Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomark Res ; 12(1): 74, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39080807

RESUMEN

Lysine methylation is a crucial post-translational modification (PTM) that significantly impacts gene expression regulation. This modification not only influences cancer development directly but also has significant implications for the immune system. Lysine methylation modulates immune cell functions and shapes the anti-tumor immune response, highlighting its dual role in both tumor progression and immune regulation. In this review, we provide a comprehensive overview of the intrinsic role of lysine methylation in the activation and function of immune cells, detailing how these modifications affect cellular processes and signaling pathways. We delve into the mechanisms by which lysine methylation contributes to tumor immune evasion, allowing cancer cells to escape immune surveillance and thrive. Furthermore, we discuss the therapeutic potential of targeting lysine methylation in cancer immunotherapy. Emerging strategies, such as immune checkpoint inhibitors (ICIs) and chimeric antigen receptor T-cell (CAR-T) therapy, are being explored for their efficacy in modulating lysine methylation to enhance anti-tumor immune responses. By targeting these modifications, we can potentially improve the effectiveness of existing treatments and develop novel therapeutic approaches to combat cancer more effectively.

2.
Biochem J ; 481(15): 983-997, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39078225

RESUMEN

Pancreatic cancer is a malignancy arising from the endocrine or exocrine compartment of this organ. Tumors from exocrine origin comprise over 90% of all pancreatic cancers diagnosed. Of these, pancreatic ductal adenocarcinoma (PDAC) is the most common histological subtype. The five-year survival rate for PDAC ranged between 5 and 9% for over four decades, and only recently saw a modest increase to ∼12-13%, making this a severe and lethal disease. Like other cancers, PDAC initiation stems from genetic changes. However, therapeutic targeting of PDAC genetic drivers has remained relatively unsuccessful, thus the focus in recent years has expanded to the non-genetic factors underlying the disease pathogenesis. Specifically, it has been proposed that dynamic changes in the epigenetic landscape promote tumor growth and metastasis. Emphasis has been given to the re-organization of enhancers, essential regulatory elements controlling oncogenic gene expression, commonly marked my histone 3 lysine 4 monomethylation (H3K4me1). H3K4me1 is typically deposited by histone lysine methyltransferases (KMTs). While well characterized as oncogenes in other cancer types, recent work has expanded the role of KMTs as tumor suppressor in pancreatic cancer. Here, we review the role and translational significance for PDAC development and therapeutics of KMTs.


Asunto(s)
Carcinoma Ductal Pancreático , N-Metiltransferasa de Histona-Lisina , Histonas , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patología , Histonas/metabolismo , Histonas/genética , Animales , Epigénesis Genética , Regulación Neoplásica de la Expresión Génica
3.
Differentiation ; 136: 100746, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38241884

RESUMEN

Epigenetic regulation is a critical component of lineage determination. Adipogenesis is the process through which uncommitted stem cells or adipogenic precursor cells differentiate into adipocytes, the most abundant cell type of the adipose tissue. Studies examining chromatin modification during adipogenesis have provided further understanding of the molecular blueprint that controls the onset of adipogenic differentiation. Unlike histone acetylation, histone methylation has context dependent effects on the activity of a transcribed region of DNA, with individual or combined marks on different histone residues providing distinct signals for gene expression. Over half of the 42 histone methyltransferases identified in mammalian cells have been investigated in their role during adipogenesis, but across the large body of literature available, there is a lack of clarity over potential correlations or emerging patterns among the different players. In this review, we will summarize important findings from studies published in the past 15 years that have investigated the role of histone methyltransferases during adipogenesis, including both protein arginine methyltransferases (PRMTs) and lysine methyltransferases (KMTs). We further reveal that PRMT1/4/5, H3K4 KMTs (MLL1, MLL3, MLL4, SMYD2 and SET7/9) and H3K27 KMTs (EZH2) all play positive roles during adipogenesis, while PRMT6/7 and H3K9 KMTs (G9a, SUV39H1, SUV39H2, and SETDB1) play negative roles during adipogenesis.


Asunto(s)
Adipogénesis , Histonas , Animales , Histonas/genética , Histonas/química , Histonas/metabolismo , Adipogénesis/genética , Histona Metiltransferasas/genética , Histona Metiltransferasas/metabolismo , Epigénesis Genética , Metilación , Mamíferos/metabolismo
4.
Epigenomics ; 14(9): 537-547, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35506254

RESUMEN

Aim & methods: To investigate peripheral blood methylation episignatures in KMT2B-related dystonia (DYT-KMT2B), the authors undertook genome-wide methylation profiling of ∼2 M CpGs using a next-generation sequencing-based assay and compared the findings with those in controls and patients with KMT2D-related Kabuki syndrome type 1 (KS1). Results: A total of 1812 significantly differentially methylated CpG positions (false discovery rate < 0.05) were detected in DYT-KMT2B samples compared with controls. Multi-dimensional scaling analysis showed that the 10 DYT-KMT2B samples clustered together and separately from 29 controls and 10 with pathogenic variants in KMT2D. The authors found that most differentially methylated CpG positions were specific to one disorder and that all (DYT-KMT2B) and most (Kabuki syndrome type 1) methylation alterations in CpG islands were gain of methylation events. Conclusion: Using sensitive methylation profiling methodology, the authors replicated recent reports of a methylation episignature for DYT-KMT2B. These findings will facilitate the development of episignature-based assays to improve diagnostic accuracy.


The authors compared the DNA methylation patterns in blood from individuals with two rare neurodevelopmental disorders (childhood-onset dystonia [DYT-KMT2B] and Kabuki syndrome type 1) and healthy control samples. These two disorders are associated with pathogenic variants in KMT2B and KMT2D, which encode proteins with related functions but cause distinct inherited disorders. Comparison of the methylation patterns in the two disorders showed that most DNA regions with altered methylation patterns differed between the two disorders and controls. These findings suggest that analyzing DNA methylation patterns could improve diagnostic testing for these disorders and might provide insights into how the clinical features of these disorders are caused.


Asunto(s)
Anomalías Múltiples , Metilación de ADN , Proteínas de Unión al ADN , Cara , Enfermedades Hematológicas , N-Metiltransferasa de Histona-Lisina , Proteínas de Neoplasias , Enfermedades Vestibulares , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Cara/anomalías , Enfermedades Hematológicas/sangre , Enfermedades Hematológicas/genética , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Humanos , Mutación , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Fenotipo , Enfermedades Vestibulares/sangre , Enfermedades Vestibulares/genética
5.
Comput Struct Biotechnol J ; 16: 211-223, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30002791

RESUMEN

Lung cancer is one of the most common malignancies. In spite of the progress made in past decades, further studies to improve current therapy for lung cancer are required. Dynamically controlled by methyltransferases and demethylases, methylation of lysine and arginine residues on histone proteins regulates chromatin organization and thereby gene transcription. Aberrant alterations of histone methylation have been demonstrated to be associated with the progress of multiple cancers including lung cancer. Inhibitors of methyltransferases and demethylases have exhibited anti-tumor activities in lung cancer, and multiple lead candidates are under clinical trials. Here, we summarize how histone methylation functions in lung cancer, highlighting most recent progresses in small molecular inhibitors for lung cancer treatment.

6.
Biochim Biophys Acta Mol Basis Dis ; 1863(1): 152-164, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27664837

RESUMEN

Cerebral ischemic stroke is one of the leading causes of death and disability worldwide. Therapeutic interventions to minimize ischemia-induced neural damage are limited due to poor understanding of molecular mechanisms mediating complex pathophysiology in stroke. Recently, epigenetic mechanisms mostly histone lysine (K) acetylation and deacetylation have been implicated in ischemic brain damage and have expanded the dimensions of potential therapeutic intervention to the systemic/local administration of histone deacetylase inhibitors. However, the role of other epigenetic mechanisms such as histone lysine methylation and demethylation in stroke-induced damage and subsequent recovery process is elusive. Here, we established an Internal Carotid Artery Occlusion (ICAO) model in CD1 mouse that resulted in mild to moderate level of ischemic damage to the striatum, as suggested by magnetic resonance imaging (MRI), TUNEL and histopathological staining along with an evaluation of neurological deficit score (NDS), grip strength and rotarod performance. The molecular investigations show dysregulation of a number of histone lysine methylases (KMTs) and few of histone lysine demethylases (KDMs) post-ICAO with significant global attenuation in the transcriptionally repressive epigenetic mark H3K9me2 in the striatum. Administration of Dimethyloxalylglycine (DMOG), an inhibitor of KDM4 or JMJD2 class of histone lysine demethylases, significantly ameliorated stroke-induced NDS by restoring perturbed H3K9me2 levels in the ischemia-affected striatum. Overall, these results highlight the novel role of epigenetic regulatory mechanisms controlling the epigenetic mark H3K9me2 in mediating the stroke-induced striatal damage and subsequent repair following mild to moderate cerebral ischemia.


Asunto(s)
Isquemia Encefálica/genética , Epigénesis Genética , Histona Demetilasas/genética , N-Metiltransferasa de Histona-Lisina/genética , Histonas/genética , Lisina/genética , Aminoácidos Dicarboxílicos/farmacología , Aminoácidos Dicarboxílicos/uso terapéutico , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/patología , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patología , Muerte Celular/efectos de los fármacos , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/metabolismo , Cuerpo Estriado/patología , Desmetilación/efectos de los fármacos , Epigénesis Genética/efectos de los fármacos , Histona Demetilasas/antagonistas & inhibidores , Histona Demetilasas/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Masculino , Metilación/efectos de los fármacos , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA