Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 298(6): 102009, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35525275

RESUMEN

G protein-sensitive inwardly rectifying potassium (GIRK) channels are important pharmaceutical targets for neuronal, cardiac, and endocrine diseases. Although a number of GIRK channel modulators have been discovered in recent years, most lack selectivity. GIRK channels function as either homomeric (i.e., GIRK2 and GIRK4) or heteromeric (e.g., GIRK1/2, GIRK1/4, and GIRK2/3) tetramers. Activators, such as ML297, ivermectin, and GAT1508, have been shown to activate heteromeric GIRK1/2 channels better than GIRK1/4 channels with varying degrees of selectivity but not homomeric GIRK2 and GIRK4 channels. In addition, VU0529331 was discovered as the first homomeric GIRK channel activator, but it shows weak selectivity for GIRK2 over GIRK4 (or G4) homomeric channels. Here, we report the first highly selective small-molecule activator targeting GIRK4 homomeric channels, 3hi2one-G4 (3-[2-(3,4-dimethoxyphenyl)-2-oxoethyl]-3-hydroxy-1-(1-naphthylmethyl)-1,3-dihydro-2H-indol-2-one). We show that 3hi2one-G4 does not activate GIRK2, GIRK1/2, or GIRK1/4 channels. Using molecular modeling, mutagenesis, and electrophysiology, we analyzed the binding site of 3hi2one-G4 formed by the transmembrane 1, transmembrane 2, and slide helix regions of the GIRK4 channel, near the phosphatidylinositol-4,5-bisphosphate binding site, and show that it causes channel activation by strengthening channel-phosphatidylinositol-4,5-bisphosphate interactions. We also identify slide helix residue L77 in GIRK4, corresponding to residue I82 in GIRK2, as a major determinant of isoform-specific selectivity. We propose that 3hi2one-G4 could serve as a useful pharmaceutical probe in studying GIRK4 channel function and may also be pursued in drug optimization studies to tackle GIRK4-related diseases such as primary aldosteronism and late-onset obesity.


Asunto(s)
Canales de Potasio Rectificados Internamente Asociados a la Proteína G , Indoles , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/agonistas , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/metabolismo , Humanos , Indoles/farmacología , Modelos Moleculares , Fosfatidilinositol 4,5-Difosfato/metabolismo
2.
Pharmacol Ther ; 223: 107808, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33476640

RESUMEN

G protein-gated inwardly rectifying potassium channels (Kir3/GirK) are important for maintaining resting membrane potential, cell excitability and inhibitory neurotransmission. Coupled to numerous G protein-coupled receptors (GPCRs), they mediate the effects of many neurotransmitters, neuromodulators and hormones contributing to the general homeostasis and particular synaptic plasticity processes, learning, memory and pain signaling. A growing number of behavioral and genetic studies suggest a critical role for the appropriate functioning of the central nervous system, as well as their involvement in many neurologic and psychiatric conditions, such as neurodegenerative diseases, mood disorders, attention deficit hyperactivity disorder, schizophrenia, epilepsy, alcoholism and drug addiction. Hence, GirK channels emerge as a very promising tool to be targeted in the current scenario where these conditions already are or will become a global public health problem. This review examines recent findings on the physiology, function, dysfunction, and pharmacology of GirK channels in the central nervous system and highlights the relevance of GirK channels as a worthful potential target to improve therapies for related diseases.


Asunto(s)
Enfermedades del Sistema Nervioso Central , Sistema Nervioso Central , Canales de Potasio Rectificados Internamente Asociados a la Proteína G , Terapia Molecular Dirigida , Sistema Nervioso Central/fisiología , Enfermedades del Sistema Nervioso Central/tratamiento farmacológico , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/farmacología , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/fisiología , Humanos
3.
Cereb Cortex ; 27(3): 2318-2334, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-27073217

RESUMEN

Cholecystokinin-expressing interneurons (CCK-INs) mediate behavior state-dependent inhibition in cortical circuits and themselves receive strong GABAergic input. However, it remains unclear to what extent GABAB receptors (GABABRs) contribute to their inhibitory control. Using immunoelectron microscopy, we found that CCK-INs in the rat hippocampus possessed high levels of dendritic GABABRs and KCTD12 auxiliary proteins, whereas postsynaptic effector Kir3 channels were present at lower levels. Consistently, whole-cell recordings revealed slow GABABR-mediated inhibitory postsynaptic currents (IPSCs) in most CCK-INs. In spite of the higher surface density of GABABRs in CCK-INs than in CA1 principal cells, the amplitudes of IPSCs were comparable, suggesting that the expression of Kir3 channels is the limiting factor for the GABABR currents in these INs. Morphological analysis showed that CCK-INs were diverse, comprising perisomatic-targeting basket cells (BCs), as well as dendrite-targeting (DT) interneurons, including a previously undescribed DT type. GABABR-mediated IPSCs in CCK-INs were large in BCs, but small in DT subtypes. In response to prolonged activation, GABABR-mediated currents displayed strong desensitization, which was absent in KCTD12-deficient mice. This study highlights that GABABRs differentially control CCK-IN subtypes, and the kinetics and desensitization of GABABR-mediated currents are modulated by KCTD12 proteins.


Asunto(s)
Colecistoquinina/metabolismo , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/metabolismo , Potenciales Postsinápticos Inhibidores/fisiología , Interneuronas/metabolismo , Canales de Potasio/metabolismo , Receptores de GABA-A/metabolismo , Animales , Región CA1 Hipocampal/metabolismo , Región CA1 Hipocampal/ultraestructura , Dendritas/metabolismo , Dendritas/ultraestructura , Inmunohistoquímica , Interneuronas/ultraestructura , Masculino , Microscopía Inmunoelectrónica , Técnicas de Placa-Clamp , Ratas Wistar , Técnicas de Cultivo de Tejidos
4.
Neuropharmacology ; 110(Pt A): 308-321, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27515806

RESUMEN

Anxiety is an affective disorder that is commonly observed after irreversible brain damage induced by cerebral ischemia and can delay the physical and cognitive recovery, which affects the quality of life of both the patient and family members. However, anxiety after ischemia has received less attention, and mechanisms underlying anxiety-like behaviours induced by chronic cerebral ischemia are under-investigated. In the present study, the chronic cerebral hypoperfusion model was established by the permanent occlusion of the bilateral common carotid arteries (two-vessel occlusion, 2VO) in rats, and anxiety-related behaviours were evaluated. Results indicated that 2VO induced obvious anxiety-like behaviours; the surface expressions of GABAB2 subunits were down-regulated; Brain derived neurotrophic factor (BDNF), tyrosine kinase B (TrkB) and neural cell adhesion molecule (NCAM) were reduced; Meanwhile, the surface expressions of G protein-activated inwardly rectifying potassium (GIRK, Kir3) channels were up-regulated in hippocampal CA1 in 2VO rats. Baclofen, a GABAB receptor agonist, significantly ameliorated the anxiety-like behaviours. It also improved the down-regulation of GABAB2 surface expressions, restored the levels of BDNF, TrkB and NCAM, and reversed the increased surface expressions of Kir3 in hippocampal CA1 in 2VO rats. However, the effects of baclofen were absent in shRNA-GABAB2 infected 2VO rats. These results suggested that activation of GABAB2 subunits could improve BDNF signalling and reverse Kir3 channel surface expressions in hippocampal CA1, which may alleviate the anxiety-like behaviours in rats with chronic cerebral hypoperfusion.


Asunto(s)
Ansiedad/metabolismo , Enfermedades de las Arterias Carótidas/metabolismo , Receptores de GABA-B/metabolismo , Animales , Ansiedad/tratamiento farmacológico , Ansiedad/etiología , Baclofeno/farmacología , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Región CA1 Hipocampal/efectos de los fármacos , Región CA1 Hipocampal/metabolismo , Enfermedades de las Arterias Carótidas/tratamiento farmacológico , Enfermedades de las Arterias Carótidas/psicología , Arteria Carótida Común , Trastornos del Conocimiento/tratamiento farmacológico , Trastornos del Conocimiento/etiología , Trastornos del Conocimiento/metabolismo , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/metabolismo , Agonistas de Receptores GABA-B/farmacología , Potenciación a Largo Plazo/efectos de los fármacos , Potenciación a Largo Plazo/fisiología , Masculino , Proteínas del Tejido Nervioso/metabolismo , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Psicotrópicos/farmacología , Ratas Sprague-Dawley , Receptor trkB/metabolismo , Receptores de GABA-B/genética , Proteína de la Zonula Occludens-2/metabolismo
5.
Methods ; 92: 19-35, 2016 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-26210401

RESUMEN

Ion channels play a vital role in numerous physiological functions and drugs that target them are actively pursued for development of novel therapeutic agents. Here we report a means for monitoring in real time the conformational changes undergone by channel proteins upon exposure to pharmacological stimuli. The approach relies on tracking structural rearrangements by monitoring changes in bioluminescence energy transfer (BRET). To provide proof of principle we have worked with Kir3 neuronal channels producing 10 different constructs which were combined into 17 donor-acceptor BRET pairs. Among these combinations, pairs bearing the donor Nano-Luc (NLuc) at the C-terminal end of Kir3.2 subunits and the FlAsH acceptor at the N-terminal end (NT) or the interfacial helix (N70) of Kir3.1 subunits were identified as potential tools. These pairs displayed significant changes in energy transfer upon activation with direct channel ligands or via stimulation of G protein-coupled receptors. Conformational changes associated with channel activation followed similar kinetics as channel currents. Dose response curves generated by different agonists in FlAsH-BRET assays displayed similar rank order of potency as those obtained with conventional BRET readouts of G protein activation and ion flux assays. Conformational biosensors as the ones reported herein should prove a valuable complement to other methodologies currently used in channel drug discovery.


Asunto(s)
Transferencia de Energía por Resonancia de Bioluminiscencia/métodos , Técnicas Biosensibles/métodos , Diseño de Fármacos , Fluoresceína/síntesis química , Fluoresceína/metabolismo , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/metabolismo , Analgésicos Opioides/síntesis química , Analgésicos Opioides/metabolismo , Analgésicos Opioides/farmacología , Animales , Relación Dosis-Respuesta a Droga , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/química , Células HEK293 , Humanos , Activación del Canal Iónico/efectos de los fármacos , Activación del Canal Iónico/fisiología , Ratones , Conformación Proteica
6.
Int Rev Neurobiol ; 123: 1-26, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26422981

RESUMEN

The question that started with the pioneering work of Otto Loewi in the 1920s, to identify how stimulation of the vagus nerve decreased heart rate, is approaching its 100th year anniversary. In the meantime, we have learned that the neurotransmitter acetylcholine acting through muscarinic M2 receptors activates cardiac potassium (Kir3) channels via the ßγ subunits of G proteins, an important effect that contributes to slowing atrial pacemaker activity. Concurrent stimulation of M1 or M3 receptors hydrolyzes PIP2, a signaling phospholipid essential to maintaining Kir3 channel activity, thus causing desensitization of channel activity and protecting the heart from overinhibition of pacemaker activity. Four mammalian members of the Kir3 subfamily, expressed in heart, brain, endocrine organs, etc., are modulated by a plethora of stimuli to regulate cellular excitability. With the recent great advances in ion channel structural biology, three-dimensional structures of Kir3 channels with PIP2 and the Gßγ subunits are now available. Mechanistic insights have emerged that explain how modulatory control of activity feeds into a core mechanism of channel-PIP2 interactions to regulate the conformation of channel gates. This complex but beautiful system continues to surprise us for almost 100 years with an apparent wisdom in its intricate design.


Asunto(s)
Canales de Potasio Rectificados Internamente Asociados a la Proteína G/metabolismo , Proteínas de Unión al GTP/metabolismo , Fosfatidilinositoles/metabolismo , Animales , Transducción de Señal
7.
Front Cell Neurosci ; 8: 108, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24782712

RESUMEN

The role of Gßγ subunits in Kir3 channel gating is well characterized. Here, we have studied the role of Gßγ dimers during their initial contact with Kir3 channels, prior to their insertion into the plasma membrane. We show that distinct Gßγ subunits play an important role in orchestrating and fine-tuning parts of the Kir3 channel life cycle. Gß1γ2, apart from its role in channel opening that it shares with other Gßγ subunit combinations, may play a unique role in protecting maturing channels from degradation as they transit to the cell surface. Taken together, our data suggest that Gß1γ2 prolongs the lifetime of the Kir3.1/Kir3.2 heterotetramer, although further studies would be required to shed more light on these early Gßγ effects on Kir3 maturation and trafficking.

8.
Curr Neuropharmacol ; 9(1): 113-7, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21886574

RESUMEN

G protein-activated inwardly rectifying K(+) (GIRK) channels have been known to play a key role in the rewarding and analgesic effects of opioids. To identify potent agonists and antagonists to GIRK channels, we examined various compounds for their ability to activate or inhibit GIRK channels. A total of 503 possible compounds with low molecular weight were selected from a list of fluoxetine derivatives at Pfizer Japan Inc. We screened these compounds by a Xenopus oocyte expression system. GIRK1/2 and GIRK1/4 heteromeric channels were expressed on Xenopus laevis oocytes at Stage V or VI. A mouse IRK2 channel, which is another member of inwardly rectifying potassium channels with similarity to GIRK channels, was expressed on the oocytes to examine the selectivity of the identified compounds to GIRK channels. For electrophysiological analyses, a two-electrode voltage clamp method was used. Among the 503 compounds tested, one compound and three compounds were identified as the most effective agonist and antagonists, respectively. All of these compounds induced only negligible current responses in the oocytes expressing the IRK2 channel, suggesting that these compounds were selective to GIRK channels. These effective and GIRK-selective compounds may be useful possible therapeutics for drug dependence and pain.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA