Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
Cell Rep Med ; 5(8): 101665, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39168101

RESUMEN

Mesenchymal stromal cell (MSC) senescence is a key factor in skeletal aging, affecting the potential of MSC applications. Identifying targets to prevent MSC and skeletal senescence is crucial. Here, we report increased miR-29 expression in bone tissues of aged mice, osteoporotic patients, and senescent MSCs. Genetic overexpression of miR-29 in Prx1-positive MSCs significantly accelerates skeletal senescence, reducing cortical bone thickness and trabecular bone mass, while increasing femur cross-sectional area, bone marrow adiposity, p53, and senescence-associated secretory phenotype (SASP) levels. Mechanistically, miR-29 promotes senescence by upregulating p53 via targeting Kindlin-2 mRNA. miR-29 knockdown in BMSCs impedes skeletal senescence, enhances bone mass, and accelerates calvarial defect regeneration, also reducing lipopolysaccharide (LPS)-induced organ injuries and mortality. Thus, our findings underscore miR-29 as a promising therapeutic target for senescence-related skeletal diseases and acute inflammation-induced organ damage.


Asunto(s)
Senescencia Celular , Células Madre Mesenquimatosas , MicroARNs , Animales , Femenino , Humanos , Masculino , Ratones , Envejecimiento , Huesos/metabolismo , Huesos/patología , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Lipopolisacáridos/farmacología , Trasplante de Células Madre Mesenquimatosas/métodos , Células Madre Mesenquimatosas/metabolismo , Ratones Endogámicos C57BL , MicroARNs/genética , MicroARNs/metabolismo , Osteoporosis/genética , Osteoporosis/patología , Osteoporosis/terapia , Osteoporosis/metabolismo , Fenotipo Secretor Asociado a la Senescencia/genética , Proteína p53 Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/genética
2.
Sci Rep ; 14(1): 19809, 2024 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-39191802

RESUMEN

Kindlin-2 is a cytoskeletal adapter protein that is present in many different cell types. By virtue of its interaction with multiple binding partners, Kindlin-2 intercalates into numerous signaling pathways and cytoskeletal nodes. A specific interaction of Kindlin-2 that is of paramount importance in many cellular responses is its direct binding to the cytoplasmic tails of integrins, an interaction that controls many of the adhesive, migratory and signaling responses mediated by members of the integrin family of cell-surface heterodimers. Kindlin-2 is highly expressed in many cancers and is particularly prominent in prostate cancer cells. CRISPR/cas9 was used as a primary approach to knockout expression of Kindlin-2 in both androgen-independent and dependent prostate cancer cell lines, and the effects of Kindlin-2 suppression on oncogenic properties of these prostate cancer cell lines was examined. Adhesion to extracellular matrix proteins was markedly blunted, consistent with the control of integrin function by Kindlin-2. Migration across matrices was also affected. Anchorage independent growth was markedly suppressed. These observations indicate that Kindlin-2 regulates hallmark features of prostate cancer cells. In androgen expressing cells, testosterone-stimulated adhesion was Kindlin-2-dependent. Furthermore, tumor growth of a prostate cancer cell line lacking Kindlin-2 and implanted into the prostate gland of immunocompromised mice was markedly blunted and was associated with suppression of angiogenesis in the developing tumor. These results establish a key role of Kindlin-2 in prostate cancer progression and suggest that Kindlin-2 represents an interesting therapeutic target for treatment of prostate cancer.


Asunto(s)
Adhesión Celular , Proteínas de la Membrana , Proteínas de Neoplasias , Neoplasias de la Próstata , Masculino , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/genética , Humanos , Animales , Proteínas de Neoplasias/metabolismo , Proteínas de Neoplasias/genética , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Línea Celular Tumoral , Ratones , Movimiento Celular , Proliferación Celular , Integrinas/metabolismo
3.
Cell Signal ; 121: 111286, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38977232

RESUMEN

BACKGROUND: Peyronie's disease (PD) causes benign plaques or induration in tunica albuginea (TA). Kindlin-2 regulates the TGF-ß1/Smad3 pathway, which accelerates kidney fibrosis. The study is aimed mainly to investigate the impact of Kindlin-2 on PD formation and its signaling pathways, notably the TGF-ß/Smad pathway in the presence of TGF-ß1. METHODS: In this mouse investigation, adenovirus TGF-ß1 was injected into TA to produce PD. The model was successfully induced 45 days later. Western Blot (WB) and immunohistochemistry (IHC) were utilized to measure Kindlin-2 in PD model tissue. WB and immunofluorescence assays were utilized to confirm the impact of TGF-ß1 on Kindlin-2 levels in vitro. The interaction among Kindlin-2, TßRI, and Smad3 was detected using immunoprecipitation (IP) experiments. We examined how TGF-ß1 affects Smad3 phosphorylation and downstream gene activation process. Finally, Kindlin-2 and the level of tissue fibrosis were examined in PD model. RESULTS: Kindlin-2 levels were elevated in the TGF-ß1-induced PD model, confirming that TGF-ß1 can increase Kindlin-2 levels in primary PD cells. Moreover, Kindlin-2 mediates Smad3-TßRI interaction, activates p-Smad3, and enhances TGF-ß1 target gene expression. In vivo investigations reveal that Kindlin-2 promotes PD development and tissue fibrosis. The regulatory effects of Kindlin-2 need the presence of TGF-ß1. Tissue fibrosis can be reduced by downregulating Kindlin-2. CONCLUSION: Kindlin-2 does not directly activate Smad3 to induce tissue fibrosis. Instead, it exerts its effect through the combined influence of TGF-ß1. Inhibiting Kindlin-2 could potentially be a treatment for PD.


Asunto(s)
Induración Peniana , Transducción de Señal , Proteína smad3 , Factor de Crecimiento Transformador beta1 , Animales , Factor de Crecimiento Transformador beta1/metabolismo , Induración Peniana/metabolismo , Induración Peniana/patología , Ratones , Masculino , Proteína smad3/metabolismo , Fibrosis , Humanos , Proteínas de Neoplasias/metabolismo , Proteínas de la Membrana/metabolismo , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Fosforilación , Proteínas del Citoesqueleto , Proteínas Musculares
4.
Eur J Pharmacol ; 969: 176462, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38431242

RESUMEN

Pancreatic cancer is an extremely malignant tumor, and only a few clinical treatment options exist. MFG-E8 and kindlin-2 all play an important role in cancer progression. However, the specific mechanism occurring between MFG-E8, kindlin-2 and the migration and invasion of pancreatic cancer cells remains unelucidated. To unravel the specific mechanism, this study assessed the potential association between MFG-E8 and kindlin-2 as well as the involvement of MFG-E8 in pancreatic cancer using two pancreatic cancer cell lines (MiaPaCa-2 and PANC-1). Pancreatic cancer cells were treated with 0, 250, and 500 ng/ml MFG-E8, and the effects of MFG-E8 on the migration, invasion, and anoikis of pancreatic cancer cells were observed. To investigate the role of kindlin-2 in pancreatic cancer, kindlin-2-shRNAi was transfected to knock down its expression level in the two pancreatic cancer cell lines. Furthermore, cilengitide, a receptor blocker of MFG-E8, was used to explore the relationship between MFG-E8, kindlin-2, and pancreatic cancer progression. Our findings demonstrated that MFG-E8 promotes the migration and invasion of pancreatic cancer cells and induces cell anoikis resistance in a dose-dependent manner, which was effectively counteracted by cilengitide, a receptor blocker. Additionally, the knockdown of kindlin-2 expression nullified the effect of MFG-E8 on the migration and invasion of pancreatic cancer cells. Consequently, this study provides insights into the specific mechanism underlying the interplay between MFG-E8 and kindlin-2 in the progression of pancreatic cancer cells.


Asunto(s)
Anoicis , Neoplasias Pancreáticas , Humanos , Línea Celular , Páncreas , Neoplasias Pancreáticas/genética , Transición Epitelial-Mesenquimal
5.
Res Sq ; 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38405979

RESUMEN

Background: Kindlin-2, an adaptor protein, is dysregulated in various human cancers, including triple negative breast cancer (TNBC), where it drives tumor progression and metastasis by influencing several cancer hallmarks. One well-established role of Kindlin-2 involves the regulation of integrin signaling, achieved by directly binding to the cytoplasmic tail of the integrin ß subunit. In this study, we present novel insights into Kindlin-2's involvement in stabilizing the ß1-Integrin:TGF-ß type 1 receptor (TßRI) complexes, acting as a physical bridge that links ß1-Integrin to TßRI. The loss of Kindlin-2 results in the degradation of this protein complex, leading to the inhibition of downstream oncogenic pathways. Methods: Our methodology encompassed a diverse range of in vitro assays, including CRISPR/Cas9 gene editing, cell migration, 3D tumorsphere formation and invasion, solid binding, co-immunoprecipitation, cell adhesion and spreading assays, as well as western blot and flow cytometry analyses, utilizing MDA-MB-231 and 4T1 TNBC cell lines. Additionally, preclinical in vivo mouse models of TNBC tumor progression and metastasis were employed to substantiate our findings. Results: The investigation revealed that the direct interaction between Kindlin-2 and ß1-Integrin is mediated through the C-terminal F3 domain of Kindlin-2, while the interaction between Kindlin-2 and TßRI is facilitated through the F2 domain of Kindlin-2. Disruption of this bridge, achieved via CRISPR/Cas9-mediated knockout of Kindlin-2, led to the degradation of ß1-Integrin and TßRI, resulting in the inhibition of oncogenic pathways downstream of both proteins, subsequently hindering tumor growth and metastasis. Treatment of Kindlin-2-deficient cells with the proteasome inhibitor MG-132 restored the expression of both ß1-Integrin and TßRI. Furthermore, the rescue of Kindlin-2 expression reinstated their oncogenic activities both in vitro and in vivo. Conclusions: This study identifies a novel function of Kindlin-2 in stabilizing the ß1-Integrin:TßR1 complexes and regulating their downstream oncogenic signaling. The translational implications of these findings are substantial, potentially unveiling new therapeutically targeted pathways crucial for the treatment of TNBC tumors.

6.
Exp Cell Res ; 436(2): 113974, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38346630

RESUMEN

The extracellular matrix (ECM) mechanical properties regulate biological processes, such as fibroblast-myofibroblast transformation (FMT), which is a crucial component in pelvic organ prolapse (POP) development. The 'Kindlin-2' protein, expressed by fibroblasts, plays an important role in the development of the mesoderm, which is responsible for connective tissue formation; however, the role of Kindlin-2 in FMT remains to be explored. In this study, we aimed to explore the role of Kindlin-2 in FMT as it relates to POP. We found that ECM stiffness induces autophagy to translocate Kindlin-2 to the cytoplasm of L929 cells, where it interacts with and degrades MOB1, thereby facilitating Yes-associated protein (YAP) entry into the nucleus and influencing FMT progression. Stiffness-induced autophagy was inhibited when using an autophagy inhibitor, which blocked the translocation of Kindlin-2 to the cytoplasm and partially reversed high-stiffness-induced FMT. In patients with POP, we observed an increase in cytoplasmic Kindlin-2 and nuclear YAP levels. Similar changes in vaginal wall-associated proteins were observed in a mouse model of acute vaginal injury. In conclusion, Kindlin-2 is a key gene affecting ECM stiffness, which regulates FMT by inducing autophagy and may influence the development of POP.


Asunto(s)
Proteínas del Citoesqueleto , Matriz Extracelular , Proteínas Musculares , Miofibroblastos , Animales , Femenino , Humanos , Ratones , Citoplasma/metabolismo , Matriz Extracelular/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Miofibroblastos/metabolismo , Proteínas del Citoesqueleto/metabolismo , Proteínas Musculares/metabolismo
7.
Cell Signal ; 113: 110953, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38084837

RESUMEN

BACKGROUND: Cancer Stem Cells (CSCs) have emerged as a critical mediator in recurrence and resistance in cancers. Kindlin-isoform (1 and 2) binds with cytoplasmic ß-tail of integrin and are essential co-activators of integrin function. Given their important function in regulating cancer hallmarks such as cell proliferation, invasion, migration, and metastasis, we hypothesize that it might play a critical role in CSC growth, survival, and self-renewal of colon cancer. MATERIALS AND METHODS: Using knockdown approaches, we inhibited Kindlin-2 expression in HCT116 and HT29 colon cancer cells. Extreme limiting dilution and self-renewal assay were performed to measure the role of Kindlin in colonic CSC. Standard methods such as qRT-PCR and western blotting were carried out to understand the signaling cascade by which Kindlin regulates CSC marker expression and downstream targets. RESULTS: Our data show isoform-specific upregulation of Kindlin-2 in colonic CSCs. The silencing of Kindlin-2 reduces colonosphere formation, decreases CSC size, and self-renewal marker genes such as CD-133, CXCR-4, LGR-5, and C-MYC. Kindlin-2 silencing reduces colonosphere proliferation, invasion, and migration of colonic CSCs. Mechanistically, Kindlin-2 silencing reduces the expression, and nuclear localization of ß-catenin, and decreases ß-catenin target genes such as C-MYC, cyclin D1, DKK-1, and Snail-1. CONCLUSION: Our study delineates the isoform-specific activity of Kindlin-2 in regulating Colonic CSC. Isoform-specific targeting of Kindlin-2 may be a novel strategy to tackle this devastating disease.


Asunto(s)
Neoplasias del Colon , beta Catenina , Humanos , beta Catenina/metabolismo , Línea Celular Tumoral , Proliferación Celular , Neoplasias del Colon/metabolismo , Integrinas/metabolismo , Células Madre Neoplásicas/metabolismo , Isoformas de Proteínas/metabolismo , Vía de Señalización Wnt/genética
8.
J Biol Chem ; 300(2): 105601, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38159860

RESUMEN

Hepatocyte plays a principal role in preserving integrity of the liver homeostasis. Our recent study demonstrated that Kindlin-2, a focal adhesion protein that activates integrins and regulates cell-extracellular matrix interactions, plays an important role in regulation of liver homeostasis by inhibiting inflammation pathway; however, the molecular mechanism of how Kindlin-2 KO activates inflammation is unknown. Here, we show that Kindlin-2 loss largely downregulates the antioxidant glutathione-S-transferase P1 in hepatocytes by promoting its ubiquitination and degradation via a mechanism involving protein-protein interaction. This causes overproduction of intracellular reactive oxygen species and excessive oxidative stress in hepatocytes. Kindlin-2 loss upregulates osteopontin in hepatocytes partially because of upregulation of reactive oxygen species and consequently stimulates overproduction of inflammatory cytokines and infiltration in liver. The molecular and histological deteriorations caused by Kindlin-2 deficiency are markedly reversed by systemic administration of an antioxidant N-acetylcysteine in mice. Taken together, Kindlin-2 plays a pivotal role in preserving integrity of liver function.


Asunto(s)
Proteínas del Citoesqueleto , Inflamación , Proteínas de la Membrana , Estrés Oxidativo , Animales , Ratones , Antioxidantes/metabolismo , Homeostasis , Inflamación/metabolismo , Hígado/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Proteínas del Citoesqueleto/metabolismo
9.
Acta Pharm Sin B ; 13(11): 4535-4552, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37969743

RESUMEN

Osteoporosis (OP) is a systemic skeletal disease that primarily affects the elderly population, which greatly increases the risk of fractures. Here we report that Kindlin-2 expression in adipose tissue increases during aging and high-fat diet fed and is accompanied by decreased bone mass. Kindlin-2 specific deletion (K2KO) controlled by Adipoq-Cre mice or adipose tissue-targeting AAV (AAV-Rec2-CasRx-sgK2) significantly increases bone mass. Mechanistically, Kindlin-2 promotes peroxisome proliferator-activated receptor gamma (PPARγ) activation and downstream fatty acid binding protein 4 (FABP4) expression through stabilizing fatty acid synthase (FAS), and increased FABP4 inhibits insulin expression and decreases bone mass. Kindlin-2 inhibition results in accelerated FAS degradation, decreased PPARγ activation and FABP4 expression, and therefore increased insulin expression and bone mass. Interestingly, we find that FABP4 is increased while insulin is decreased in serum of OP patients. Increased FABP4 expression through PPARγ activation by rosiglitazone reverses the high bone mass phenotype of K2KO mice. Inhibition of FAS by C75 phenocopies the high bone mass phenotype of K2KO mice. Collectively, our study establishes a novel Kindlin-2/FAS/PPARγ/FABP4/insulin axis in adipose tissue modulating bone mass and strongly indicates that FAS and Kindlin-2 are new potential targets and C75 or AAV-Rec2-CasRx-sgK2 treatment are potential strategies for OP treatment.

10.
Theranostics ; 13(13): 4333-4355, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37649609

RESUMEN

Rationale: Pancreatic ductal adenocarcinoma (PDAC) is an aggressive solid tumor, with extremely low survival rates. Identifying key signaling pathways driving PDAC progression is crucial for the development of therapies to improve patient response rates. Kindlin-2, a multi-functional protein, is involved in numerous biological processes including cell proliferation, apoptosis and migration. However, little is known about the functions of Kindlin-2 in pancreatic cancer progression in vivo. Methods: In this study, we employ an in vivo PDAC mouse model to directly investigate the role of Kindlin-2 in PDAC progression. Then, we utilized RNA-sequencing, the molecular and cellular assays to determine the molecular mechanisms by which Kindlin-2 promotes PDAC progression. Results: We show that loss of Kindlin-2 markedly inhibits KrasG12D-driven pancreatic cancer progression in vivo as well as in vitro. Furthermore, we provide new mechanistic insight into how Kindlin-2 functions in this process, A fraction of Kindlin-2 was localized to the endoplasmic reticulum and associated with the RNA helicase DDX3X, a key regulator of mRNA translation. Loss of Kindlin-2 blocked DDX3X from binding to the 5'-untranslated region of c-Myc and inhibited DDX3X-mediated c-Myc translation, leading to reduced c-Myc-mediated glucose metabolism and tumor growth. Importantly, restoration of the expression of either the full-length Kindlin-2 or c-Myc, but not that of a DDX3X-binding-defective mutant of Kindlin-2, in Kindlin-2 deficient PDAC cells, reversed the inhibition of glycolysis and pancreatic cancer progression induced by the loss of Kindlin-2. Conclusion: Our studies reveal a novel Kindlin-2-DDX3X-c-Myc signaling axis in PDAC progression and suggest that inhibition of this signaling axis may provide a promising therapeutic approach to alleviate PDAC progression.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animales , Ratones , Carcinoma Ductal Pancreático/genética , Neoplasias Pancreáticas/genética , Proteínas Proto-Oncogénicas c-myc , Transducción de Señal , Neoplasias Pancreáticas
11.
Cell Mol Life Sci ; 80(8): 223, 2023 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-37480504

RESUMEN

Kindlin-2 is critical for development and homeostasis of key organs, including skeleton, liver, islet, etc., yet its role in modulating angiogenesis is unknown. Here, we report that sufficient KINDLIN-2 is extremely important for NOTCH-mediated physiological angiogenesis. The expression of KINDLIN-2 in HUVECs is significantly modulated by angiogenic factors such as vascular endothelial growth factor A or tumor necrosis factor α. A strong co-localization of CD31 and Kindlin-2 in tissue sections is demonstrated by immunofluorescence staining. Endothelial-cell-specific Kindlin-2 deletion embryos die on E10.5 due to hemorrhage caused by the impaired physiological angiogenesis. Experiments in vitro show that vascular endothelial growth factor A-induced multiple functions of endothelial cells, including migration, matrix proteolysis, morphogenesis and sprouting, are all strengthened by KINDLIN-2 overexpression and severely impaired in the absence of KINDLIN-2. Mechanistically, we demonstrate that KINDLIN-2 inhibits the release of Notch intracellular domain through binding to and maintaining the integrity of NOTCH1. The impaired angiogenesis and avascular retinas caused by KINDLIN-2 deficiency can be rescued by DAPT, an inhibitor of γ-secretase which releases the intracellular domain from NOTCH1. Moreover, we demonstrate that high glucose stimulated hyperactive angiogenesis by increasing KINDLIN-2 expression could be prevented by KINDLIN-2 knockdown, indicating Kindlin-2 as a potential therapeutic target in treatment of diabetic retinopathy. Our study for the first time demonstrates the significance of Kindlin-2 in determining Notch-mediated angiogenesis during development and highlights Kindlin-2 as the potential therapeutic target in angiogenic diseases, such as diabetic retinopathy.


Asunto(s)
Retinopatía Diabética , Humanos , Fenómenos Fisiológicos Cardiovasculares , Células Endoteliales , Morfogénesis , Factor A de Crecimiento Endotelial Vascular/genética
12.
J Orthop Translat ; 41: 12-19, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37292436

RESUMEN

Background: Genetically modified mice are the most useful tools for investigating the gene functions in articular cartilage biology and the pathogenesis of osteoarthritis. The AggrecanCreERT2 mice are one of the most reported mouse lines used for this purpose. The Prg4 (proteoglycan 4) gene encodes the lubricin protein and is expressed selectively in chondrocytes located at the superficial layer of the articular cartilage. While the Prg4GFPCreERT2 knock-in inducible-Cre transgenic mice were generated a while ago, so far, few studies have used this mouse line to perform gene functional studies in cartilage biology. Methods: We have recently reported that deleting the Fermt2 gene, which encodes the key focal adhesion protein Kindlin-2, in articular chondrocytes by using the AggrecanCreERT2 transgenic mice, results in spontaneous osteoarthritis (OA) lesions, which highly mimics the human OA pathologies. In this study, we have compared the Kindlin-2 deficiency-caused OA phenotypes induced by Prg4GFPCreERT2 with those caused by AggrecanCreERT2 using imaging and histological analyses. Results: We find that Kindlin-2 protein is deleted in about 75% of the superficial articular chondrocytes in the tamoxifen (TAM)-treated Prg4GFPCreERt2/+; Fermt2fl/fl mice compared to controls. At 6 months after TAM injections, the OARSI scores of AggrecanCreERT2/+; Fermt2fl/fl and Prg4GFPCreERt2/+; Fermt2fl/fl mice were 5 and 3, respectively. The knee joints histological osteophyte and synovitis scores were also significantly decreased in Prg4GFPCreERT2/+; Fermt2fl/fl mice compared to those in AggrecanCreERT2/+; Fermt2fl/fl mice. Furthermore, magnitudes of upregulation of the extracellular matrix-degrading enzymes Mmp13 and hypertrophic chondrocyte markers Col10a1 and Runx2 were decreased in Prg4GFPCreERT2/+; Fermt2fl/fl versus AggrecanCreERT2/+; Fermt2fl/fl mice. We finally examined the susceptibility of Prg4GFPCreERT2/+; Fermt2fl/fl mouse model to surgically induce OA lesions. The pathological features of OA in the TAM-DMM model exhibited significant enhancement in cartilage erosion, proteoglycan loss, osteophyte, and synovitis and an increase in OARSI score in articular cartilage compared with those in corn-oil DMM mice. Conclusion: Kindlin-2 loss causes milder OA-like lesions in Prg4GFPCreERT2/+;Fermt2fl/fl than in AggrecanCreERT2/+; Fermt2fl/fl mice. In contrast, Kindlin-2 loss similarly accelerates the destabilization of the medial meniscus-induced OA lesions in both mice.Translational Potential of this Article: Our study demonstrates that Prg4GFPCreERT2 is a useful tool for gene functional study in OA research. This study provides useful information for investigators to choose appropriate Cre mouse lines for their research in cartilage biology.

13.
J Biol Chem ; 299(6): 104774, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37142218

RESUMEN

Mitochondria are signaling organelles implicated in cancer, but the mechanisms are elusive. Here, we show that Parkin, an E3 ubiquitination (Ub) ligase altered in Parkinson's disease, forms a complex with the regulator of cell motility, Kindlin-2 (K2), at mitochondria of tumor cells. In turn, Parkin ubiquitinates Lys581 and Lys582 using Lys48 linkages, resulting in proteasomal degradation of K2 and shortened half-life from ∼5 h to ∼1.5 h. Loss of K2 inhibits focal adhesion turnover and ß1 integrin activation, impairs membrane lamellipodia size and frequency, and inhibits mitochondrial dynamics, altogether suppressing tumor cell-extracellular matrix interactions, migration, and invasion. Conversely, Parkin does not affect tumor cell proliferation, cell cycle transitions, or apoptosis. Expression of a Parkin Ub-resistant K2 Lys581Ala/Lys582Ala double mutant is sufficient to restore membrane lamellipodia dynamics, correct mitochondrial fusion/fission, and preserve single-cell migration and invasion. In a 3D model of mammary gland developmental morphogenesis, impaired K2 Ub drives multiple oncogenic traits of EMT, increased cell proliferation, reduced apoptosis, and disrupted basal-apical polarity. Therefore, deregulated K2 is a potent oncogene, and its Ub by Parkin enables mitochondria-associated metastasis suppression.


Asunto(s)
Proteínas de la Membrana , Ubiquitina-Proteína Ligasas , Movimiento Celular , Proteínas de la Membrana/metabolismo , Mitocondrias/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Humanos
14.
Acta Pharmaceutica Sinica B ; (6): 4535-4552, 2023.
Artículo en Inglés | WPRIM (Pacífico Occidental) | ID: wpr-1011196

RESUMEN

Osteoporosis (OP) is a systemic skeletal disease that primarily affects the elderly population, which greatly increases the risk of fractures. Here we report that Kindlin-2 expression in adipose tissue increases during aging and high-fat diet fed and is accompanied by decreased bone mass. Kindlin-2 specific deletion (K2KO) controlled by Adipoq-Cre mice or adipose tissue-targeting AAV (AAV-Rec2-CasRx-sgK2) significantly increases bone mass. Mechanistically, Kindlin-2 promotes peroxisome proliferator-activated receptor gamma (PPARγ) activation and downstream fatty acid binding protein 4 (FABP4) expression through stabilizing fatty acid synthase (FAS), and increased FABP4 inhibits insulin expression and decreases bone mass. Kindlin-2 inhibition results in accelerated FAS degradation, decreased PPARγ activation and FABP4 expression, and therefore increased insulin expression and bone mass. Interestingly, we find that FABP4 is increased while insulin is decreased in serum of OP patients. Increased FABP4 expression through PPARγ activation by rosiglitazone reverses the high bone mass phenotype of K2KO mice. Inhibition of FAS by C75 phenocopies the high bone mass phenotype of K2KO mice. Collectively, our study establishes a novel Kindlin-2/FAS/PPARγ/FABP4/insulin axis in adipose tissue modulating bone mass and strongly indicates that FAS and Kindlin-2 are new potential targets and C75 or AAV-Rec2-CasRx-sgK2 treatment are potential strategies for OP treatment.

15.
Beijing Da Xue Xue Bao Yi Xue Ban ; 54(5): 846-852, 2022 Oct 18.
Artículo en Chino | MEDLINE | ID: mdl-36241227

RESUMEN

OBJECTIVE: To investigate the effects and mechanisms of Kindlin-2 on uterus development and reproductive capacity in female mice. METHODS: Cdh16-Cre tool mice and Kindlin-2flox/flox mice were used to construct the mouse model of uterus specific knockout of Kindlin-2, and the effects of Kindlin-2 deletion on uterine development and reproduction capacity of female mice were observed. High expression and knockdown of Kindlin-2 in endometrial cancer cell lines HEC-1 and Ish were used to detect the regulation of mammalian target of rapamycin (mTOR) signaling pathway. In addition, uterine proteins of the female mice with specific knockout of Kindlin-2 and female mice in the control group were extracted to detect the protein levels of key molecules of mTOR signaling pathway and Hippo signaling pathway. RESULTS: The mouse model of uterine specific knockout of Kindlin-2 was successfully constructed. The knockout efficiency of Kindlin-2 in mouse uterus was identified and verified by mouse tail polymerase chain reaction (PCR), Western blot protein identification, immunohistochemical staining (IHC) and other methods. Compared with the control group, the female mice with uterus specific deletion of Kindlin-2 lost weight, seriously impaired reproductive ability, and the number of newborn mice decreased, but the proportion of the female mice and male mice in the newborn mice did not change. Hematoxylin eosin staining (HE) experiment showed that the endometrium of Kindlin-2 knockout group was incomplete and the thickness of uterine wall became thinner. In terms of mechanism, the deletion of Kindlin-2 in endo-metrial cancer cell lines HEC-1 and Ish could downregulate the protein levels of mTOR, phosphorylated mTOR, adenosine monophosphate-activated protein kinase (AMPK), phosphorylated AMPK and phosphorylated ribosomal protein S6 (S6), and the mTOR signal pathway was inhibited. It was found that the specific deletion of Kindlin-2 could upregulate the protein levels of Mps one binding 1 (MOB1) and phosphorylated Yes-associated protein (YAP) in the uterus of the female mice, and the Hippo signal pathway was activated. CONCLUSION: Kindlin-2 inhibits the development of uterus by inhibiting mTOR signal pathway and activating Hippo signal pathway, thereby inhibiting the fertility of female mice.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Vía de Señalización Hippo , Proteínas Quinasas Activadas por AMP/metabolismo , Adenosina Monofosfato/metabolismo , Animales , Cadherinas/metabolismo , Proteínas del Citoesqueleto/metabolismo , Endometrio/metabolismo , Eosina Amarillenta-(YS)/metabolismo , Femenino , Hematoxilina/metabolismo , Masculino , Mamíferos/metabolismo , Ratones , Proteínas Musculares , Proteína S6 Ribosómica/metabolismo , Sirolimus/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Proteínas Señalizadoras YAP
16.
Biochem Biophys Res Commun ; 614: 1-8, 2022 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-35567938

RESUMEN

Diabetes mellitus has been a major public health problem worldwide, characterized by insulin resistance and dysfunction of ß-cells. A previous study showed that Kindlin-2 loss in ß-cells dramatically reduces insulin secretion and decreases ß-cell mass, resulting in severe diabetes-like phenotypes. It suggests that Kindlin-2 in ß-cells play an important role in regulating glucose homeostasis. However, the effect of Kindlin-2 on the function of ß-cells under chronic hyperglycemia in diabetes has not been explored. Here we report that Kindlin-2 overexpression ameliorates diabetes and improves insulin secretion in mice induced by streptozocin. In contrast, Kindlin-2 insufficiency exacerbates diabetes and promotes ß-cells dysfunction and inflammation in ß-cells induced by a high-fat diet (HFD). In vitro, Kindlin-2 overexpression prevented high-glucose (HG)-induced dysfunction in ß-cells. Kindlin-2 overexpression also decreased the expression of pro-inflammatory cytokines and NLRP3 inflammasome expression in ß-cells exposed to HG. Furthermore, the loss of Kindlin-2 aggravates the expression of inflammatory cytokines and NLRP3 induced by HG in ß-cells. Collectively, we demonstrate that Kindlin-2 protects against diabetes by inhibiting NLRP3 inflammasome activation.


Asunto(s)
Proteínas del Citoesqueleto , Diabetes Mellitus Experimental , Inflamasomas , Células Secretoras de Insulina , Animales , Citocinas/metabolismo , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Diabetes Mellitus Experimental/metabolismo , Glucosa/metabolismo , Inflamasomas/metabolismo , Células Secretoras de Insulina/metabolismo , Ratones , Ratones Endogámicos C57BL , Proteínas Musculares/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo
17.
J Gastroenterol ; 57(5): 372-386, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35244769

RESUMEN

BACKGROUND: Upregulated Kindlin-2 expression in hepatocellular carcinoma (HCC) correlates with metastasis and poor prognosis. In this study, we investigated the molecular mechanism of Kindlin-2 in HCC. METHODS: Kindlin-2 downstream pathways were explored through microRNA sequencing. The Kindlin-2-miR-1258-TCF4 axis was verified using bisulfite sequencing, a luciferase reporter assay, quantitative real-time PCR, and rescue assays. Binding of TCF4 to the Kindlin-2 promoter was confirmed by promoter activity analysis and chromatin immunoprecipitation. RESULTS: MiRNA sequencing identified miR-1258 as a downstream effector of Kindlin-2. MiR-1258 expression was increased following Kindlin-2 knockdown and decreased after Kindlin-2 overexpression. Next, we identified transcription factor 7 like 2 (TCF7L2 or TCF4) as a target of miR-1258 and found that Kindlin-2 upregulated TCF4 expression by epigenetically suppressing miR-1258 in HCC. Furthermore, our results suggest that TCF4 binds to the Kindlin-2 promotor to enhance its transcription. Therefore, Kindlin-2-miR-1258-TCF4 interaction creates a positive feedback loop. Functional assays and animal experiments demonstrated critical roles of miR-1258 and TCF4 in HCC cell migration in vitro and HCC metastasis in vivo. In HCC tissues, Kindlin-2 expression correlated negatively with miR-1258 expression and positively with TCF4 expression. Meanwhile, miR-1258 expression correlated negatively with TCF4 expression. CONCLUSIONS: This study illustrates a novel integrin-independent signaling pathway, Kindlin-2-miR-1258-TCF4, that regulates HCC invasion and metastasis and identifies Kindlin-2 as a promising therapeutic target in HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Proteínas de la Membrana , MicroARNs , Proteínas de Neoplasias , Factor de Transcripción 4 , Animales , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Retroalimentación , Retroalimentación Sensorial , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Proteínas de la Membrana/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Metástasis de la Neoplasia , Proteínas de Neoplasias/metabolismo , Factor de Transcripción 4/genética , Factor de Transcripción 4/metabolismo
18.
Cancers (Basel) ; 14(3)2022 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-35158908

RESUMEN

Breast cancer (BC) is one of the leading causes of cancer-related deaths due in part to its invasive and metastatic properties. Kindlin-2 (FERMT2) is associated with the pathogenesis of several cancers. Although the role of Kindlin-2 in regulating the invasion-metastasis cascade in BC is widely documented, its function in BC initiation and progression remains to be fully elucidated. Accordingly, we generated a floxed mouse strain by targeting the Fermt2 (K2lox/lox) locus, followed by tissue-specific deletion of Kindlin-2 in the myoepithelial compartment of the mammary glands by crossing the K2lox/lox mice with K14-Cre mice. Loss of Kindlin-2 in mammary epithelial cells (MECs) showed no deleterious effects on mammary gland development, fertility, and lactation in mice bearing Kindlin-2-deletion. However, in a syngeneic mouse model of BC, mammary gland, specific knockout of Kindlin-2 inhibited the growth and metastasis of murine E0771 BC cells inoculated into the mammary fat pads. However, injecting the E0771 cells into the lateral tail vein of Kindlin-2-deleted mice had no effect on tumor colonization in the lungs, thereby establishing a critical role of MEC Kindlin-2 in supporting BC tumor growth and metastasis. Mechanistically, we found the MEC Kindlin-2-mediated inhibition of tumor growth and metastasis is accomplished through its regulation of the TGF-ß/ERK MAP kinase signaling axis. Thus, Kindlin-2 within the mammary gland microenvironment facilitates the progression and metastasis of BC.

19.
Inflammation ; 45(3): 1199-1208, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35133562

RESUMEN

Acute lung injury (ALI) is characteristic of the wholesale destruction of the lung endothelial barrier, which results in protein-rich lung edema, influx of pro-inflammatory leukocytes, and intractable hypoxemia, contributing to high mortality. Kindlin-2 is involved in the process of tumor- and wound healing-associated inflammation. However, the effects of kindlin-2 on lipopolysaccharide (LPS)-induced ALI and its mechanisms remain unknown. In this study, we found that the concentration of kindlin-2 was elevated in the lungs of ALI mice. The specific deletion of kindlin-2 by kindlin-2 siRNA attenuated the severity of lung injury, which was demonstrated by the reduced number of pro-inflammatory cells in bronchoalveolar lavage fluid and lung wet/dry weight ratio, and ameliorated pathologic changes in the lungs of ALI mice. Furthermore, kindlin-2 siRNA decreased the mRNA levels of pro-inflammatory factors (IL-1ß, IL-6, and TNF-α) and the protein levels of pyroptosis-related proteins. In vitro studies confirmed that LPS + ATP promoted the expressions of pro-inflammatory factors and pyroptosis-related proteins, which was prevented by kindlin-2 siRNA pretreatment in endothelial cells (ECs). In conclusion, inhibition of kindlin-2 developes protective effects against LPS-induced ALI and the cytotoxicity of ECs, which may depend on blocking pyroptosis.


Asunto(s)
Lesión Pulmonar Aguda , Lipopolisacáridos , Lesión Pulmonar Aguda/patología , Animales , Líquido del Lavado Bronquioalveolar , Proteínas del Citoesqueleto/metabolismo , Células Endoteliales/metabolismo , Inflamación/metabolismo , Lipopolisacáridos/farmacología , Pulmón/patología , Ratones , Proteínas Musculares/efectos adversos , Proteínas Musculares/metabolismo , Piroptosis , ARN Interferente Pequeño/metabolismo
20.
J Orthop Translat ; 32: 41-48, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34934625

RESUMEN

BACKGROUND: Our recent studies demonstrate that the focal adhesion protein Kindlin-2 exerts crucial functions in the mesenchymal stem cells, mature osteoblasts and osteocytes in control of early skeletal development and bone homeostasis in mice. However, whether Kindlin-2 plays a role in osteoprogenitors remains unclear. MATERIALS AND METHODS: Mice lacking Kindlin-2 expression in osterix (Osx)-expressing cells (i.e., osteoprogenitors) were generated. Micro-computerized tomography (µCT) analyses, histology, bone histomorphometry and immunohistochemistry were performed to determine the effects of Kindlin-2 deletion on skeletal development and bone mass accrual and homeostasis. Bone marrow stromal cells (BMSCs) from mutant mice (Kindlin-2 fl/fl ; Osx Cre ) and control littermates were isolated and determined for their osteoblastic differentiation capacity. RESULTS: Kindlin-2 was highly expressed in osteoprogenitors during endochondral ossification. Deleting Kindlin-2 expression in osteoprogenitors impaired both intramembranous and endochondral ossifications. Mutant mice displayed multiple severe skeletal abnormalities, including unmineralized fontanel, limb shortening and growth retardation. Deletion of Kindlin-2 in osteoprogenitors impaired the growth plate development and largely delayed formation of the secondary ossification center in the long bones. Furthermore, adult mutant mice displayed a severe low-turnover osteopenia with a dramatic decrease in bone formation which exceeded that in bone resorption. Primary BMSCs isolated from mutant mice exhibited decreased osteoblastic differentiation capacity. CONCLUSIONS: Our study demonstrates an essential role of Kinlind-2 expression in osteoprogenitors in regulating skeletogenesis and bone mass accrual and homeostasis in mice. THE TRANSLATIONAL POTENTIAL OF THIS ARTICLE: This study reveals that Kindlin-2 through its expression in osteoprogenitor cells controls chondrogenesis and bone mass. We may define a novel therapeutic target for treatment of skeletal diseases, such as chondrodysplasia and osteoporosis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA