Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 225
Filtrar
1.
Sci Rep ; 14(1): 16834, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39039118

RESUMEN

Genes involved in drug absorption, distribution, metabolism, and excretion (ADME) are named ADME genes. However, the comprehensive role of ADME genes in kidney renal clear cell carcinoma (KIRC) remains unclear. Using the clinical and gene expression data of KIRC patients downloaded from The Cancer Genome Atlas (TCGA), ArrayExpress, and the Gene Expression Omnibus (GEO) databases, we cluster patients into two patterns, and the population with a relatively poor prognosis demonstrated higher level of immunosuppressive cell infiltration and higher proportion of glycolytic subtypes. Then, 17 ADME genes combination identified through the least absolute shrinkage and selection operator algorithm (LASSO, 1000 times) was utilized to calculate the ADME score. The ADME score was found to be an independent predictor of prognosis in KIRC and to be tightly associated with the infiltration level of immune cells, metabolic properties, tumor-related signaling pathways, genetic variation, and responses to chemotherapeutics. Our work revealed the characteristics of ADME in KIRC. Assessing the ADME profiles of individual patients can deepen our comprehension of tumor microenvironment (TME) features in KIRC and can aid in developing more personalized and effective therapeutic strategies.


Asunto(s)
Carcinoma de Células Renales , Regulación Neoplásica de la Expresión Génica , Neoplasias Renales , Microambiente Tumoral , Humanos , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/metabolismo , Carcinoma de Células Renales/patología , Neoplasias Renales/genética , Neoplasias Renales/metabolismo , Neoplasias Renales/patología , Microambiente Tumoral/genética , Pronóstico , Perfilación de la Expresión Génica , Antineoplásicos/farmacocinética , Femenino , Masculino
2.
Discov Oncol ; 15(1): 309, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39060620

RESUMEN

Cancer-associated fibroblasts (CAFs), integral components of the tumor microenvironment, play a pivotal role in tumor proliferation, metastasis, and clinical outcomes. However, its specific roles in Kidney Renal Clear Cell Carcinoma (KIRC) remain poorly understood. Employing the established Seurat single-cell analysis pipeline, we identified 21 CAFs marker genes. Subsequently, a prognostic signature consisting of 6 CAFs marker genes (RGS5, PGF, TPM2, GJA4, SEPT4, and PLXDC1) was developed in a cohort through univariate and LASSO Cox regression analyses. The model's efficacy was then validated in an external cohort, with a remarkable predictive performance in 1-, 3-, and 5-year. Patients in the high-risk group exhibited significantly inferior survival outcomes (p < 0.001), and the risk score was an independent prognostic factor (p < 0.05). Distinct differences in immune cell profiles and drug susceptibility were observed between the two risk groups. In KIRC, the PGF-VEGFR1 signaling pathway displayed a notable increase. PGF expression was significantly elevated in tumor tissues, as demonstrated by quantitative real-time polymerase chain reaction. In vitro, transwell assays and CCK8 revealed that recombinant-PGF could enhance the capability of cell proliferation, migration, and invasion in 769P and 786-O cells. This study firstly developed a novel predictive model based on 6 CAFs genes for KIRC. Additionally, PGF may present a potential therapeutic target to enhance KIRC treatment.

3.
World J Oncol ; 15(4): 662-674, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38993257

RESUMEN

Background: The clinical role of claudin 8 (CLDN8) in kidney renal clear cell carcinoma (KIRC) remains unclarified. Herein, the expression level and potential molecular mechanisms of CLDN8 underlying KIRC were determined. Methods: High-throughput datasets of KIRC were collected from GEO, ArrayExpress, SRA, and TCGA databases to determine the mRNA expression level of the CLDN8. In-house tissue microarrays and immunochemistry were performed to examine CLDN8 protein expression. A summary receiver operating characteristic curve (SROC) and standardized mean difference (SMD) forest plot were generated using Stata v16.0. Single-cell analysis was conducted to further prove the expression level of CLDN8. A clustered regularly interspaced short palindromic repeats knockout screen analysis was executed to assess the growth impact of CLDN8. Functional enrichment analysis was conducted using the Metascape database. Additionally, single-sample gene set enrichment analysis was implied to explore immune cell infiltration in KIRC. Results: A total of 17 mRNA datasets comprising 1,060 KIRC samples and 452 non-cancerous control samples were included in this study. Additionally, 105 KIRC and 16 non-KIRC tissues were analyzed using in-house immunohistochemistry. The combined SMD was -5.25 (95% confidence interval (CI): -6.13 to -4.37), and CLDN8 downregulation yielded an SROC area under the curve (AUC) close to 1.00 (95% CI: 0.99 - 1.00). CLDN8 downregulation was also confirmed at the single-cell level. Knocking out CLDN8 stimulated KIRC cell proliferation. Lower CLDN8 expression was correlated with worse overall survival of KIRC patients (hazard ratio of CLDN8 downregulation = 1.69, 95% CI: 1.2 - 2.4). Functional pathways associated with CLDN8 co-expressed genes were centered on carbon metabolism obstruction, with key hub genes ACADM, ACO2, NDUFS1, PDHB, SDHD, SUCLA2, SUCLG1, and SUCLG2. Conclusions: CLDN8 is downregulated in KIRC and is considered a potential tumor suppressor. CLDN8 deficiency may promote the initiation and progression of KIRC, potentially in conjunction with metabolic dysfunction.

4.
Cancer Cell Int ; 24(1): 261, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39049021

RESUMEN

BACKGROUND: Kidney Renal Clear Cell Carcinoma (KIRC) is a common malignant tumor of the urinary system, and its incidence is increasing. ERBB3 binding protein (EBP1) is upregulated in various cancers. However, the connection between EBP1 and KIRC has not been reported. METHODS: The expression of EBP1 in normal kidney tissue and KIRC tissue was analyzed through database and tissue microarray. EBP1 was knocked down in KIRC cell lines, and its impact on KIRC proliferation was assessed through CCK-8, soft agar assay, and flow cytometry. Scratch and transwell assays were used to evaluate the influence of EBP1 on KIRC invasion and migration. Nude mice tumor experiment were conducted to examine the effect of EBP1 on tumor tissue. Database analysis explored potential pathways involving EBP1, and validation was performed through Western blot experiments and p38 inhibitor. RESULTS: EBP1 is upregulated in KIRC and significantly correlates with clinical staging, pathological grading, and lymph node metastasis in patients. The mechanism research showed that knocking down EBP1 inhibited KIRC proliferation, invasion, and migration and inhibited p38 phosphorylation and the expression of hypoxia-inducible factor-1α (HIF-1α) in KIRC. p-38 inhibitor (SB203580) inhibits p38 phosphorylation and HIF-1α expression and suppresses cell viability in a concentration-dependent manner, but has no effect on EBP1 expression. HEK 293T cells overexpressing EBP1 showed increased expression of phosphorylated p38 and HIF-1α and enhanced cell viability, however, SB203580 inhibited this effect of EBP1. CONCLUSION: EBP1 may promote the occurrence and development of KIRC by regulating the expression of p38/HIF-1α signaling pathway.

5.
BMC Med Genomics ; 17(1): 153, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38840097

RESUMEN

BACKGROUND: Zinc finger E-box binding homEeobox 1 (ZEB1) and ZEB2 are two anoikis-related transcription factors. The mRNA expressions of these two genes are significantly increased in kidney renal clear cell carcinoma (KIRC), which are associated with poor survival. Meanwhile, the mechanisms and clinical significance of ZEB1 and ZEB2 upregulation in KIRC remain unknown. METHODS: Through the Cancer Genome Atlas (TCGA) database and Gene Expression Omnibus (GEO) database, expression profiles, prognostic value and receiver operating characteristic curves (ROCs) of ZEB1 and ZEB2 were evaluated. The correlations of ZEB1 and ZEB2 with anoikis were further assessed in TCGA-KIRC database. Next, miRTarBase, miRDB, and TargetScan were used to predict microRNAs targeting ZEB1 and ZEB2, and TCGA-KIRC database was utilized to discern differences in microRNAs and establish the association between microRNAs and ZEBs. TCGA, TIMER, TISIDB, and TISCH were used to analyze tumor immune infiltration. RESULTS: It was found that ZEB1 and ZEB2 expression were related with histologic grade in KIRC patient. Kaplan-Meier survival analyses showed that KIRC patients with low ZEB1 or ZEB2 levels had a significantly lower survival rate. Meanwhile, ZEB1 and ZEB2 are closely related to anoikis and are regulated by microRNAs. We constructed a risk model using univariate Cox and LASSO regression analyses to identify two microRNAs (hsa-miR-130b-3p and hsa-miR-138-5p). Furthermore, ZEB1 and ZEB2 regulate immune cell invasion in KIRC tumor microenvironments. CONCLUSIONS: Anoikis, cytotoxic immune cell infiltration, and patient survival outcomes were correlated with ZEB1 and ZEB2 mRNA upregulation in KIRC. ZEB1 and ZEB2 are regulated by microRNAs.


Asunto(s)
Anoicis , Biomarcadores de Tumor , Carcinoma de Células Renales , Neoplasias Renales , MicroARNs , Caja Homeótica 2 de Unión a E-Box con Dedos de Zinc , Homeobox 1 de Unión a la E-Box con Dedos de Zinc , Humanos , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/patología , Carcinoma de Células Renales/inmunología , Neoplasias Renales/genética , Neoplasias Renales/patología , Neoplasias Renales/inmunología , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/genética , Pronóstico , Anoicis/genética , Biomarcadores de Tumor/genética , MicroARNs/genética , Caja Homeótica 2 de Unión a E-Box con Dedos de Zinc/genética , Caja Homeótica 2 de Unión a E-Box con Dedos de Zinc/metabolismo , Regulación Neoplásica de la Expresión Génica , Masculino , Femenino , Estimación de Kaplan-Meier
6.
J Cell Mol Med ; 28(12): e18475, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38898693

RESUMEN

Aurora kinase B (AURKB), an essential regulator in the process of mitosis, has been revealed through various studies to have a significant role in cancer development and progression. However, the specific mechanisms remain poorly understood. This study, therefore, seeks to elucidate the multifaceted role of AURKB in diverse cancer types. This study utilized bioinformatics techniques to examine the transcript, protein, promoter methylation and mutation levels of AURKB. The study further analysed associations between AURKB and factors such as prognosis, pathological stage, biological function, immune infiltration, tumour mutational burden (TMB) and microsatellite instability (MSI). In addition, immunohistochemical staining data of 50 cases of renal clear cell carcinoma and its adjacent normal tissues were collected to verify the difference in protein expression of AURKB in the two tissues. The results show that AURKB is highly expressed in most cancers, and the protein level of AURKB and the methylation level of its promoter vary among cancer types. Survival analysis showed that AURKB was associated with overall survival in 12 cancer types and progression-free survival in 11 cancer types. Elevated levels of AURKB were detected in the advanced stages of 10 different cancers. AURKB has a potential impact on cancer progression through its effects on cell cycle regulation as well as inflammatory and immune-related pathways. We observed a strong association between AURKB and immune cell infiltration, immunomodulatory factors, TMB and MSI. Importantly, we confirmed that the AURKB protein is highly expressed in kidney renal clear cell carcinoma (KIRC). Our study reveals that AURKB may be a potential biomarker for pan-cancer and KIRC.


Asunto(s)
Aurora Quinasa B , Biomarcadores de Tumor , Metilación de ADN , Regulación Neoplásica de la Expresión Génica , Neoplasias , Regiones Promotoras Genéticas , Humanos , Pronóstico , Aurora Quinasa B/metabolismo , Aurora Quinasa B/genética , Regiones Promotoras Genéticas/genética , Neoplasias/genética , Neoplasias/inmunología , Neoplasias/patología , Neoplasias/metabolismo , Neoplasias/mortalidad , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Inestabilidad de Microsatélites , Mutación/genética , Femenino , Biología Computacional/métodos
7.
Aging (Albany NY) ; 16(12): 10489-10511, 2024 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-38888515

RESUMEN

Kidney renal clear cell carcinoma (KIRC) is a cancer that is closely associated with epigenetic alterations, and histone modifiers (HMs) are closely related to epigenetic regulation. Therefore, this study aimed to comprehensively explore the function and prognostic value of HMs-based signature in KIRC. HMs were first obtained from top journal. Then, the mRNA expression profiles and clinical information in KIRC samples were downloaded from The Cancer Genome Atlas (TCGA) database and Gene Expression Omnibus (GEO) datasets. Cox regression analysis and least absolute shrinkage and selection operator (Lasso) analysis were implemented to find prognosis-related HMs and construct a risk model related to the prognosis in KIRC. Kaplan-Meier analysis was used to determine prognostic differences between high- and low-risk groups. Immune infiltration and drug sensitivity analysis were also performed between high- and low-risk groups. Eventually, 8 HMs were successfully identified for the construction of a risk model in KIRC. The results of the correlation analysis between risk signature and the prognosis showed HMs-based signature has good prognostic value in KIRC. Results of immune analysis of risk models showed there were significant differences in the level of immune cell infiltration and expression of immune checkpoints between high- and low-risk groups. The results of the drug sensitivity analysis showed that the high-risk group was more sensitive to several chemotherapeutic agents such as Sunitinib, Tipifarnib, Nilotinib and Bosutinib than the low-risk group. In conclusion, we successfully constructed HMs-based prognostic signature that can predict the prognosis of KIRC.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/tratamiento farmacológico , Carcinoma de Células Renales/metabolismo , Humanos , Neoplasias Renales/genética , Neoplasias Renales/tratamiento farmacológico , Pronóstico , Regulación Neoplásica de la Expresión Génica , Epigénesis Genética , Perfilación de la Expresión Génica , Histonas/metabolismo , Histonas/genética , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Transcriptoma
8.
Aging (Albany NY) ; 16(11): 10016-10032, 2024 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-38862257

RESUMEN

A growing number of studies reveal that alternative splicing (AS) is associated with tumorigenesis, progression, and metastasis. Systematic analysis of alternative splicing signatures in renal cancer is lacking. In our study, we investigated the AS landscape of kidney renal clear cell carcinoma (KIRC) and identified AS predictive model to improve the prognostic prediction of KIRC. We obtained clinical data and gene expression profiles of KIRC patients from the TCGA database to evaluate AS events. The calculation results for seven types of AS events indicated that 46276 AS events from 10577 genes were identified. Next, we applied Cox regression analysis to identify 5864 prognostic-associated AS events. We used the Metascape database to verify the potential pathways of prognostic-associated AS. Moreover, we constructed KIRC prediction systems with prognostic-associated AS events by the LASSO Cox regression model. AUCs demonstrated that these prediction systems had excellent prognostic accuracy simultaneously. We identified 34 prognostic associated splicing factors (SFs) and constructed homologous regulatory networks. Furthermore, in vitro experiments were performed to validate the favorable effect of SFs FMR1 in KIRC. In conclusion, we overviewed AS events in KIRC and identified AS-based prognostic models to assist the survival prediction of KIRC patients. Our study may provide a novel predictive signature to improve the prognostic prediction of KIRC, which might facilitate KIRC patient counseling and individualized management.


Asunto(s)
Empalme Alternativo , Carcinoma de Células Renales , Neoplasias Renales , Humanos , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/mortalidad , Carcinoma de Células Renales/patología , Empalme Alternativo/genética , Neoplasias Renales/genética , Neoplasias Renales/mortalidad , Neoplasias Renales/patología , Pronóstico , Regulación Neoplásica de la Expresión Génica , Biomarcadores de Tumor/genética , Perfilación de la Expresión Génica , Femenino , Masculino , Relevancia Clínica
9.
J Cancer ; 15(10): 3034-3044, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38706914

RESUMEN

Bone metastases is prevalent from renal cell carcinoma (RCC) with poor quality of life and prognosis. Our previous proteomics analysis identified dysregulated proteins in the bone-tropism RCC cells. In this study, we further examined the clinical implications of these proteins using multiple clinical cohorts. We identified 6 proteins with significant upregulation in RCC tumor tissue in comparing to tumor adjacent normal tissue (p<0.05). High expression of these 6 protein-encoding genes significantly correlates with a poor survival in the TCGA-KIRC (Kidney renal clear cell carcinoma) cohort (log-rank test p=2.7e-05), and they all individually had a reverse-correlation with the gene expression of VHL and PBRM1 (p<0.001), and positive-correlation with the expression of VEGFA (p<0.001). Further gene set variation analysis (GSVA) revealed positive correlation with Th17 cells enrichment and negative CD8 T cell infiltration in the RCC tumor microenvironment. High expression of these 6 genes in pretreatment tumors favors longer overall survival (OS)(p=0.027) in anti-PDL1 treated patients (n=428). We treated one humeral metastases RCC patient with the anti-PDL1 antibody drug atezolizumab after examined the elevated expression of the 6 proteins in his nephrectomy tumor tissue, the tumor at the fracture site shrunk remarkably after four courses of treatment. These results altogether suggest a clinical implication of the 6-protein signature in RCC bone metastasis prognosis and response to immune-checkpoint inhibitor treatment.

10.
Medicina (Kaunas) ; 60(5)2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38792963

RESUMEN

Background and Objectives: Connexin 43 (Cx43) is involved in the transfer of small signaling molecules between neighboring cells, thereby exerting a major influence on the initiation and progression of tumorigenesis. However, there is a lack of systematic research on Cx43 expression and its predictive role in clinical diagnosis and prognosis in pan-cancer. Materials and Methods: Several biological databases were used to evaluate the expression levels of GJA1 (encoding Cx43) and its diagnostic and prognostic significance in pan-cancer. We targeted kidney renal clear cell carcinoma (KIRC) and investigated the relationship between GJA1 expression and different clinical features of KIRC patients. Then, we performed cell-based experiments to partially confirm our results and predicted several proteins that were functionally related to Cx43. Results: The expression of GJA1 has a high level of accuracy in predicting KIRC. High GJA1 expression was remarkably correlated with a favorable prognosis, and this expression was reduced in groups with poor clinical features in KIRC. Cell experiments confirmed the inhibitory effects of increased GJA1 expression on the migratory capacity of human renal cancer (RCC) cell lines, and protein-protein interaction (PPI) analysis predicted that CDH1 and CTNNB1 were closely related to Cx43. Conclusions: GJA1 could be a promising independent favorable prognostic factor for KIRC, and upregulation of GJA1 expression could inhibit the migratory capacity of renal cancer cells.


Asunto(s)
Biomarcadores de Tumor , Carcinoma de Células Renales , Conexina 43 , Neoplasias Renales , Humanos , Conexina 43/análisis , Conexina 43/metabolismo , Neoplasias Renales/genética , Biomarcadores de Tumor/análisis , Pronóstico , beta Catenina , Línea Celular Tumoral , Masculino , Femenino
11.
Pharmaceuticals (Basel) ; 17(5)2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38794205

RESUMEN

BACKGROUND: Neddylation, a post-translational modification process, plays a crucial role in various human neoplasms. However, its connection with kidney renal clear cell carcinoma (KIRC) remains under-researched. METHODS: We validated the Gene Set Cancer Analysis Lite (GSCALite) platform against The Cancer Genome Atlas (TCGA) database, analyzing 33 cancer types and their link with 17 neddylation-related genes. This included examining copy number variations (CNVs), single nucleotide variations (SNVs), mRNA expression, cellular pathway involvement, and methylation. Using Gene Set Variation Analysis (GSVA), we categorized these genes into three clusters and examined their impact on KIRC patient prognosis, drug responses, immune infiltration, and oncogenic pathways. Afterward, our objective is to identify genes that exhibit overexpression in KIRC and are associated with an adverse prognosis. After pinpointing the specific target gene, we used the specific inhibitor MLN4924 to inhibit the neddylation pathway to conduct RNA sequencing and related in vitro experiments to verify and study the specificity and potential mechanisms related to the target. This approach is geared towards enhancing our understanding of the prognostic importance of neddylation modification in KIRC. RESULTS: We identified significant CNV, SNV, and methylation events in neddylation-related genes across various cancers, with notably higher expression levels observed in KIRC. Cluster analysis revealed a potential trade-off in the interactions among neddylation-related genes, where both high and low levels of gene expression are linked to adverse prognoses. This association is particularly pronounced concerning lymph node involvement, T stage classification, and Fustat score. Simultaneously, our research discovered that PSMB10 exhibits overexpression in KIRC when compared to normal tissues, negatively impacting patient prognosis. Through RNA sequencing and in vitro assays, we confirmed that the inhibition of neddylation modification could play a role in the regulation of various signaling pathways, thereby influencing the prognosis of KIRC. Moreover, our results underscore PSMB10 as a viable target for therapeutic intervention in KIRC, opening up novel pathways for the development of targeted treatment strategies. CONCLUSION: This study underscores the regulatory function and potential mechanism of neddylation modification on the phenotype of KIRC, identifying PSMB10 as a key regulatory target with a significant role in influencing the prognosis of KIRC.

12.
13.
Transl Androl Urol ; 13(4): 509-525, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38721281

RESUMEN

Background: Lactate metabolism-related (LMR) long noncoding RNAs (lncRNAs) play significant roles in various cancers, but their impact on kidney renal clear cell carcinoma (KIRC) remains unclear. This study aimed to explore the value of LMR lncRNA and develop a risk model for KIRC. Methods: Data on KIRC patients were downloaded from The Cancer Genome Atlas (TCGA) database. LMR lncRNAs were identified by co-expression, univariate and multivariate analyses, and least absolute shrinkage selection operator (LASSO) regression analysis. Subsequently, a prognostic signature was constructed and its accuracy was verified. To predict the prognosis of KIRC effectively, we established a nomogram based on this information. Enrichment analysis, tumor mutational burden (TMB) analysis, immune status and the therapeutic sensitivities of KIRC patients were also investigated. Quantitative real-time polymerase chain reaction (qRT-PCR) was performed to detect the expression of lncRNAs. Results: We constructed and verified a predictive signature based on six LMR lncRNA (LINC00944, AC090772.3, Z83745.1, AP001267.3, AC092296.1, and AL162377.1) to assess the patient prognoses of KIRC. Survival analyses showed a more unfavorable outcome in high-risk patients (P<0.001). Enrichment analysis demonstrated that immune-related pathways were enriched in the high-risk group. Besides, patients classified by risk scores had distinguishable immune status, TMB, response to immunotherapy, and sensitivity to chemotherapy and targeted drugs. Conclusions: The LMR lncRNAs signature has significant implications for prognostic assessment and clinical treatment guidance in KIRC.

14.
Pharmaceuticals (Basel) ; 17(4)2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38675412

RESUMEN

The transketolase 1 gene (TKTL1) is an essential factor that contributes to brain development. Some studies have shown the influence of TKTL1 in cancers, but it has been rarely reported in kidney cancer. Furthermore, the role of TKTL1 in the prognosis and tumor infiltration of immune cells in various cancers, particularly kidney cancer, remains unknown. In this study, TKTL1 expression and its clinical characteristics were investigated using a variety of databases. TIMER was used to investigate the relationship between TKTL1 and immune infiltrates in various types of cancer. We also studied the relationship between TKTL1 expression and response to PD-1 blocker immunotherapy in renal cancer. We conducted TKTL1 agonists virtual screening from 13,633 natural compounds (L6020), implemented secondary library construction according to the types of top results, and then conducted secondary virtual screening for 367 alkaloids. Finally, in vitro assays of cell viability assays and colony formation assays were performed to demonstrate the pharmacological potency of the screening of TKTL1 agonists. Using these methods, we determined that TKTL1 significantly affects the prognostic potential in different types of kidney cancer patients. The underlying mechanism might be that the TKTL1 expression level was positively associated with devious immunocytes in kidney renal clear cell carcinoma (KIRC) rather than in kidney renal papillary cell carcinoma (KIRP) and kidney chromophobe (KICH). This recruitment may result from the up-regulation of the mTOR signaling pathway affecting T cell metabolism. We also found that TKTL1 may act as an immunomodulator in KIRC patients' response to anti-PD-1 therapy. Moreover, we also found that piperine and glibenclamide are potent agonists of TKTL1. We have demonstrated, in vitro, that piperine and glibenclamide can inhibit the proliferation and clone formation of Caki-2 cell lines by agonizing the expression of TKTL1. In summary, our discovery implies that TKTL1 may be a promising prognostic biomarker for KIRC patients who respond to anti-PD-1 therapy. Piperine and glibenclamide may be effective therapeutic TKTL1 agonists, providing a theoretical basis for the clinical treatment of kidney cancer.

15.
Heliyon ; 10(7): e29001, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38596018

RESUMEN

Kidney renal clear cell carcinoma (KIRC), one of the most prevalent form of kidney carcinoma, is highly aggressive cancer known for significant immune infiltration and high mortality rates. The absence of sensitivity to traditional therapy has spurred the search for new treatments. Protein Tyrosine Kinase 6 (PTK6) is implicated in promoting cancer growth, spread, and metastasis. Our review of The Cancer Genome Atlas database revealed PTK6 overexpression in KIRC, though its specific role in this cancer type was unclear. We investigated PTK6's cancer-promoting roles in KIRC using the database and confirmed our findings with patient-derived tissues. Our analysis showed that elevated PTK6 expression is linked to worse outcomes and higher levels of immune infiltration. It also correlates positively with neo-antigens (NEO) and DNA ploidy changes in KIRC. This research delves into PTK6's role in KIRC development, suggesting PTK6 as a possible biomarker for prognosis and treatment in KIRC.

16.
BMC Urol ; 24(1): 84, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38600527

RESUMEN

BACKGROUND: Despite the rapid advances in modern medical technology, kidney renal clear cell carcinoma (KIRC) remains a challenging clinical problem in urology. Researchers urgently search for useful markers to break through the therapeutic conundrum due to its high lethality. Therefore, the study explores the value of ADH5 on overall survival (OS) and the immunology of KIRC. METHODS: The gene expression matrix and clinical information on ADH5 in the TCGA database were validated using external databases and qRT-PCR. To confirm the correlation between ADH5 and KIRC prognosis, univariate/multivariate Cox regression analysis was used. We also explored the signaling pathways associated with ADH5 in KIRC and investigated its association with immunity. RESULTS: The mRNA and protein levels showed an apparent downregulation of ADH5 in KIRC. Correlation analysis revealed that ADH5 was directly related to histological grade, clinical stage, and TMN stage (p < 0.05). Univariate and multivariate Cox regression analysis identified ADH5 as an independent factor affecting the prognosis of KIRC. Enrichment analysis looked into five ADH5-related signaling pathways. The results showed no correlation between ADH5 and TMB, TNB, and MSI. From an immunological perspective, ADH5 was found to be associated with the tumor microenvironment, immune cell infiltration, and immune checkpoints. Lower ADH5 expression was associated with greater responsiveness to immunotherapy. Single-cell sequencing revealed that ADH5 is highly expressed in immune cells. CONCLUSION: ADH5 could be a promising prognostic biomarker and a potential therapeutic target for KIRC. Besides, it was found that KIRC patients with low ADH5 expression were more sensitive to immunotherapy.


Asunto(s)
Alcohol Deshidrogenasa , Carcinoma de Células Renales , Neoplasias Renales , Humanos , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/terapia , Riñón , Neoplasias Renales/genética , Neoplasias Renales/terapia , Pronóstico , ARN Mensajero , Microambiente Tumoral , Alcohol Deshidrogenasa/análisis
17.
J Cancer Res Clin Oncol ; 150(4): 194, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38619631

RESUMEN

PURPOSE: Kidney clear cell carcinoma (KIRC) has a poor prognosis, high morbidity and mortality rates, and high invasion and metastasis rate, and effective therapeutic targets are lacking. zDHHC3 has been implicated in various cancers, but its specific role in KIRC remains unclear. METHODS: In this study, we performed a pan-cancer analysis, bioinformatics analysis, and cell experiment to detect the role of zDHHC3 in KIRC. RESULTS: zDHHC3 was significantly down-regulated in KIRC, and that its high expression was associated with favorable patient outcomes. We identified 202 hub genes that were most relevant to high zDHHC3 expression and KIRC, and found that they were involved mainly in ion transport and renal cell carcinoma. Among these hub genes, SLC9A2 was identified as a downstream gene of zDHHC3. zDHHC3 suppression led to decreased expression and S-palmitoylation of SLC9A2, which further inhibited the apoptosis of Caki-2 cells. CONCLUSION: Our findings suggest that zDHHC3 plays an important role in KIRC, due partly to its regulation of SLC9A2 S-palmitoylation. The targeting of the zDHHC3-SLC9A2 axis may provide a new option for the clinical treatment of KIRC.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Apoptosis , Carcinoma de Células Renales/genética , Riñón , Neoplasias Renales/genética , Lipoilación
18.
J Cell Mol Med ; 28(7): e18165, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38494845

RESUMEN

Clear cell renal cell carcinoma (ccRCC) is a commonly occurring and highly aggressive urological malignancy characterized by a significant mortality rate. Current therapeutic options for advanced ccRCC are limited, necessitating the discovery of novel biomarkers and therapeutic targets. Carboxypeptidase A4 (CPA4) is a zinc-containing metallocarboxypeptidase with implications in various cancer types, but its role in ccRCC remains unexplored. The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases were utilized in order to investigate the differential expression patterns of CPA4. The expression of CPA4 in ccRCC patients was further verified using immunohistochemical (IHC) examination of 24 clinical specimens. A network of protein-protein interactions (PPI) was established, incorporating CPA4 and its genes that were expressed differentially. Functional enrichment analyses were conducted to anticipate the contribution of CPA4 in the development of ccRCC. To validate our earlier study, we conducted real-time PCR and cell functional tests on ccRCC cell lines. Our findings revealed that CPA4 is overexpressed in ccRCC, and the higher the expression of CPA4, the worse the clinical outcomes such as TNM stage, pathological stage, histological grade, etc. Moreover, patients with high CPA4 expression had worse overall survival, disease-specific survival and progress-free interval than patients with low expression. The PPI network analysis highlighted potential interactions contributing to ccRCC progression. Functional enrichment analysis indicated the involvement of CPA4 in the regulation of key pathways associated with ccRCC development. Additionally, immune infiltration analysis suggested a potential link between CPA4 expression and immune response in the tumour microenvironment. Finally, cell functional studies in ccRCC cell lines shed light on the molecular mechanisms underlying the role of CPA4 in promoting ccRCC formation. Overall, our study unveils CPA4 as a promising biomarker with prognostic potential in ccRCC. The identified interactions and pathways provide valuable insights into its implications in ccRCC development and offer a foundation for future research on targeted therapies. Further investigation of CPA4's involvement in immune responses may contribute to the development of immunotherapeutic strategies for ccRCC treatment.


Asunto(s)
Carcinoma de Células Renales , Carcinoma , Neoplasias Renales , Humanos , Carcinoma de Células Renales/genética , Biomarcadores , Neoplasias Renales/genética , Proliferación Celular/genética , Microambiente Tumoral/genética
19.
Aging (Albany NY) ; 16(5): 4862-4888, 2024 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-38460947

RESUMEN

Lysosomal-dependent cell death (LDCD) has an excellent therapeutic effect on apoptosis-resistant and drug-resistant tumors; however, the important role of LDCD-related genes (LDCD-RGs) in kidney renal clear cell carcinoma (KIRC) has not been reported. Initially, single-cell atlas of LDCD signal in KIRC was comprehensively depicted. We also emphasized the molecular characteristics of LDCD-RGs in various human neoplasms. Predicated upon the expressive quotients of LDCD-RGs, we stratified KIRC patients into tripartite cohorts denoted as C1, C2, and C3. Those allocated to the ambit of C1 evinced the most sanguine prognosis within the KIRC cohort, underscored by the acme of LDCD-RGs scores. This further confirms the significant role that LDCD-RGs play in both the pathophysiological foundation and clinical implications of KIRC. In culmination, by virtue of employing the LASSO-Cox analytical modality, we have ushered in an innovative and avant-garde prognostic framework tailored for KIRC, predicated on the bedrock of LDCD-RGs. The assemblage of KIRC instances was arbitrarily apportioned into constituents inclusive of a didactic cohort, an internally wielded validation cadre, and an externally administered validation cohort. Concurrently, patients were dichotomized into strata connoting elevated jeopardy synonymous with adverse prognostic trajectories, and conversely, diminished risk tantamount to favorable prognoses, contingent on the calibrated expressions of LDCD-RGs. Succinctly, our investigative findings serve to underscore the cardinal capacity harbored by LDCD-RGs within the KIRC milieu, concurrently birthing a pioneering prognostic schema intrinsically linked to the trajectory of KIRC and its attendant prognoses.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Pronóstico , Carcinoma de Células Renales/genética , Muerte Celular , Neoplasias Renales/genética , Riñón
20.
Front Pharmacol ; 15: 1343819, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38549669

RESUMEN

Background: Kidney renal clear cell carcinoma (KIRC) is a common and clinically significant subtype of kidney cancer. A potential therapeutic target in KIRC is disulfidptosis, a novel mode of cell death induced by disulfide stress. The aim of this study was to develop a prognostic model to explore the clinical significance of different disulfidptosis gene typings from KIRC. Methods: A comprehensive analysis of the chromosomal localization, expression patterns, mutational landscape, copy number variations, and prognostic significance of 10 disulfide death genes was conducted. Patients were categorized into distinct subtypes using the Non-negative Matrix Factorization (NMF) typing method based on disulfidptosis gene expression patterns. Weighted Gene Co-expression Network Analysis (WGCNA) was used on the KIRC dataset to identify differentially expressed genes between subtype clusters. A risk signature was created using LASSO-Cox regression and validated by survival analysis. An interaction between risk score and immune cell infiltration, tumor microenvironment characteristics and pathway enrichment analysis were investigated. Results: Initial findings highlight the differential expression of specific DRGs in KIRC, with genomic instability and somatic mutation analysis revealing key insights into their role in cancer progression. NMF clustering differentiates KIRC patients into subgroups with distinct survival outcomes and immune profiles, and hierarchical clustering identifies gene modules associated with key biological and clinical parameters, leading to the development of a risk stratification model (LRP8, RNASE2, CLIP4, HAS2, SLC22A11, and KCTD12) validated by survival analysis and predictive of immune infiltration and drug sensitivity. Pathway enrichment analysis further delineates the differential molecular pathways between high-risk and low-risk patients, offering potential targets for personalized treatment. Lastly, differential expression analysis of model genes between normal and KIRC cells provides insights into the molecular mechanisms underlying KIRC, highlighting potential biomarkers and therapeutic targets. Conclusion: This study contributes to the understanding of KIRC and provides a potential prognostic model using disulfidptosis gene for personalized management in KIRC patients. The risk signature shows clinical applicability and sheds light on the biological mechanisms associated with disulfide-induced cell death.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA