Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Anat Rec (Hoboken) ; 306(6): 1431-1451, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36899495

RESUMEN

A cranium belonging to a baenid turtle was recently recovered from the lower half of the Judith River Formation, Montana. Badlands Dinosaur Museum (BDM) 004 is a well-preserved partial cranium that includes the posterior cranial vault, cranial base, and otic capsules. Based on diagnostic characters, the skull can be attributed to Plesiobaena antiqua, which has been previously reported from the Judith River Formation. It also shares with palatobaenines projecting posterior processes of the tubercula basioccipitale and a prominent condylus occipitalis with a deep central pit, demonstrating variation within the Pl. antiqua hypodigm. In a phylogenetic analysis, an operational taxonomic unit of BDM 004 was positioned within Baenodda in an unresolved polytomy with Pl. antiqua, Edowa zuniensis, Palatobaeninae, and Eubaeninae. Microcomputed tomographic (µCT) scans revealed morphology of the middle and inner ear and endocast that are largely unknown in baenids. Semicircular canals of BDM 004 are virtually identical to those of Eubaena cephalica and consistent in dimensions to those of other turtle taxa, including anterior and posterior semicircular canals that are robust and taller than the common crus and diverge from each other at an angle of approximately 90°. The digital endocast reveals a moderately flexed brain with rounded cerebral hemispheres and minimal separation between the metencephalon and myelencephalon. Its well-preserved columella auris (stapes) is gracile with a posterodorsally flared basis columella. It arcs across the middle ear and flattens near its terminus. This study adds to the understanding of baenid middle and inner ear and neuroanatomical morphology and expands the morphological understanding of Pl. antiqua.


Asunto(s)
Dinosaurios , Tortugas , Animales , Filogenia , Tortugas/anatomía & histología , Neuroanatomía/métodos , Montana , Ríos , Cráneo/anatomía & histología , Base del Cráneo/anatomía & histología , Canales Semicirculares/anatomía & histología , Dinosaurios/anatomía & histología , Fósiles
2.
Anat Rec (Hoboken) ; 306(7): 1918-1938, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36273398

RESUMEN

Despite the long history of research in the late Campanian Judith River Formation in northern Montana, most of the vertebrate fossils are represented by fragmentary remains, making precise taxonomic identifications difficult. Contrary to this, the partially contemporaneous Dinosaur Park Formation, Alberta, Canada is known for its tremendous fossil preservation, permitting rigorous studies of dinosaur diversity, evolution, and biostratigraphy. Hadrosaurids comprise one of the most abundant dinosaur clades in the Dinosaur Park Formation, but taxonomic affinities of hadrosaurid specimens remain poorly understood in the Judith River Formation. Corythosaurus is the most common hadrosaurid in the Dinosaur Park Formation and, to date, has been restricted to this formation. This study reports the first definitive Corythosaurus specimens from the Judith River Formation, which were discovered on two private ranches in northern Montana. The attribution of the most complete skeleton to Corythosaurus is indicated by: wide crest-snout angle, presence of premaxilla-nasal fontanelle, dorsoventrally expanded nasal, laterally exposed ophthalmic canal of the laterosphenoid, and tall neural spines. A second specimen preserves a large ilium that can be positively identified as Corythosaurus based on its associated skull, which is now in private hands. The specimens were recovered from the Coal Ridge Member of the Judith River Formation, which is approximately time equivalent to the Dinosaur Park Formation. Thus, the discovery of Corythosaurus in the Judith River Formation extends the biogeographic range of this genus and establishes a framework for future interformational biostratigraphic studies of Late Cretaceous dinosaur faunas in North America.


Asunto(s)
Dinosaurios , Animales , Dinosaurios/anatomía & histología , Montana , Ríos , Fósiles , Cráneo/anatomía & histología , Filogenia
3.
Biology (Basel) ; 11(8)2022 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-36009804

RESUMEN

Recent recoveries of peptide sequences from two Cretaceous dinosaur bones require paleontologists to rethink traditional notions about how fossilization occurs. As part of this shifting paradigm, several research groups have recently begun attempting to characterize biomolecular decay and stabilization pathways in diverse paleoenvironmental and diagenetic settings. To advance these efforts, we assessed the taphonomic and geochemical history of Brachylophosaurus canadensis specimen MOR 2598, the left femur of which was previously found to retain endogenous cells, tissues, and structural proteins. Combined stratigraphic and trace element data show that after brief fluvial transport, this articulated hind limb was buried in a sandy, likely-brackish, estuarine channel. During early diagenesis, percolating groundwaters stagnated within the bones, forming reducing internal microenvironments. Recent exposure and weathering also caused the surficial leaching of trace elements from the specimen. Despite these shifting redox regimes, proteins within the bones were able to survive through diagenesis, attesting to their remarkable resiliency over geologic time. Synthesizing our findings with other recent studies reveals that oxidizing conditions in the initial ~48 h postmortem likely promote molecular stabilization reactions and that the retention of early-diagenetic trace element signatures may be a useful proxy for molecular recovery potential.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA