expresión Génica , Genes de Plantas , Gossypium/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , MicroARNs/análisis , Isoformas de Proteínas/metabolismo , ARN Largo no Codificante/análisis , ARN de Planta/análisis
17.
Front Genet ; 10: 253, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30949200

RESUMEN

Nanopore sequencing from Oxford Nanopore Technologies (ONT) and Pacific BioSciences (PacBio) single-molecule real-time (SMRT) long-read isoform sequencing (Iso-Seq) are revolutionizing the way transcriptomes are analyzed. These methods offer many advantages over most widely used high-throughput short-read RNA sequencing (RNA-Seq) approaches and allow a comprehensive analysis of transcriptomes in identifying full-length splice isoforms and several other post-transcriptional events. In addition, direct RNA-Seq provides valuable information about RNA modifications, which are lost during the PCR amplification step in other methods. Here, we present a comprehensive summary of important applications of these technologies in plants, including identification of complex alternative splicing (AS), full-length splice variants, fusion transcripts, and alternative polyadenylation (APA) events. Furthermore, we discuss the impact of the newly developed nanopore direct RNA-Seq in advancing epitranscriptome research in plants. Additionally, we summarize computational tools for identifying and quantifying full-length isoforms and other co/post-transcriptional events and discussed some of the limitations with these methods. Sequencing of transcriptomes using these new single-molecule long-read methods will unravel many aspects of transcriptome complexity in unprecedented ways as compared to previous short-read sequencing approaches. Analysis of plant transcriptomes with these new powerful methods that require minimum sample processing is likely to become the norm and is expected to uncover novel co/post-transcriptional gene regulatory mechanisms that control biological outcomes during plant development and in response to various stresses.

18.
Fish Shellfish Immunol ; 87: 346-359, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30677515

RESUMEN

To better understand the immune system of shrimp, this study combined PacBio isoform sequencing (Iso-Seq) and Illumina paired-end short reads sequencing methods to discover full-length immune-related molecules of the Pacific white shrimp, Litopenaeus vannamei. A total of 72,648 nonredundant full-length transcripts (unigenes) were generated with an average length of 2545 bp from five main tissues, including the hepatopancreas, cardiac stomach, heart, muscle, and pyloric stomach. These unigenes exhibited a high annotation rate (62,164, 85.57%) when compared against NR, NT, Swiss-Prot, Pfam, GO, KEGG and COG databases. A total of 7544 putative long noncoding RNAs (lncRNAs) were detected and 1164 nonredundant full-length transcripts (449 UniTransModels) participated in the alternative splicing (AS) events. Importantly, a total of 5279 nonredundant full-length unigenes were successfully identified, which were involved in the innate immune system, including 9 immune-related processes, 19 immune-related pathways and 10 other immune-related systems. We also found wide transcript variants, which increased the number and function complexity of immune molecules; for example, toll-like receptors (TLRs) and interferon regulatory factors (IRFs). The 480 differentially expressed genes (DEGs) were significantly higher or tissue-specific expression patterns in the hepatopancreas compared with that in other four tested tissues (FDR <0.05). Furthermore, the expression levels of six selected immune-related DEGs and putative IRFs were validated using real-time PCR technology, substantiating the reliability of the PacBio Iso-seq results. In conclusion, our results provide new genetic resources of long-read full-length transcripts data and information for identifying immune-related genes, which are an invaluable transcriptomic resource as genomic reference, especially for further exploration of the innate immune and defense mechanisms of shrimp.


Asunto(s)
Inmunidad Innata/genética , Penaeidae/genética , Penaeidae/inmunología , Transcriptoma/inmunología , Animales , Perfilación de la Expresión Génica , Reacción en Cadena en Tiempo Real de la Polimerasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA