Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Trop Med Infect Dis ; 8(8)2023 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-37624322

RESUMEN

Instability is an intriguing characteristic of many protist genomes, and trypanosomatids are not an exception in this respect. Some regions of trypanosomatid genomes evolve fast. For instance, the trypanosomatid mitochondrial (kinetoplast) genome consists of fairly conserved maxicircle and minicircle molecules that can, nevertheless, possess high nucleotide substitution rates between closely related strains. Recent experiments have demonstrated that rapid laboratory evolution can result in the non-functionality of multiple genes of kinetoplast genomes due to the accumulation of mutations or loss of critical genomic components. An example of a loss of critical components is the reported loss of entire minicircle classes in Leishmania tarentolae during laboratory cultivation, which results in an inability to generate some correctly encoded genes. In the current work, we estimated the evolutionary rates of mitochondrial and nuclear genome regions of multiple natural Leishmania spp. We analyzed synonymous and non-synonymous substitutions and, rather unexpectedly, found that the coding regions of kinetoplast maxicircles are among the most variable regions of both genomes. In addition, we demonstrate that synonymous substitutions greatly predominate among maxicircle coding regions and that most maxicircle genes show signs of purifying selection. These results imply that maxicircles in natural Leishmania populations remain functional despite their high mutation rate.

2.
J Arthropod Borne Dis ; 10(2): 141-7, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27308272

RESUMEN

BACKGROUND: Leishmaniasis is an important public health disease in many developing countries as well in Iran. The main objective of this study was to investigate on leishmania infection of wild caught sand flies in an endemic focus of disease in Esfarayen district, north east of Iran. METHODS: Sand flies were collected by sticky papers and mounted in a drop of Puri's medium for species identification. Polymerase chain reaction techniques of kDNA, ITS1-rDNA, followed by restriction fragment length polymorphism were used for identification of DNA of Leishmania parasites within infected sand flies. RESULTS: Among the collected female sand flies, two species of Phlebotomus papatasi and Phlebotomus salehi were found naturally infected with Leishmania major. Furthermore, mixed infection of Leishmania turanica and L. major was observed in one specimen of P. papatasi. Sequence analysis revealed two parasite ITS1 haplotypes including three L. major with accession numbers: KJ425408, KJ425407, KM056403 and one L. turanica. (KJ425406). The haplotype of L. major was identical (100%) to several L. major sequences deposited in GenBank, including isolates from Iran, (Gen Bank accession nos.AY573187, KC505421, KJ194178) and Uzbekistan (Accession no.FN677357). CONCLUSION: To our knowledge, this is the first detection of L. major within wild caught P. salehi in northeast of Iran.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA