Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros










Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-39171471

RESUMEN

INTRODUCTION: Preeclampsia (PE) is an immensely prevalent condition that poses a significant risk to both maternal and fetal health. It is recognized as a primary cause of perinatal morbidity and mortality. Despite extensive research efforts, the precise impact of JDP2 on trophoblast invasion and migration in the context of preeclampsia remains unclear. MATERIALS AND METHODS: The present study aimed to investigate the differential expression of JDP2 between normal control and preeclampsia placentas through the use of quantitative polymerase chain reaction (qPCR), western blotting, and immunostaining techniques. Furthermore, the effects of JDP2 overexpression and silencing on the migration, invasion, and wound healing capabilities of HTR-8/SVneo cells were evaluated. In addition, this study also examined the impact of JDP2 on epithelial-mesenchymal transition (EMT)-associated biomarkers and the Wnt/ß-catenin pathway. RESULTS: In the present investigation, it was ascertained that Jun dimerization protein 2 (JDP2) exhibited a substantial decrease in expression levels in placentae afflicted with preeclampsia in comparison to those of normal placentae. Impairment in migration and invasion was noted upon JDP2 down-regulation, whereas augmentation of migration and invasion was observed upon JDP2 overexpression in HTR-8/SVneo cells. Subsequently, western blot and immunofluorescence assays were conducted, revealing marked alterations in EMT-associated biomarkers, such as E-cadherin, N-cadherin, and ß-catenin, thereby indicating that JDP2 can facilitate cell invasion by modulating the EMT process in HTR-8/SVneo cells. Finally, activation of Wnt/ß-catenin signaling was observed as a result of JDP2. After that, IWR-1, a Wnt inhibitor, was used in the recovery study. IWR-1 could inhibit the role of JDP2 in promoting migration and invasion in HTR-8/SVneo cells. CONCLUSION: Our findings elucidated the impact of JDP2 on trophoblast invasion and migration in preeclampsia by suppressing the EMT through the Wnt/ß-catenin signaling pathway, thereby offering a potential prognostic and therapeutic biomarker for this condition.

2.
Cell Rep ; 43(3): 113964, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38489263

RESUMEN

Microglia are versatile regulators in brain development and disorders. Emerging evidence links microRNA (miRNA)-mediated regulation to microglial function; however, the exact underlying mechanism remains largely unknown. Here, we uncover the enrichment of miR-137, a neuropsychiatric-disorder-associated miRNA, in the microglial nucleus, and reveal its unexpected nuclear functions in maintaining the microglial global transcriptomic state, phagocytosis, and inflammatory response. Mechanistically, microglial Mir137 deletion increases chromatin accessibility, which contains binding motifs for the microglial master transcription factor Pu.1. Through biochemical and bioinformatics analyses, we propose that miR-137 modulates Pu.1-mediated gene expression by suppressing Pu.1 binding to chromatin. Importantly, we find that increased Pu.1 binding upregulates the target gene Jdp2 (Jun dimerization protein 2) and that knockdown of Jdp2 significantly suppresses the impaired phagocytosis and pro-inflammatory response in Mir137 knockout microglia. Collectively, our study provides evidence supporting the notion that nuclear miR-137 acts as a transcriptional modulator and that this microglia-specific function is essential for maintaining normal adult brain function.


Asunto(s)
MicroARNs , Microglía , Microglía/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Encéfalo/metabolismo , Homeostasis , Cromatina/metabolismo
3.
Cancers (Basel) ; 16(5)2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38473360

RESUMEN

The AP-1 protein complex primarily consists of several proteins from the c-Fos, c-Jun, activating transcription factor (ATF), and Jun dimerization protein (JDP) families. JDP2 has been shown to interact with the cAMP response element (CRE) site present in many cis-elements of downstream target genes. JDP2 has also demonstrates important roles in cell-cycle regulation, cancer development and progression, inhibition of adipocyte differentiation, and the regulation of antibacterial immunity and bone homeostasis. JDP2 and ATF3 exhibit significant similarity in their C-terminal domains, sharing 60-65% identities. Previous studies have demonstrated that ATF3 is able to influence both the transcriptional activity and p53 stability via a p53-ATF3 interaction. While some studies have shown that JDP2 suppresses p53 transcriptional activity and in turn, p53 represses JDP2 promoter activity, the direct interaction between JDP2 and p53 and the regulatory role of JDP2 in p53 transactivation have not been explored. In the current study, we provide evidence, for the first time, that JDP2 interacts with p53 and regulates p53 transactivation. First, we demonstrated that JDP2 binds to p53 and the C-terminal domain of JDP2 is crucial for the interaction. Second, in p53-null H1299 cells, JDP2 shows a robust increase of p53 transactivation in the presence of p53 using p53 (14X)RE-Luc. Furthermore, JDP2 and ATF3 together additively enhance p53 transactivation in the presence of p53. While JDP2 can increase p53 transactivation in the presence of WT p53, JDP2 fails to enhance transactivation of hotspot mutant p53. Moreover, in CHX chase experiments, we showed that JDP2 slightly enhances p53 stability. Finally, our findings indicate that JDP2 has the ability to reverse MDM2-induced p53 repression, likely due to decreased levels of MDM2 by JDP2. In summary, our results provide evidence that JDP2 directly interacts with p53 and decreases MDM2 levels to enhance p53 transactivation, suggesting that JDP2 is a novel regulator of p53 and MDM2.

4.
J Periodontal Res ; 58(4): 800-812, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37221903

RESUMEN

BACKGROUND AND OBJECTIVE: Periodontal ligament (PDL) and dental pulp (DP) share a common origin but have distinct biological and mechanical functions. To what extent the mechanoresponsive property of PDL can be attributed to its unique transcriptional profiles of cellular heterogeneity is unclear. This study aims to decipher cellular heterogeneity and distinct mechanoresponsive characteristics of odontogenic soft tissues and their underlying molecular mechanisms. MATERIALS AND METHODS: A single-cell comparison of digested human periodontal ligament (PDL) and dental pulp (DP) was performed using scRNA-seq. An in vitro loading model was constructed to measure mechanoresponsive ability. Dual-luciferase assay, overexpression, and shRNA knockdown were used to investigate the molecular mechanism. RESULTS: Our results demonstrate striking fibroblast heterogeneity across and within human PDL and DP. We demonstrated that a tissue-specific subset of fibroblasts existed in PDL exhibiting high expression of mechanoresponsive extracellular matrix (ECM) genes, which was verified by an in vitro loading model. ScRNA-seq analysis indicated a particularly enriched regulator in PDL-specific fibroblast subtype, Jun Dimerization Protein 2 (JDP2). Overexpression and knockdown of JDP2 extensively regulated the downstream mechanoresponsive ECM genes in human PDL cells. The force loading model demonstrated that JDP2 responded to tension and that knockdown of JDP2 effectively inhibited the mechanical force-induced ECM remodeling. CONCLUSIONS: Our study constructed the PDL and DP ScRNA-seq atlas to demonstrate PDL and DP fibroblast cellular heterogeneity and identify a PDL-specific mechanoresponsive fibroblast subtype and its underlying mechanism.


Asunto(s)
Fibroblastos , Análisis de Expresión Génica de una Sola Célula , Humanos , Células Cultivadas , Fibroblastos/metabolismo , Matriz Extracelular , Ligamento Periodontal/metabolismo
5.
Aging (Albany NY) ; 15(9): 3465-3479, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-37179125

RESUMEN

BACKGROUND: The epithelial-mesenchymal transition (EMT) of retinal pigment epithelial (RPE) cells is the most crucial step in the etiopathogenesis of proliferative vitreoretinopathy. This study aimed to investigate the role of miR-143-5p in the EMT of RPE cells induced by palmitic acid (PA). METHODS: ARPE-19 cells were treated with PA to induce EMT, followed by E-cadherin and α-smooth muscle actin (α-SMA) expression and the microRNA expression profile analyses. Subsequently, miR-143-5p mimics/inhibitors, and plasmids expressing its predicted target gene c-JUN-dimerization protein 2 (JDP2), were transfected in ARPE-19 cells using lipofectamine 3000, and followed by PA treatment. Their impacts on EMT were explored using wound healing and Western blot assays. Additionally, miR-143-5p mimics and JDP2-expressing plasmid were co-transfected into ARPE-19 cells and treated with PA to explore whether PA induced EMT of ARPE-19 cells via the miR-143-5p/JDP2 axis. RESULTS: PA decreased E-cadherin expression and increased those of α-SMA and miR-143-5p. Inhibiting miR-143-5p suppressed the migration of ARPE-19 cells and altered the expressions of E-cadherin and α-SMA. However, additional PA treatment attenuated these alterations. JDP2 was a target of miR-143-5p. Overexpression of JDP2 inhibited the EMT of ARPE-19 cells, resulting in α-SMA downregulation and E-cadherin upregulation, which were reversed by additional PA treatment via inhibiting JDP2 expression. Overexpression of miR-143-5p reversed the effect of JDP2 on the EMT of ARPE-19 cells and additional PA treatment markedly enhanced the effect of miR-143-5p mimics. CONCLUSION: PA promotes EMT of ARPE-19 cells via regulating the miR-143-5p/JDP2 axis, and these findings provide significant insights into the potential targeting of this axis to treat proliferative vitreoretinopathy.


Asunto(s)
MicroARNs , Vitreorretinopatía Proliferativa , Humanos , Epitelio Pigmentado de la Retina/patología , Vitreorretinopatía Proliferativa/genética , Vitreorretinopatía Proliferativa/metabolismo , Vitreorretinopatía Proliferativa/patología , Ácido Palmítico/toxicidad , Transición Epitelial-Mesenquimal/genética , MicroARNs/metabolismo , Cadherinas/metabolismo , Movimiento Celular/genética , Proteínas Represoras/metabolismo
6.
Braz. j. med. biol. res ; 55: e11989, 2022. graf
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1374706

RESUMEN

Pancreatic cancer (PC) is one of the malignant tumors with the worst prognosis worldwide because of a lack of early diagnostic markers and efficient therapies. Integrin, beta-like 1 (ITGBL1) is a β-integrin-related extracellular matrix protein and is reported to promote progression of some types of cancer. Nevertheless, the function of ITGBL1 in PC is still not clear. Herein, we found that ITGBL1 was highly expressed in PC tissues compared to normal tissues (P<0.05) and PC patients with higher TGBL1 expression showed worse prognosis. PANC-1 and AsPC-1 cells were used for gain/loss-of-function experiments. We found that ITGBL1-silenced cells exhibited decreased proliferation, migration, and invasion abilities and delayed cell cycle, whereas ITGBL1 overexpression reversed these malignant behaviors. ITGBL1 was also demonstrated to activate the TGF-β/Smad pathway, a key signaling pathway in PC progression. Additionally, ITGBL1 expression was found to be suppressed by a suppressor of PC progression, c-Jun dimerization protein 2 (JDP2). Results of dual-luciferase assay indicated that transcription factor JDP2 could inhibit TGBL1 promoter activity. ITGBL1 overexpression inversed the effects of JDP2 up-regulation on cell function. Collectively, we concluded that ITGBL1 may be transcriptionally suppressed by JDP2 and promote PC progression through the TGF-β/Smad pathway, indicating that ITGBL1 may have therapeutic potential for the treatment of PC.

7.
Stem Cell Res Ther ; 12(1): 369, 2021 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-34187574

RESUMEN

BACKGROUND: The cerebellum is the sensitive region of the brain to developmental abnormalities related to the effects of oxidative stresses. Abnormal cerebellar lobe formation, found in Jun dimerization protein 2 (Jdp2)-knockout (KO) mice, is related to increased antioxidant formation and a reduction in apoptotic cell death in granule cell progenitors (GCPs). Here, we aim that Jdp2 plays a critical role of cerebellar development which is affected by the ROS regulation and redox control. OBJECTIVE: Jdp2-promoter-Cre transgenic mouse displayed a positive signal in the cerebellum, especially within granule cells. Jdp2-KO mice exhibited impaired development of the cerebellum compared with wild-type (WT) mice. The antioxidation controlled gene, such as cystine-glutamate transporter Slc7a11, might be critical to regulate the redox homeostasis and the development of the cerebellum. METHODS: We generated the Jdp2-promoter-Cre mice and Jdp2-KO mice to examine the levels of Slc7a11, ROS levels and the expressions of antioxidation related genes were examined in the mouse cerebellum using the immunohistochemistry. RESULTS: The cerebellum of Jdp2-KO mice displayed expression of the cystine-glutamate transporter Slc7a11, within the internal granule layer at postnatal day 6; in contrast, the WT cerebellum mainly displayed Sla7a11 expression in the external granule layer. Moreover, development of the cerebellar lobes in Jdp2-KO mice was altered compared with WT mice. Expression of Slc7a11, Nrf2, and p21Cip1 was higher in the cerebellum of Jdp2-KO mice than in WT mice. CONCLUSION: Jdp2 is a critical regulator of Slc7a11 transporter during the antioxidation response, which might control the growth, apoptosis, and differentiation of GCPs in the cerebellar lobes. These observations are consistent with our previous study in vitro.


Asunto(s)
Cerebelo , Células-Madre Neurales , Animales , Diferenciación Celular , Ratones , Ratones Noqueados , Ratones Transgénicos
8.
Cell Mol Life Sci ; 78(15): 5847-5863, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34181046

RESUMEN

Human induced pluripotent stem cells (iPSCs) technology has been widely applied to cell regeneration and disease modeling. However, most mechanism of somatic reprogramming is studied on mouse system, which is not always generic in human. Consequently, the generation of human iPSCs remains inefficient. Here, we map the chromatin accessibility dynamics during the induction of human iPSCs from urine cells. Comparing to the mouse system, we found that the closing of somatic loci is much slower in human. Moreover, a conserved AP-1 motif is highly enriched among the closed loci. The introduction of AP-1 repressor, JDP2, enhances human reprogramming and facilitates the reactivation of pluripotent genes. However, ESRRB, KDM2B and SALL4, several known pluripotent factors promoting mouse somatic reprogramming fail to enhance human iPSC generation. Mechanistically, we reveal that JDP2 promotes the closing of somatic loci enriching AP-1 motifs to enhance human reprogramming. Furthermore, JDP2 can rescue reprogramming deficiency without MYC or KLF4. These results indicate AP-1 activity is a major barrier to prevent chromatin remodeling during somatic cell reprogramming.


Asunto(s)
Reprogramación Celular/fisiología , Células Madre Pluripotentes Inducidas/metabolismo , Factor de Transcripción AP-1/metabolismo , Animales , Células Cultivadas , Cromatina/metabolismo , Proteínas F-Box/metabolismo , Células HEK293 , Humanos , Factor 4 Similar a Kruppel , Ratones , Ratones Endogámicos NOD , Ratones SCID , Receptores de Estrógenos/metabolismo , Factores de Transcripción/metabolismo
9.
Int J Mol Sci ; 21(23)2020 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-33265909

RESUMEN

BACKGROUND: Cardiac-specific JDP2 overexpression provokes ventricular dysfunction and atrial dilatation in mice. We performed in vivo studies on JDP2-overexpressing mice to investigate the impact of JDP2 on the predisposition to spontaneous atrial fibrillation (AF). METHODS: JDP2-overexpression was started by withdrawal of a doxycycline diet in 4-week-old mice. The spontaneous onset of AF was documented by ECG within 4 to 5 weeks of JDP2 overexpression. Gene expression was analyzed by real-time RT-PCR and Western blots. RESULTS: In atrial tissue of JDP2 mice, besides the 3.6-fold increase of JDP2 mRNA, no changes could be detected within one week of JDP2 overexpression. Atrial dilatation and hypertrophy, combined with elongated cardiomyocytes and fibrosis, became evident after 5 weeks of JDP2 overexpression. Electrocardiogram (ECG) recordings revealed prolonged PQ-intervals and broadened P-waves and QRS-complexes, as well as AV-blocks and paroxysmal AF. Furthermore, reductions were found in the atrial mRNA and protein level of the calcium-handling proteins NCX, Cav1.2 and RyR2, as well as of connexin40 mRNA. mRNA of the hypertrophic marker gene ANP, pro-inflammatory MCP1, as well as markers of immune cell infiltration (CD68, CD20) were increased in JDP2 mice. CONCLUSION: JDP2 is an important regulator of atrial calcium and immune homeostasis and is involved in the development of atrial conduction defects and arrhythmogenic substrates preceding paroxysmal AF.


Asunto(s)
Fibrilación Atrial/patología , Fibrilación Atrial/fisiopatología , Remodelación Atrial , Calcio/metabolismo , Inflamación/patología , Proteínas Represoras/metabolismo , Animales , Arritmias Cardíacas/complicaciones , Arritmias Cardíacas/diagnóstico por imagen , Arritmias Cardíacas/fisiopatología , Fibrilación Atrial/complicaciones , Fibrilación Atrial/diagnóstico por imagen , Señalización del Calcio/genética , Conexinas/metabolismo , Fibrosis , Atrios Cardíacos/patología , Atrios Cardíacos/fisiopatología , Sistema de Conducción Cardíaco/diagnóstico por imagen , Sistema de Conducción Cardíaco/patología , Sistema de Conducción Cardíaco/fisiopatología , Hipertrofia , Inflamación/complicaciones , Ratones Transgénicos , Fosforilación , ARN Mensajero/genética , ARN Mensajero/metabolismo , Retículo Sarcoplasmático/metabolismo , Proteína alfa-5 de Unión Comunicante
10.
FEBS Open Bio ; 10(12): 2771-2779, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33108704

RESUMEN

Jun dimerization protein 2 (JDP2) is a bZip-type transcription factor, which acts as a repressor or activator of several cellular processes, including cell differentiation and chromatin remodeling. Previously, we found that a stress-responsive transcription factor, known as activating transcription factor 4 (ATF4), enhances JDP2 gene expression in human astrocytoma U373MG and cervical cancer HeLa cells; however, the role of JDP2 in the ATF4-mediated stress response remained unclear. Here, we reported that siRNA-mediated JDP2 knockdown enhances the expression of several ATF4 target genes, including ASNS, and death receptors 4 and 5 (DR4 and DR5) in HeLa cells. In addition, the results of a transient reporter assay indicate that JDP2 overexpression represses ER stress-mediated DR5 promoter activation suggesting that JDP2 negatively regulates ATF4-mediated gene expression. Curiously, knockdown of JDP2 increases the sensitivity of cells to TNF-related apoptosis-inducing ligand (TRAIL), which induces apoptosis in cancer cells through DR4 and DR5. These results indicate that JDP2 functions as a negative feedback regulator of the ATF4 pathway and contributes to TRAIL resistance in cancer cells.


Asunto(s)
Factor de Transcripción Activador 4/metabolismo , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Proteínas Represoras/metabolismo , Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Humanos , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/genética , Proteínas Represoras/genética , Células Tumorales Cultivadas
11.
J Cell Mol Med ; 24(8): 4557-4568, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32150333

RESUMEN

Recently, growing evidence has shown that aberrant long non-coding RNA (lncRNA) expression in conjunction with an impaired trophoblastic phenotype could implicate the pathological process of pre-eclampsia (PE). However, only a small portion of lncRNAs has been characterized with regard to the function and molecular mechanisms involved in PE. There are still gaps in the available knowledge; as a result, there are currently only a few applicable treatments for PE in the context of lncRNA. Here, we found that lncRNA AGAP2-AS1 is abnormally down-regulated in severe PE placenta tissues. Using human trophoblasts, we established that AGAP2-AS1 knockdown could inhibit trophoblasts proliferation and invasion and promote cell apoptosis. Further, we showed that overexpression of AGAP2-AS1 substantially stimulated the development of the trophoblastic phenotype. Through high-throughput sequencing analysis, we demonstrated that silencing of AGAP2-AS1 favourably regulated various genes which are relevant to trophoblastic growth and invasion. Mechanistically, AGAP2-AS1 promoted the suppressor protein, Jun dimerization protein 2 (JDP2), by sponging miR-574-5p. Resultantly, further impairment of the trophoblastic phenotype was achieved by way of inhibiting cell growth, apoptosis and invasion. We also determined that the expression of AGAP2-AS1 could be mediated by FOXP1. Our results showed that the down-regulated expression of lncRNA AGAP2-AS1 might serve as a key suppressor in PE via inhibition of JDP2 at the post-transcriptional level by competing for miR-574; thus, this presents a novel therapeutic strategy for PE.


Asunto(s)
Factores de Transcripción Forkhead/genética , MicroARNs/genética , Preeclampsia/genética , ARN Largo no Codificante/genética , Proteínas Represoras/genética , Adulto , Técnicas de Cultivo de Célula , Proliferación Celular/genética , Femenino , Regulación de la Expresión Génica/genética , Humanos , Placenta/metabolismo , Placenta/patología , Preeclampsia/patología , Preeclampsia/terapia , Embarazo , Trofoblastos/metabolismo
12.
J Neuroendocrinol ; 31(8): e12735, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31121060

RESUMEN

Brain mineralocorticoid receptors (MRs) and glucocorticoid receptors (GRs) respond to the same glucocorticoid hormones but can have differential effects on cellular function. Several lines of evidence suggest that MR-specific target genes must exist and might underlie the distinct effects of the receptors. The present study aimed to identify MR-specific target genes in the hippocampus, a brain region where MR and GR are co-localised and play a role in the stress response. Using genome-wide binding of both receptor types, we previously identified MR-specific, MR-GR overlapping and GR-specific putative target genes. We now report altered gene expression levels of such genes in the hippocampus of forebrain MR knockout (fbMRKO) mice, killed at the time of their endogenous corticosterone peak. Of those genes associated with MR-specific binding, the most robust effect was a 50% reduction in Jun dimerization protein 2 (Jdp2) mRNA levels in fbMRKO mice. Down-regulation was also observed for the MR-specific Nitric oxide synthase 1 adaptor protein (Nos1ap) and Suv3 like RNA helicase (Supv3 l1). Interestingly, the classical glucocorticoid target gene FK506 binding protein 5 (Fkbp5), which is associated with MR and GR chromatin binding, was expressed at substantially lower levels in fbMRKO mice. Subsequently, hippocampal Jdp2 was confirmed to be up-regulated in a restraint stress model, posing Jdp2 as a bona fide MR target that is also responsive in an acute stress condition. Thus, we show that MR-selective DNA binding can reveal functional regulation of genes and further identify distinct MR-specific effector pathways.


Asunto(s)
Regulación de la Expresión Génica , Hipocampo/metabolismo , Receptores de Mineralocorticoides/fisiología , Animales , Sitios de Unión/genética , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Receptores de Mineralocorticoides/genética
13.
Biochem Biophys Res Commun ; 504(4): 805-811, 2018 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-30217453

RESUMEN

Traumatic brain injury (TBI) is a major cause of death and disability, also resulting in long-term serious neurological impairment in survivors. However, the pathogenesis of TBI has not been fully understood. Jun dimerization protein 2 (JDP2) is a member of the AP-1 family of transcription factors, containing a basic region-leucine zipper motif. JDP2 plays essential roles in various cellular processes, including differentiation, apoptosis, senescence and aging. In the study, we attempted to explore the effects of JDP2 on TBI progression both in vivo and in vitro. The wild type (WT) and JDP2 knockout (KO) mice were employed in our study and were subjected to TBI. The results showed that JDP2-deficient mice exhibited improved cognitive functions in TBI mice. The inflammatory cytokines, glial amount and apoptosis, as well as the protein of cleaved Caspase-3 were significantly increased after TBI in WT mice, and all these up-regulation were significantly mitigated by JDP2 knockout in mice. We also found that TBI induced JDP2 expression in hippocampus of mice. Lipopolysaccharide (LPS) also stimulated JDP2 expression levels in astrocytes isolated from WT mice, indicating the critical role of JDP2 in TBI. Suppressing Caspase-3 activation could reduce LPS-induced inflammation in astrocytes. Consistent with the results in vivo, LPS-induced inflammatory response and apoptosis were reversed by JDP2 deficiency in cells. Notably, we found that over-expressing JDP2 could further promoted inflammation, apoptosis and Caspase-3 activation induced by LPS. Collectively, JDP2 knockout effectively attenuate TBI in vivo and in vitro through blocking Caspase-3 activation, providing a potential therapeutic target for TBI or even other neurological disorders.


Asunto(s)
Lesiones Traumáticas del Encéfalo/etiología , Caspasa 3/metabolismo , Proteínas Represoras/genética , Animales , Apoptosis/efectos de los fármacos , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Lesiones Traumáticas del Encéfalo/genética , Lesiones Traumáticas del Encéfalo/patología , Caspasa 3/genética , Células Cultivadas , Cognición , Hipocampo/citología , Hipocampo/patología , Hipocampo/fisiología , Inflamación/metabolismo , Lipopolisacáridos/farmacología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Neuroglía/fisiología , Proteínas Represoras/metabolismo
16.
Fam Cancer ; 17(4): 587-599, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29302811

RESUMEN

Hereditary leiomyomatosis and renal cell cancer syndrome (HLRCC) is a very rare disease that is inherited in an autosomal dominant manner. Affected patients may develop from cutaneous and uterine leiomyomas to type 2 papillary renal cell carcinoma (Schmidt and Linehan, Int J Nephrol Renovasc Dis 7:253-260, 2014). HLRCC is caused by germline mutations in the FH gene, which produces the fumarate hydratase protein that participates in the tricarboxylic acid cycle during the conversion of fumarate to malate. In FH-deficient cells, high concentrations of fumarate lead to a series of intricate events, which seem to be responsible for the malignant transformation (Yang et al., J Clin Invest 123(9):3652-3658, 2013) (Bardella et al., J Pathol 225(1):4-11, 2011). Among these events, one that is gaining attention is the pathological activation of the nuclear factor erythroid 2-related factor 2 (NRF2) pathway, which has been found in several types of cancer and is implicated in the expression of genes associated with antioxidant responses (Linehan and Rouault, Clin Cancer Res 19(13):3345-3352, 2013). In this article, we present the results of a gene expression analysis performed on peripheral blood cells from patients with HLRCC syndrome, where upregulation of numerous NRF2 targets and the differential expression of two key genes, Jun dimerization protein 2 (JDP2) and Phosphoglycerate mutase family member 5 (PGAM5), which are involved in the control of this pathway, was observed.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Leiomiomatosis/genética , Factor 2 Relacionado con NF-E2/genética , Síndromes Neoplásicos Hereditarios/genética , Neoplasias Cutáneas/genética , Neoplasias Uterinas/genética , Adulto , Estudios de Casos y Controles , Humanos , Leucocitos Mononucleares/fisiología , Masculino , Proteínas Mitocondriales/genética , Factor 2 Relacionado con NF-E2/metabolismo , Fosfoproteínas Fosfatasas/genética , Proteínas Represoras/genética
17.
FEBS Open Bio ; 7(11): 1793-1804, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-29123987

RESUMEN

The main regulators of replicative senescence in mice are p16Ink4a and Arf, inhibitors of cell cycle progression. Jun dimerization protein 2 (JDP2)-deficient mouse embryonic fibroblasts are resistant to replicative senescence through recruitment of the Polycomb repressive complexes 1 and 2 to the promoter of the gene that encodes p16Ink4a and inhibits the methylation of lysine 27 of the histone H3 locus. However, whether or not JDP2 is able to regulate the chromatin signaling of either p16Ink4a-pRb or Arf-p53, or both, in response to oxidative stress remains elusive. Thus, this study sought to clarify this point. We demonstrated that the introduction of JDP2 leads to upregulation of p16Ink4a and Arf and decreases cell proliferation in the presence of environmental (20% O2), but not in low (3% O2) oxygen. JDP2-mediated growth suppression was inhibited by the downregulation of both p16Ink4a and Arf. Conversely, the forced expression of p16Ink4a or Arf inhibited cell growth even in the absence of JDP2. The downregulation of both the p53 and pRb pathways, but not each individually, was sufficient to block JDP2-dependent growth inhibition. These data suggest that JDP2 induces p16Ink4a and Arf by mediating signals from oxidative stress, resulting in cell cycle arrest via both the p16Ink4a-pRb and Arf-p53 pathways.

18.
Cell Rep ; 19(13): 2730-2742, 2017 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-28658621

RESUMEN

Candida albicans can enter skeletal tissue through a skin wound in an immunocompromised host or by contamination during orthopedic surgery. Such Candida osteomyelitis is accompanied by severe pain and bone destruction. It is established that nociceptor innervation occurs in skin and bone, but the mechanisms of nociceptive modulation in fungal inflammation remain unclear. In this study, we show that C. albicans stimulates Nav1.8-positive nociceptors via the ß-glucan receptor Dectin-1 to induce calcitonin gene-related peptide (CGRP). This induction of CGRP is independent of Bcl-10 or Malt-1 but dependent on transient receptor potential cation channel subfamily V member 1 (TRPV1)/transient receptor potential cation channel subfamily A member 1 (TRPA1) ion channels. Hindpaw ß-glucan injection after Nav1.8-positive nociceptor ablation or in TRPV1/TRPA1 deficiency showed dramatically increased osteoinflammation accompanied by impaired CGRP production. Strikingly, CGRP suppressed ß-glucan-induced inflammation and osteoclast multinucleation via direct suppression of nuclear factor-κB (NF-κB) p65 by the transcriptional repressor Jdp2 and inhibition of actin polymerization, respectively. These findings clearly suggest a role for Dectin-1-mediated sensocrine pathways in the resolution of fungal osteoinflammation.


Asunto(s)
Candida albicans/inmunología , Candidiasis/inmunología , Inflamación/inmunología , Nociceptores/inmunología , Proteínas Represoras/inmunología , Canales Catiónicos TRPV/inmunología , Animales , Péptido Relacionado con Gen de Calcitonina/metabolismo , Candidiasis/metabolismo , Candidiasis/patología , Femenino , Humanos , Inflamación/microbiología , Ratones , Proteínas Represoras/metabolismo , Canales Catiónicos TRPV/metabolismo
19.
Hum Pathol ; 63: 212-216, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28315425

RESUMEN

The c-Jun dimerization protein 2 (JDP2) belongs to the activator protein-1 (AP-1) family and functions as a repressor of the AP-1 complex by dimerizing with other c-Jun proteins. Thus, JDP2 plays an important role in the repression of AP-1-driven biological processes, such as differentiation and proliferation. Recent studies have suggested that JDP2 may function as a tumor suppressor through its suppressive action against the AP-1 complex, which is known to drive oncogenic signals in several human malignancies. In this study, we used immunohistochemistry to examine the JDP2 expression in 211 cases of hepatocellular carcinoma (HCC) and analyzed the potential link of JDP2 expression to the clinicopathological features of HCC patients. Clinical parameter analysis showed that high expression of JDP2 was significantly correlated with smaller tumor size (P=.002) and early stage HCC (P=.039). Moreover, Kaplan-Meier survival analysis showed that high expression of JDP2 was significantly associated with better survival in HCC patients (P=.006). Taken together, our results showed that JDP2 may serve as a tumor suppressor in HCC and could therefore serve as a good prognostic marker for patients with HCC.


Asunto(s)
Biomarcadores de Tumor/análisis , Carcinoma Hepatocelular/química , Neoplasias Hepáticas/química , Proteínas Represoras/análisis , Proteínas Supresoras de Tumor/análisis , Anciano , Biopsia , Carcinoma Hepatocelular/mortalidad , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/terapia , Supervivencia sin Enfermedad , Femenino , Humanos , Inmunohistoquímica , Estimación de Kaplan-Meier , Neoplasias Hepáticas/mortalidad , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/terapia , Masculino , Persona de Mediana Edad , Estadificación de Neoplasias , Modelos de Riesgos Proporcionales , Factores de Riesgo , Factores de Tiempo , Resultado del Tratamiento , Carga Tumoral
20.
Int J Mol Sci ; 18(2)2017 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-28146118

RESUMEN

Jun dimerization protein 2 (JDP2), a basic leucine zipper transcription factor, is involved in numerous biological and cellular processes such as cancer development and regulation, cell-cycle regulation, skeletal muscle and osteoclast differentiation, progesterone receptor signaling, and antibacterial immunity. Though JDP2 is widely expressed in mammalian tissues, its function in gonads and adrenals (such as regulation of steroidogenesis and adrenal development) is largely unknown. Herein, we find that JDP2 mRNA and proteins are expressed in mouse adrenal gland tissues. Moreover, overexpression of JDP2 in Y1 mouse adrenocortical cancer cells increases the level of melanocortin 2 receptor (MC2R) protein. Notably, Mc2r promoter activity is activated by JDP2 in a dose-dependent manner. Next, by mapping the Mc2r promoter, we show that cAMP response elements (between -1320 and -720-bp) are mainly required for Mc2r activation by JDP2 and demonstrate that -830-bp is the major JDP2 binding site by real-time chromatin immunoprecipitation (ChIP) analysis. Mutations of cAMP response elements on Mc2r promoter disrupts JDP2 effect. Furthermore, we demonstrate that removal of phosphorylation of JDP2 results in attenuated transcriptional activity of Mc2r. Finally, we show that JDP2 is a candidate for SUMOylation and SUMOylation affects JDP2-mediated Mc2r transcriptional activity. Taken together, JDP2 acts as a novel transcriptional activator of the mouse Mc2r gene, suggesting that JDP2 may have physiological functions as a novel player in MC2R-mediated steroidogenesis as well as cell signaling in adrenal glands.


Asunto(s)
Proteínas de la Membrana/metabolismo , Proteínas Represoras/metabolismo , Activación Transcripcional , Glándulas Suprarrenales , Animales , Expresión Génica , Proteínas de la Membrana/genética , Ratones , Fosforilación , Regiones Promotoras Genéticas , Unión Proteica , Proteínas Represoras/genética , Sumoilación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA