Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Oral Biosci ; 64(4): 422-430, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36152933

RESUMEN

OBJECTIVES: This study aimed to examine if feeding lactating mice a calcium-insufficient diet while simultaneously administering alendronate (ALN) could potentially induce osteocytic osteolysis. METHODS: Lactating mice were fed calcium (Ca)-insufficient diets with or without ALN administration, and then their femurs were examined for TRAP and ALP, and observed by Kossa staining and transmission electron microscopy (TEM). Mice that had been fed a Ca-insufficient diet were then fed a 44Ca-containing diet, and their tibial sections were examined by isotope microscopy. RESULTS: Mice fed a Ca-insufficient diet had a reduced number of TRAP-positive osteoclasts after ALN administration. ALN-treated, lactating mice fed a Ca-insufficient diet had enlarged lacunae in their cortical bones, and TEM imaging demonstrated expanded regions between osteocytes and lacunar walls. In ALN-treated lactating mice fed a Ca-insufficient diet, huge areas of demineralized bone matrix occurred, centered around blood vessels in the cortical bone. Isotope microscopy showed 44Ca in the vicinity of the osteocytic lacunae, and in the broad, previously demineralized region around the blood vessels in the cortical bone of lactating mice fed a 44Ca-sufficient diet. CONCLUSIONS: Bone demineralization likely takes place in the periphery of the osteocytic lacunae and in the broad regions around the blood vessels of lactating mice when they are exposed to severely reduced serum Ca through a Ca-insufficient diet coupled with ALN administration.


Asunto(s)
Osteocitos , Osteólisis , Femenino , Ratones , Animales , Lactancia , Osteoclastos , Calcio de la Dieta , Dieta/veterinaria
2.
Adv Healthc Mater ; 10(3): e2001731, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33191665

RESUMEN

Tough double network (DN) hydrogels are promising substitutes of soft supporting tissues such as cartilage and ligaments. For such applications, it is indispensable to robustly fix the hydrogels to bones with medically feasible methods. Recently, robustly bonding the DN hydrogels to defected bones of rabbits in vivo has been proved successful. The low crystalline hydroxyapatite (HAp) of calcium-phosphate-hydroxide salt coated on the surface layer of the DN hydrogels induced spontaneous osteogenesis penetrating into the semi-permeable hydrogels to form a gel/bone composite layer. In this work, the 44 Ca isotope-doped HAp/DN hydrogel is implanted in a defect of rabbit femoral bone and the dynamic osteogenesis process at the gel/bone interface is analyzed by tracing the calcium isotope ratio using isotope microscopy. The synthetic HAp hybridized on the surface layer of DN gel dissolves rapidly in the first two weeks by inflammation, and then the immature bone with a gradient structure starts to form in the gel region, reutilizing the dissolved Ca ions. These results reveal, for the first time, that synthetic HAp is reutilized for osteogenesis. These facts help to understand the lifetime of bone absorbable materials and to elucidate the mechanism of spontaneous, non-toxic, but strong fixation of hydrogels to bones.


Asunto(s)
Hidrogeles , Osteogénesis , Animales , Huesos , Durapatita , Isótopos , Conejos
3.
J Histochem Cytochem ; 68(10): 651-668, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32942927

RESUMEN

To demonstrate the ultrastructure of osteocytic osteolysis and clarify whether osteocytic osteolysis occurs independently of osteoclastic activities, we examined osteocytes and their lacunae in the femora and tibiae of 11-week-old male wild-type and Rankl-/- mice after injection of human parathyroid hormone (PTH) [1-34] (80 µg/kg/dose). Serum calcium concentration rose temporarily 1 hr after PTH administration in wild-type and Rankl-/- mice, when renal arteries and veins were ligated. After 6 hr, enlargement of osteocytic lacunae was evident in the cortical bones of wild-type and Rankl-/- mice, but not so in their metaphyses. Von Kossa staining and transmission electron microscopy showed broadly demineralized bone matrix peripheral to enlarged osteocytic lacunae, which contained fragmented collagen fibrils and islets of mineralized matrices. Nano-indentation by atomic force microscopy revealed the reduced elastic modulus of the PTH-treated osteocytic perilacunar matrix, despite the microscopic verification of mineralized matrix in that region. In addition, 44Ca deposition was detected by isotope microscopy and calcein labeling in the eroded osteocytic lacunae of wild-type and Rankl-/- mice. Taken together, our findings suggest that osteocytes can erode the bone matrix around them and deposit minerals on their lacunar walls independently of osteoclastic activity, at least in the murine cortical bone. (J Histochem Cytochem 68: -XXX, 2020).


Asunto(s)
Osteólisis , Ligando RANK/metabolismo , Teriparatido/farmacología , Animales , Inyecciones Intravenosas , Masculino , Ratones , Ratones Endogámicos ICR , Ratones Noqueados , Microscopía de Fuerza Atómica , Microscopía Electrónica de Transmisión , Osteocitos/efectos de los fármacos , Osteocitos/metabolismo , Teriparatido/administración & dosificación
4.
J Histochem Cytochem ; 64(10): 601-22, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27666429

RESUMEN

Minodronate is highlighted for its marked and sustained effects on osteoporotic bones. To determine the duration of minodronate's effects, we have assessed the localization of the drug in mouse bones through isotope microscopy, after labeling it with a stable nitrogen isotope ([(15)N]-minodronate). In addition, minodronate-treated bones were assessed by histochemistry and transmission electron microscopy (TEM). Eight-week-old male ICR mice received [(15)N]-minodronate (1 mg/kg) intravenously and were sacrificed after 3 hr, 24 hr, 1 week, and 1 month. Isotope microscopy showed that [(15)N]-minodronate was present mainly beneath osteoblasts rather than nearby osteoclasts. At 3 hr after minodronate administration, histochemistry and TEM showed osteoclasts with well-developed ruffled borders. However, osteoclasts were roughly attached to the bone surfaces and did not feature ruffled borders at 24 hr after minodronate administration. The numbers of tartrate-resistant acid phosphatase-positive osteoclasts and alkaline phosphatase-reactive osteoblastic area were not reduced suddenly, and apoptotic osteoclasts appeared in 1 week and 1 month after the injections. Von Kossa staining demonstrated that osteoclasts treated with minodronate did not incorporate mineralized bone matrix. Taken together, minodronate accumulates in bone underneath osteoblasts rather than under bone-resorbing osteoclasts; therefore, it is likely that the minodronate-coated bone matrix is resistant to osteoclastic resorption, which results in a long-lasting and bone-preserving effect.


Asunto(s)
Conservadores de la Densidad Ósea/análisis , Difosfonatos/análisis , Fémur/química , Imidazoles/análisis , Animales , Isótopos de Carbono , Recuento de Células , Fémur/citología , Masculino , Ratones Endogámicos ICR , Microscopía/métodos , Isótopos de Nitrógeno , Osteoblastos/citología , Osteoclastos/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA