Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cancers (Basel) ; 16(2)2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38254732

RESUMEN

Kinins are a set of peptides present in tissues that are involved in the inflammatory response and cancer progression. However, studies showing the expression of kinin receptors in human glioma samples are still incomplete and contradictory. The aim of the present study was to ascertain the expression of BDKRB1 and BDKRB2 genes, as well as the level of B1R and B2R proteins in human gliomas, depending on the degree of malignancy. Additionally, representative kinin-dependent genes with altered expression were indicated. The expression profile of kinin-dependent genes was determined using oligonucleotide microarray technique. In addition, RT-qPCR was used to assess the expression level of selected differentiating genes. The location of kinin receptors in brain gliomas was assessed using immunohistochemical methods. The oligonucleotide microarray method was used to identify 12 mRNA IDs of kinin-related genes whose expression was upregulated or downregulated in gliomas of different grades. In immunohistochemically stained samples, the concentrations of BR1 and BR2 proteins, measured by optical density, were statistically significantly higher in grade G3 vs. G2 and G4 vs. G3. Increased expression of kinin receptors BDKRB1 and BDKRB2 in brain gliomas, depending on the degree of malignancy, suggests the involvement of kinins and their receptors in the disease's pathogenesis. Quantitative assessment of mRNA BDKRB1, PRKAR1A, MAP2K, and EGFR in patients with brain tumors may hold diagnostic and therapeutic significance.

2.
Mol Cell Endocrinol ; 579: 112085, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37827227

RESUMEN

Our group has shown in several papers that kinin B1 receptor (B1R) is involved in metabolic adaptations, mediating glucose homeostasis and interfering in leptin and insulin signaling. Since catecholamines are involved with metabolism management, we sought to evaluate B1R role in catecholamine synthesis/secretion. Using B1R global knockout mice, we observed increased basal epinephrine content, accompanied by decreased hepatic glycogen content and increased glucosuria. When these mice were challenged with maximal intensity exercise, they showed decreased epinephrine and norepinephrine response, accompanied by disturbed glycemic responses to effort and poor performance. This phenotype was related to alterations in adrenal catecholamine synthesis: increased basal epinephrine concentration and reduced norepinephrine content in response to exercise, as well decreased gene expression and protein content of tyrosine hydroxylase and decreased gene expression of dopamine beta hydroxylase and kinin B2 receptor. We conclude that the global absence of B1R impairs catecholamine synthesis, interfering with glucose metabolism at rest and during maximal exercise.


Asunto(s)
Epinefrina , Cininas , Ratones , Animales , Homeostasis , Catecolaminas , Glucosa , Norepinefrina
3.
Med Oncol ; 40(8): 224, 2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37405520

RESUMEN

Despite campaigns and improvements in detection and treatment, lung cancer continues to increase worldwide and represents a major public health problem. One approach to treating patients suffering from lung cancer is to target surface receptors overexpressed on tumor cells, such as GPCR-family kinin receptors, and proteases that control tumor progression, such as kallikrein-related peptidases (KLKs). These proteases have been visualized in recent years due to their contribution to the progression of cancers, such as prostate and ovarian cancer, facilitating the invasive and metastatic capacity of tumor cells in these tissues. In fact, KLK3 is the specific prostate antigen, the only tissue-specific biomarker used to diagnose this malignancy. In lung cancer to date, evidence indicates that KLK5, KLK6, KLK8, KLK11, and KLK14 are the major peptidases regulated and involved in its progression. The expression levels of KLKs in this neoplasm are modulated by the secretome of the different cell types present in the tumor microenvironment, the cancer subtype and the tumor stage, among others. Considering the multiple functions of kinin receptors and KLKs, this review highlights their roles, even considering the SARS-CoV-2 effects. Since lung cancer is often diagnosed in advanced stages, our efforts should focus on early diagnosis, validating for example specific KLKs, especially in high-risk populations such as smokers and people exposed to carcinogenic fumes, oil fields, and contaminated workplaces, unexplored fields to investigate. Furthermore, their modulation could be considered as a promising approach in lung cancer therapeutics.


Asunto(s)
COVID-19 , Neoplasias Pulmonares , Masculino , Humanos , Calicreínas de Tejido/metabolismo , Calicreínas , Cininas , SARS-CoV-2 , Microambiente Tumoral
4.
Mol Biol Rep ; 49(10): 9915-9927, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35596055

RESUMEN

Bradykinin, a member of the kallikrein-kinin system (KKS), is a potent, short-lived vasoactive peptide that acts as a vasodilator and an inflammatory mediator in a number of signaling mechanisms. Bradykinin induced signaling is mediated through kinin B1 (BDKRB1) and B2 (BDKRB2) transmembrane receptors coupled with different subunits of G proteins (Gαi/Gα0, Gαq and Gß1γ2). The bradykinin-mediated signaling mechanism activates excessive pro-inflammatory cytokines, including IL-6, IL-1ß, IL-8 and IL-2. Upregulation of these cytokines has implications in a wide range of clinical conditions such as inflammation leading to fibrosis, cardiovascular diseases, and most recently, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In SARS-CoV-2 infection, bradykinin is found to be at raised levels and is reported to trigger a diverse array of symptoms. All of this brings bradykinin to the core point as a molecule of immense therapeutic value. Our understanding of its involvement in various pathways has expanded with time. Therefore, there is a need to look at the overall picture that emerges from the developments made by deciphering the bradykinin mediated signaling mechanisms involved in the pathological conditions. It will help devise strategies for developing better treatment modalities in the implicated diseases. This review summarizes the current state of knowledge on bradykinin mediated signaling in the diverse conditions described above, with a marked emphasis on the therapeutic potential of targeting the bradykinin receptor.


Asunto(s)
Bradiquinina , COVID-19 , Humanos , Interleucina-2 , Interleucina-6 , Interleucina-8 , Receptores de Bradiquinina/fisiología , SARS-CoV-2 , Vasodilatadores
5.
Biomedicines ; 9(8)2021 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-34440184

RESUMEN

Several stimuli can change maternal hormone levels during pregnancy. These changes may affect trophoblastic cells and modulate the development of the embryo and the placental tissue itself. Changes in cortisol levels are associated with impaired trophoblast implantation and function, in addition to other pregnancy complications. This study aims to analyze the effects of low and high doses of cortisol on an extravillous trophoblast cell line, and the effects of various exposures to this hormone. SGHPL-4 cells were treated with cortisol at five doses (0-1000 nM) and two exposures (continuous: 24 h/day; and intermittent: 2 h/day). In intermittent treatment, cortisol acted mainly as an anti-inflammatory hormone, repressing gene expression of kinin B1 receptors, interleukin-6, and interleukin-1ß. Continuous treatment modulated inflammatory and angiogenic pathways, significantly repressing angiogenic factors and their receptors. Cortisol affected cell migration and tube-like structures formation. In conclusion, both continuous and intermittent exposure to cortisol repressed the expression of inflammatory genes, while only continuous exposure repressed the expression of angiogenic genes, suggesting that a sustained increase in the levels of this hormone is more harmful than a high short-term increase. Cortisol also impaired tube-like structures formation, and kinin receptors may be involved in this response.

6.
Cells ; 10(8)2021 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-34440682

RESUMEN

The kallikrein-kinin system (KKS) contributes to retinal inflammation and neovascularization, notably in diabetic retinopathy (DR) and neovascular age-related macular degeneration (AMD). Bradykinin type 1 (B1R) and type 2 (B2R) receptors are G-protein-coupled receptors that sense and mediate the effects of kinins. While B2R is constitutively expressed and regulates a plethora of physiological processes, B1R is almost undetectable under physiological conditions and contributes to pathological inflammation. Several KKS components (kininogens, tissue and plasma kallikreins, and kinin receptors) are overexpressed in human and animal models of retinal diseases, and their inhibition, particularly B1R, reduces inflammation and pathological neovascularization. In this review, we provide an overview of the KKS with emphasis on kinin receptors in the healthy retina and their detrimental roles in DR and AMD. We highlight the crosstalk between the KKS and the renin-angiotensin system (RAS), which is known to be detrimental in ocular pathologies. Targeting the KKS, particularly the B1R, is a promising therapy in retinal diseases, and B1R may represent an effector of the detrimental effects of RAS (Ang II-AT1R).


Asunto(s)
Cininas/metabolismo , Degeneración Macular/patología , Receptor de Bradiquinina B1/metabolismo , Receptor de Bradiquinina B2/metabolismo , Retina/metabolismo , Retinopatía Diabética/metabolismo , Retinopatía Diabética/patología , Humanos , Sistema Calicreína-Quinina , Degeneración Macular/metabolismo , Neovascularización Patológica , Sistema Renina-Angiotensina , Retina/patología
7.
Pharmaceuticals (Basel) ; 14(3)2021 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-33800422

RESUMEN

This review addresses the physiological role of the kallikrein-kinin system in arteries, heart and kidney and the consequences of kallikrein and kinin actions in diseases affecting these organs, especially ischemic and diabetic diseases. Emphasis is put on pharmacological and genetic studies targeting kallikrein; ACE/kininase II; and the two kinin receptors, B1 (B1R) and B2 (B2R), distinguished through the work of Domenico Regoli and his collaborators. Potential therapeutic interest and limitations of the pharmacological manipulation of B1R or B2R activity in cardiovascular and renal diseases are discussed. This discussion addresses either the activation or inhibition of these receptors, based on recent clinical and experimental studies.

8.
Cytometry A ; 99(2): 152-163, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33438373

RESUMEN

Glioblastoma (GBM) is one of the most malignant and devastating brain tumors. The presence of highly therapy-resistant GBM cell subpopulations within the tumor mass, rapid invasion into brain tissues and reciprocal interactions with stromal cells in the tumor microenvironment contributes to an inevitable fatal prognosis for the patients. We highlight the most recent evidence of GBM cell crosstalk with mesenchymal stem cells (MSCs), which occurs either by direct cell-cell interactions via gap junctions and microtubules or cell fusion. MSCs and GBM paracrine interactions are commonly observed and involve cytokine signaling, regulating MSC tropism toward GBM, their intra-tumoral distribution, and immune system responses. MSC-promoted effects depending on their cytokine and receptor expression patterns are considered critical for GBM progression. MSC origin, tumor heterogeneity and plasticity may also determine the outcome of such interactions. Kinins and kinin-B1 and -B2 receptors play important roles in information flow between MSCs and GBM cells. Kinin-B1 receptor activity favors tumor migration and fusion of MSCs and GBM cells. Flow and image (tissue) cytometry are powerful tools to investigate GBM cell and MSC crosstalk and are applied to analyze and characterize several other cancer types.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Células Madre Mesenquimatosas , Línea Celular Tumoral , Humanos , Cininas , Microambiente Tumoral
9.
Cancer Microenviron ; 12(2-3): 77-94, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31420805

RESUMEN

Tumour progression involves interactions among various cancer cell clones, including the cancer stem cell subpopulation and exogenous cellular components, termed cancer stromal cells. The latter include a plethora of tumour infiltrating immunocompetent cells, among which are also immuno-modulatory mesenchymal stem cells, which by vigorous migration to growing tumours and susequent transdifferentiation into various types of tumour-residing stromal cells, may either inhibit or support tumour progression. In the light of the scarce therapeutic options existing for the most malignant brain tumour glioblastoma, mesenchymal stem cells may represent a promising novel tool for cell therapy, e.g. drug delivery vectors. Here, we review the increasing number of reports on mutual interactions between mesenchymal stem cells and glioblastoma cells in their microenvironment. We particularly point out two novel aspects: the different responses of cancer cells to their microenvironmental cues, and to the signalling by kinin receptors that complement the immuno-modulating cytokine-signalling networks. Inflammatory glioblastoma microenvironment is characterised by increasing expression of kinin receptors during progressive glioma malignancy, thus making kinin signalling and kinins themselves rather important in this context. In general, their role in tumour microenvironment has not been explored so far. In addition, kinins also regulate blood brain barrier-related drug transfer as well as brain tumour angiogenesis. These studies support the on-going research on kinin antagonists as candidates in the development of anti-invasive agents for adjuvant glioblastoma therapy.

10.
Mol Biol Rep ; 46(5): 5197-5207, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31309451

RESUMEN

Cardiac myofibroblast (CMF) are non-muscle cardiac cells that play a crucial role in wound healing and in pathological remodeling. These cells are mainly derived of cardiac fibroblast (CF) differentiation mediated by TGF-ß1. Evidence suggests that bradykinin (BK) regulates cardiac fibroblast function in the heart. Both B1 and B2 kinin receptors (B1R and B2R, respectively) mediate the biological effects of kinins. We recently showed that both receptors are expressed in CMF and its stimulation decreases collagen secretion. Whether TGF-ß1 regulates B1R and B2R expression, and how these receptors control antifibrotic activity in CMF remains poorly understood. In this work, we sought to study, the regulation of B1R expression in cultured CMF mediated by TGF-ß1, and the molecular mechanisms involved in B1R activation on CMF intracellular collagen type-I levels. Cardiac fibroblast-primary culture was obtained from neonatal rats. Hearts were digested and CFs were attached to dishes and separated from cardiomyoctes. CMF were obtained from CF differentiation with TGF-ß1 5 ng/mL. CF and CMF were treated with B1R and B2R agonists and with TGF-ß1 at different times and concentrations, in the presence or absence of chemical inhibitors, to evaluate signaling pathways involved in B1R expression, collagen type-I and prostacyclin levels. B1R and collagen type-I levels were evaluated by western blot. Prostacyclin levels were quantified by an ELISA kit. TGF-ß1 increased B1R expression via TGFß type I receptor kinase (ALK5) activation and its subsequent signaling pathways involving Smad2, p38, JNK and ERK1/2 activation. Moreover, in CMF, the activation of B1R and B2R by their respective agonists, reduced collagen synthesis. This effect was mediated by the canonical signaling pathway; phospholipase C (PLC), protein kinase C (PKC), phospholipase A2 (PLA2), COX-2 activation and PGI2 secretion and its autocrine effect. TGF-ß1 through ALK5, Smad2, p38, JNK and ERK1/2 increases B1R expression; whereas in CMF, B1R and B2R activation share common signaling pathways for reducing collagen synthesis.


Asunto(s)
Miocardio/citología , Miofibroblastos/citología , Receptor de Bradiquinina B1/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Regulación hacia Arriba , Animales , Animales Recién Nacidos , Diferenciación Celular , Células Cultivadas , Colágeno Tipo I/metabolismo , Epoprostenol/metabolismo , Regulación de la Expresión Génica , Miofibroblastos/metabolismo , Ratas , Receptor Tipo I de Factor de Crecimiento Transformador beta/metabolismo , Transducción de Señal/efectos de los fármacos
11.
Malar J ; 18(1): 213, 2019 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-31234939

RESUMEN

BACKGROUND: Malaria represents a worldwide medical emergency affecting mainly poor areas. Plasmodium parasites during blood stages can release kinins to the extracellular space after internalization of host kininogen inside erythrocytes and these released peptides could represent an important mechanism in liver pathophysiology by activation of calcium signaling pathway in endothelial cells of vertebrate host. Receptors (B1 and B2) activated by kinins peptides are important elements for the control of haemodynamics in liver and its physiology. The aim of this study was to identify changes in the liver host responses (i.e. kinin receptors expression and localization) and the effect of ACE inhibition during malaria infection using a murine model. METHODS: Balb/C mice infected by Plasmodium chabaudi were treated with captopril, an angiotensin I-converting enzyme (ACE) inhibitor, used alone or in association with the anti-malarial chloroquine in order to study the effect of ACE inhibition on mice survival and the activation of liver responses involving B1R and B2R signaling pathways. The kinin receptors (B1R and B2R) expression and localization was analysed in liver by western blotting and immunolocalization in different conditions. RESULTS: It was verified that captopril treatment caused host death during the peak of malaria infection (parasitaemia about 45%). B1R expression was stimulated in endothelial cells of sinusoids and other blood vessels of mice liver infected by P. chabaudi. At the same time, it was also demonstrated that B1R knockout mice infected presented a significant reduction of survival. However, the infection did not alter the B2R levels and localization in liver blood vessels. CONCLUSIONS: Thus, it was observed through in vivo studies that the vasodilation induced by plasma ACE inhibition increases mice mortality during P. chabaudi infection. Besides, it was also seen that the anti-malarial chloroquine causes changes in B1R expression in liver, even after days of parasite clearance. The differential expression of B1R and B2R in liver during malaria infection may have an important role in the disease pathophysiology and represents an issue for clinical treatments.


Asunto(s)
Regulación de la Expresión Génica , Hígado/fisiopatología , Malaria/fisiopatología , Receptor de Bradiquinina B1/genética , Receptor de Bradiquinina B2/genética , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Animales , Captopril/farmacología , Cloroquina/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos BALB C , Plasmodium chabaudi , Receptor de Bradiquinina B1/metabolismo , Receptor de Bradiquinina B2/metabolismo
12.
Life Sci ; 228: 121-127, 2019 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-31039364

RESUMEN

AIMS: B1- and B2-kinin receptors play a major role in several cardiovascular diseases. Therefore, we aimed to evaluate cardiac functional consequences of B1- and B2-kinin receptors ablation, focusing on the cardiac ROS and NO generation. MAIN METHODS: Cardiac contractility, ROS, and NO generation, and protein expression were evaluated in male wild-type (WT), B1- (B1-/-) and B2-kinin (B2-/-) knockout mice. KEY FINDINGS: Impaired contractility in B1-/- and B2-/- hearts was associated with oxidative stress through upregulation of NADPH oxidase p22phox subunit. B1-/- and B2-/- hearts presented higher NO and peroxynitrite levels than WT. Despite decreased sarcoplasmic reticulum Ca2+ ATPase pump (SERCA2) expression, nitration at tyrosine residues of SERCA2 was markedly higher in B1-/- and B2-/- hearts. SIGNIFICANCE: B1- and B2-kinin receptors govern ROS generation, while disruption of B1- and B2-kinin receptors leads to impaired cardiac dysfunction through excessive tyrosine nitration on the SERCA2 structure.


Asunto(s)
Cardiopatías/genética , Corazón/fisiopatología , Receptor de Bradiquinina B1/genética , Receptor de Bradiquinina B2/genética , Animales , Eliminación de Gen , Cardiopatías/fisiopatología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Contracción Miocárdica , NADPH Oxidasas/metabolismo , Óxido Nítrico/metabolismo , Oxidación-Reducción , Especies Reactivas de Oxígeno/metabolismo , Receptor de Bradiquinina B1/metabolismo , Receptor de Bradiquinina B2/metabolismo
13.
Inflammopharmacology ; 27(3): 573-586, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30820720

RESUMEN

Tumour necrosis factor (TNF) and kinins have been associated with neuropathic pain-like behaviour in numerous animal models. However, the way that they interact to cause neuron sensitisation remains unclear. This study assessed the interaction of kinin receptors and TNF receptor TNFR1/p55 in mechanical hypersensitivity induced by an intraneural (i.n.) injection of rm-TNF into the lower trunk of brachial plexus in mice. The i.n. injection of rm-TNF reduced the mechanical withdrawal threshold of the right forepaw from the 3rd to the 10th day after the injection, indicating that TNF1/p55 displays a critical role in the onset of TNF-elicited neuropathic pain. The connection between TNF1/p55 and kinin B1 and B2 receptors (B1R and B2R) was confirmed using both knockout mice and mRNAs quantification in the injected nerve, DRG and spinal cord. The treatment with the B2R antagonist HOE 140 or with B1R antagonist des-Arg9-Leu8-BK reduced both BK- and DABK-induced hypersensitivity. The experiments using kinin receptor antagonists and CPM inhibitor (thiorphan) suggest that BK does not only activate B2R as an orthosteric agonist, but also seems to be converted into DABK that consequently activates B1R. These results indicate a connection between TNF and the kinin system, suggesting a relevant role for B1R and B2R in the process of sensitisation of the central nervous systems by the cross talk between the receptor and CPM after i.n. injection of rm-TNF.


Asunto(s)
Plexo Braquial/metabolismo , Neuralgia/metabolismo , Receptor de Bradiquinina B1/metabolismo , Receptor de Bradiquinina B2/metabolismo , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Animales , Plexo Braquial/efectos de los fármacos , Antagonistas del Receptor de Bradiquinina B1/farmacología , Antagonistas del Receptor de Bradiquinina B2/farmacología , Modelos Animales de Enfermedad , Femenino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuralgia/tratamiento farmacológico
14.
Toxicol Appl Pharmacol ; 351: 46-56, 2018 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-29775649

RESUMEN

Cardiac fibroblasts (CF) are key cells for maintaining extracellular matrix (ECM) protein homeostasis in the heart, and for cardiac repair through CF-to-cardiac myofibroblast (CMF) differentiation. Additionally, CF play an important role in the inflammatory process after cardiac injury, and they express Toll like receptor 4 (TLR4), B1 and B2 bradykinin receptors (B1R and B2R) which are important in the inflammatory response. B1R and B2R are induced by proinflammatory cytokines and their activation by bradykinin (BK: B2R agonist) or des-arg-kallidin (DAKD: B1R agonist), induces NO and PGI2 production which is key for reducing collagen I levels. However, whether TLR4 activation regulates bradykinin receptor expression remains unknown. CF were isolated from human, neonatal rat and adult mouse heart. B1R mRNA expression was evaluated by qRT-PCR, whereas B1R, collagen, COX-2 and iNOS protein levels were evaluated by Western Blot. NO and PGI2 were evaluated by commercial kits. We report here that in CF, TLR4 activation increased B1R mRNA and protein levels, as well as COX-2 and iNOS levels. B1R mRNA levels were also induced by interleukin-1α via its cognate receptor IL-1R1. In LPS-pretreated CF the DAKD treatment induced higher responses with respect to those observed in non LPS-pretreated CF, increasing PGI2 secretion and NO production; and reducing collagen I protein levels in CF. In conclusion, no significant response to DAKD was observed (due to very low expression of B1R in CF) - but pre-activation of TLR4 in CF, conditions that significantly enhanced B1R expression, led to an additional response of DAKD.


Asunto(s)
Fibroblastos/metabolismo , Miocitos Cardíacos/metabolismo , Receptor de Bradiquinina B1/biosíntesis , Receptor Toll-Like 4/biosíntesis , Animales , Células Cultivadas , Fibroblastos/efectos de los fármacos , Expresión Génica , Humanos , Lipopolisacáridos/toxicidad , Ratones , Ratones Noqueados , Miocitos Cardíacos/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Receptor de Bradiquinina B1/agonistas , Receptor de Bradiquinina B1/genética , Receptor Toll-Like 4/agonistas , Receptor Toll-Like 4/genética
15.
Tuberculosis (Edinb) ; 109: 1-7, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29559112

RESUMEN

The role, if any, played by the kinin system in tuberculosis infection models, either in vivo or in vitro, was investigated. The effects of Mycobacterium tuberculosis infection on C57BL/6 wild type, B1R-/-, B2R-/- and double B1R/B2R knockout mice were evaluated. Immunohistochemistry analysis was carried out to assess B1R and B2R expression in spleens and lungs of M. tuberculosis-infected mice. In addition, in vitro experiments with M. tuberculosis-infected macrophages were performed. The in vivo effects of HOE-140 and SSR240612 on the mice model of infection were also evaluated. Infected B2R-/- mice exhibited increased splenomegaly, whereas decreased spleen weight in infected double B1R/B2R knockout mice was observed. The bacterial load, determined as colony-forming units, did not differ in the spleens and lungs of the studied mouse strains. Importantly, immunohistochemical analysis revealed that B1R was upregulated in both spleens and lungs of infected mice. M. tuberculosis-infected macrophages incubated with SSR240612, alone or in combination with des-Arg9-BK, for four days, displayed a marked inhibitory effect on CFU counts. However, the pre-incubation of the selective B1R (des-Arg9-BK and SSR240612) and B2R (BK and HOE-140) agonists and antagonists, respectively, did not significantly affect the bacterial loads. A statistically significant reduction in the CFU of M. tuberculosis in lungs and spleens of animals treated with SSR240612, but not with HOE-140, was observed. Further efforts should be pursued to clarify whether or not SSR240612 might be considered an option for the treatment of tuberculosis.


Asunto(s)
Antituberculosos/administración & dosificación , Antagonistas del Receptor de Bradiquinina B1/administración & dosificación , Dioxoles/administración & dosificación , Pulmón/efectos de los fármacos , Mycobacterium tuberculosis/efectos de los fármacos , Receptor de Bradiquinina B1/efectos de los fármacos , Sulfonamidas/administración & dosificación , Tuberculosis Pulmonar/tratamiento farmacológico , Administración Oral , Animales , Carga Bacteriana , Bradiquinina/administración & dosificación , Bradiquinina/análogos & derivados , Antagonistas del Receptor de Bradiquinina B2/administración & dosificación , Modelos Animales de Enfermedad , Femenino , Pulmón/metabolismo , Pulmón/microbiología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Macrófagos/microbiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mycobacterium tuberculosis/crecimiento & desarrollo , Células RAW 264.7 , Receptor de Bradiquinina B1/deficiencia , Receptor de Bradiquinina B1/genética , Receptor de Bradiquinina B1/metabolismo , Receptor de Bradiquinina B2/genética , Receptor de Bradiquinina B2/metabolismo , Bazo/efectos de los fármacos , Bazo/metabolismo , Bazo/microbiología , Tuberculosis Pulmonar/genética , Tuberculosis Pulmonar/metabolismo , Tuberculosis Pulmonar/microbiología
16.
Wiad Lek ; 71(8): 1615-1620, 2018.
Artículo en Polaco | MEDLINE | ID: mdl-30684349

RESUMEN

Kallikreins cleave kininogens to release kinins. Kinins exert their biological effect by activating constitutive bradykinin receptor-2 (BR2) and inducible by inflammatory cytokines bradykinin receptor-1 (BR1). Studies in animal models and some clinical observations indicate tat the activation of kallikrein - kinin system may have relevance to central nervous system (CNS) diseases, including multiple sclerosis, Alzheimer's disease, epilepsy as well as cerebral ischemia and neoplasmatic tumors. The actions of kinins include vasodilatation and increased vascular permeability may contribute to blood-brain barrier disruption. Kinins evoke pain, and stimulate of endothelial cells, white blood cells, astrocytes and microgia cells to release of prostanoids, cytokines, free radicals, nitric oxide. Kinins stimulate angiogenesis and proliferation of tumor cells. These events lead to neural tissue damage and long lasting disturbances in blood-brain barrier function. In animal models the overexpression of genes and proteins of tissue kallikrens, kininogen as well as RB1 and RB2 has been observed. Kinin receptors antagonists, especially B1R blockade decreased morphological and biochemical features of CNS inflammation. On the other hand in brain tumor models RB1 and RB2 activation has been shown to mediate reversible blood-brain barrier permeability to enhance anti-cancer drug delivery, which may have therapeutic potential.


Asunto(s)
Enfermedades del Sistema Nervioso Central/fisiopatología , Sistema Calicreína-Quinina , Animales , Antagonistas de los Receptores de Bradiquinina/uso terapéutico , Humanos , Inflamación , Calicreínas/metabolismo , Cininas/metabolismo , Receptores de Bradiquinina/metabolismo
17.
Int J Mol Sci ; 18(11)2017 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-29165388

RESUMEN

The present study aims at examining the effects of argan oil on the three main cardiovascular risk factors associated with metabolic syndrome (hypertension, insulin resistance and obesity) and on one of its main complications, neuropathic pain. Male Sprague-Dawley rats had free access to a drinking solution containing 10% d-glucose or tap water for 12 weeks. The effect of argan oil was compared to that of corn oil given daily by gavage during 12 weeks in glucose-fed rats. Glucose-fed rats showed increases in systolic blood pressure, epididymal fat, plasma levels of triglycerides, leptin, glucose and insulin, insulin resistance, tactile and cold allodynia in association with a rise in superoxide anion production and NADPH oxidase activity in the thoracic aorta, epididymal fat and gastrocnemius muscle. Glucose-fed rats also showed rises in B1 receptor protein expression in aorta and gastrocnemius muscle. Argan oil prevented or significantly reduced all those anomalies with an induction in plasma adiponectin levels. In contrast, the same treatment with corn oil had a positive impact only on triglycerides, leptin, adiponectin and insulin resistance. These data are the first to suggest that argan oil is an effective nutri-therapeutic agent to prevent the cardiovascular risk factors and complications associated with metabolic syndrome.


Asunto(s)
Síndrome Metabólico/metabolismo , Terapia Nutricional , Aceites de Plantas/farmacología , Adiponectina/sangre , Adiponectina/metabolismo , Animales , Glucemia/metabolismo , Presión Sanguínea/efectos de los fármacos , Peso Corporal , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Insulina/metabolismo , Resistencia a la Insulina , Metabolismo de los Lípidos , Masculino , Síndrome Metabólico/tratamiento farmacológico , NADPH Oxidasas/metabolismo , Estrés Oxidativo/efectos de los fármacos , Ratas
18.
Adv Immunol ; 136: 29-84, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28950949

RESUMEN

For decades, immunologists have considered the complement system as a paradigm of a proteolytic cascade that, acting cooperatively with the immune system, enhances host defense against infectious organisms. In recent years, advances made in thrombosis research disclosed a functional link between activated neutrophils, monocytes, and platelet-driven thrombogenesis. Forging a physical barrier, the fibrin scaffolds generated by synergism between the extrinsic and intrinsic (contact) pathways of coagulation entrap microbes within microvessels, limiting the systemic spread of infection while enhancing the clearance of pathogens by activated leukocytes. Insight from mice models of thrombosis linked fibrin formation via the intrinsic pathway to the autoactivation of factor XII (FXII) by negatively charged "contact" substances, such as platelet-derived polyphosphates and DNA from neutrophil extracellular traps. Following cleavage by FXIIa, activated plasma kallikrein (PK) initiates inflammation by liberating the nonapeptide bradykinin (BK) from an internal domain of high molecular weight kininogen (HK). Acting as a paracrine mediator, BK induces vasodilation and increases microvascular permeability via activation of endothelial B2R, a constitutively expressed subtype of kinin receptor. During infection, neutrophil-driven extravasation of plasma fuels inflammation via extravascular activation of the kallikrein-kinin system (KKS). Whether liberated by plasma-borne PK, tissue kallikrein, and/or microbial-derived proteases, the short-lived kinins activate immature dendritic cells via B2R, thus linking the infection-associated innate immunity/inflammation to the adaptive arm of immunity. As inflammation persists, a GPI-linked carboxypeptidase M removes the C-terminal arginine from the primary kinin, converting the B2R agonist into a high-affinity ligand for B1R, a GPCR subtype that is transcriptionally upregulated in injured/inflamed tissues. As reviewed here, lessons taken from studies of kinin receptor function in experimental infections have shed light on the complex proteolytic circuits that, acting at the endothelial interface, reciprocally couple immunity to the proinflammatory KKS.


Asunto(s)
Plaquetas/inmunología , Sistema Calicreína-Quinina , Quininógeno de Alto Peso Molecular/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animales , Coagulación Sanguínea , Bradiquinina/metabolismo , Permeabilidad de la Membrana Celular , Endotelio Vascular/metabolismo , Humanos , Inmunidad , Calicreínas/metabolismo , Ratones , Proteolisis , Vasodilatación
19.
Neuropharmacology ; 126: 84-96, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28826826

RESUMEN

PURPOSE: This study evaluated the involvement of endogenous kallikrein-kinin system and the bradykinin (BK) B1 and B2 receptors on LPS- induced fever and the POA cells involved in this response. MATERIAL AND METHODS: Male Wistar rats received either i.v. (1 mg/kg), i.c.v. (20 nmol) or i.h. (2 nmol) injections of icatibant (B2 receptor antagonist) 30 or 60 min, respectively, before the stimuli. DALBK (B1 receptor antagonist) was given either 15min before BK (i.c.v.) or 30 min before LPS (i.v.). Captopril (5 mg/kg, sc.,) was given 1 h prior LPS or BK. Concentrations of BK and total kininogenon CSF, plasma and tissue kallikrein were evaluated. Rectal temperatures (rT) were assessed by telethermometry. Ca++ signaling in POA cells was performed in rat pup brain tissue microcultures. RESULTS: Icatibant reduced LPS fever while, captopril exacerbated that response, an effect abolished by icatibant. Icatibant (i.h.) reduced fever to BK (i.h.) but not that induced by LPS (i.v.). BK increased intracellular calcium concentration in neurons and astrocytes. LPS increased levels of bradykinin, tissue kallikrein and total kininogen. BK (i.c.v.) increased rT and decreased tail skin temperature. Captopril potentiated BK-induced fever an effect abolished by icatibant. DALBK reduced the fever induced by BK. BK (i.c.v.) increased the CSF PGE2concentration. Effect abolished by indomethacin (i.p.). CONCLUSIONS: LPS activates endogenous kalikrein-kinin system leading to production of BK, which by acting on B2-receptors of POA cells causes prostaglandin synthesis that in turn produces fever. Thus, a kinin B2-receptor antagonist that enters into the brain could constitute a new and interesting strategy to treat fever.


Asunto(s)
Bradiquinina/metabolismo , Fiebre/metabolismo , Calicreínas/metabolismo , Quininógenos/metabolismo , Receptor de Bradiquinina B2/fisiología , Animales , Astrocitos/metabolismo , Bradiquinina/administración & dosificación , Bradiquinina/análogos & derivados , Antagonistas del Receptor de Bradiquinina B1/administración & dosificación , Antagonistas del Receptor de Bradiquinina B2/administración & dosificación , Señalización del Calcio , Captopril/administración & dosificación , Células Cultivadas , Fiebre/inducido químicamente , Lipopolisacáridos , Masculino , Neuronas/metabolismo , Área Preóptica/efectos de los fármacos , Área Preóptica/metabolismo , Ratas Wistar , Receptor de Bradiquinina B1/fisiología
20.
Front Physiol ; 8: 228, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28503149

RESUMEN

B1- and B2-kinin receptors are G protein-coupled receptors that play an important role in the vascular function. Therefore, the present study was designed to evaluate the participation of kinin receptors in the acetylcholine (ACh)-induced vascular relaxation, focusing on the protein-protein interaction involving kinin receptors with endothelial and neuronal nitric oxide synthases (eNOS and nNOS). Vascular reactivity, nitric oxide (NO·) and reactive oxygen species (ROS) generation, co-immunoprecipitation were assessed in thoracic aorta from male wild-type (WT), B1- (B1R-/-), B2- (B2R-/-) knockout mice. Some vascular reactivity experiments were also performed in a double kinin receptors knockout mice (B1B2R-/-). For pharmacological studies, selective B1- and B2-kinin receptors antagonists, NOS inhibitors and superoxide dismutase (SOD) mimetic were used. First, we show that B1- and B2-kinin receptors form heteromers with nNOS and eNOS in thoracic aorta. To investigate the functionality of these protein-protein interactions, we took advantage of pharmacological tools and knockout mice. Importantly, our results show that kinin receptors regulate ACh-induced relaxation via nNOS signaling in thoracic aorta with no changes in NO· donor-induced relaxation. Interestingly, B1B2R-/- presented similar level of vascular dysfunction as found in B1R-/- or B2R-/- mice. In accordance, aortic rings from B1R-/- or B2R-/- mice exhibit decreased NO· bioavailability and increased superoxide generation compared to WT mice, suggesting the involvement of excessive ROS generation in the endothelial dysfunction of B1R-/- and B2R-/- mice. Alongside, we show that impaired endothelial vasorelaxation induced by ACh in B1R-/- or B2R-/- mice was rescued by the SOD mimetic compound. Taken together, our findings show that B1- and B2-kinin receptors regulate the endothelium-dependent vasodilation of ACh through nNOS activity and indicate that molecular disturbance of short-range interaction between B1- and B2-kinin receptors with nNOS might be involved in the oxidative pathogenesis of endothelial dysfunction.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA