Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Bioinformation ; 20(2): 180-189, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38497076

RESUMEN

Aging is a complex process that is not yet fully understood. Despite advancements in research, a deeper understanding of the underlying biological mechanisms is necessary to develop interventions that promote healthy longevity. The aim of this study was to elucidate the complex mechanisms associated with healthy aging and longevity in healthy elderly individuals. The RNA sequencing (RNA-seq) data used in this study was obtained from the Gene Expression Omnibus (GEO) database (accession number GSE104406), which was collected from Fluorescent Activated Cell Sorting (FACS) of human bone marrow derived human hematopoietic stem cells (BM-HSCs) (Lineage-, CD34+, CD38-) young (18-30 years old) and aged (65-75 years old) donors who had no known hematological malignancy, with 10 biological replicates per group. The GEO RNA-seq Experiments Interactive Navigator (GREIN) software was used to obtain raw gene-level counts and filtered metadata for this dataset. Next generation knowledge discovery (NGKD) tools provided by BioJupies were used to obtain differentially regulated pathways, gene ontologies (GO), and gene signatures in the BM-HSCs. Finally, the L1000 Characteristic Direction Signature Search Engine (L1000CDS2) tool was used to identify specific drugs that reverse aging-associated gene signatures in old but healthy individuals. The down-regulation of signaling pathways such as longevity regulation, proteasome, Notch, apoptosis, nuclear factor kappa B (NFkB), and peroxisome proliferator-activated receptors (PPAR) signaling pathways in the BM-HSCs of healthy elderly. GO functions related to negative regulation of bone morphogenetic protein (BMP), telomeric DNA binding, nucleoside binding, calcium -dependent protein binding, chromatin-DNA binding, SMAD binding, and demethylase activity were significantly downregulated in the BM-HSCs of the elderly compared to the healthy young group. Importantly, potential drugs such as salermide, celestrol, cercosporin, dorsomorphin dihydrochloride, and LDN-193189 monohydrochloride that can reverse the aging-associated signatures in HSCs from healthy elderly were identified. The analysis of RNA-seq data based on NGKD techniques revealed a plethora of differentially regulated pathways, gene ontologies, and drugs with anti-aging potential to promote healthspan in the elderly.

2.
BMC Genomics ; 25(1): 134, 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38308243

RESUMEN

BACKGROUND: Cluster heatmaps are widely used in biology and other fields to uncover clustering patterns in data matrices. Most cluster heatmap packages provide utility functions to divide the dendrograms at a certain level to obtain clusters, but it is often difficult to locate the appropriate cut in the dendrogram to obtain the clusters seen in the heatmap or computed by a statistical method. Multiple cuts are required if the clusters locate at different levels in the dendrogram. RESULTS: We developed DendroX, a web app that provides interactive visualization of a dendrogram where users can divide the dendrogram at any level and in any number of clusters and pass the labels of the identified clusters for functional analysis. Helper functions are provided to extract linkage matrices from cluster heatmap objects in R or Python to serve as input to the app. A graphic user interface was also developed to help prepare input files for DendroX from data matrices stored in delimited text files. The app is scalable and has been tested on dendrograms with tens of thousands of leaf nodes. As a case study, we clustered the gene expression signatures of 297 bioactive chemical compounds in the LINCS L1000 dataset and visualized them in DendroX. Seventeen biologically meaningful clusters were identified based on the structure of the dendrogram and the expression patterns in the heatmap. We found that one of the clusters consisting of mostly naturally occurring compounds is not previously reported and has its members sharing broad anticancer, anti-inflammatory and antioxidant activities. CONCLUSIONS: DendroX solves the problem of matching visually and computationally determined clusters in a cluster heatmap and helps users navigate among different parts of a dendrogram. The identification of a cluster of naturally occurring compounds with shared bioactivities implicates a convergence of biological effects through divergent mechanisms.


Asunto(s)
Transcriptoma , Análisis por Conglomerados
3.
BMC Bioinformatics ; 24(1): 154, 2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-37072707

RESUMEN

BACKGROUND: Elucidating compound mechanism of action (MoA) is beneficial to drug discovery, but in practice often represents a significant challenge. Causal Reasoning approaches aim to address this situation by inferring dysregulated signalling proteins using transcriptomics data and biological networks; however, a comprehensive benchmarking of such approaches has not yet been reported. Here we benchmarked four causal reasoning algorithms (SigNet, CausalR, CausalR ScanR and CARNIVAL) with four networks (the smaller Omnipath network vs. 3 larger MetaBase™ networks), using LINCS L1000 and CMap microarray data, and assessed to what extent each factor dictated the successful recovery of direct targets and compound-associated signalling pathways in a benchmark dataset comprising 269 compounds. We additionally examined impact on performance in terms of the functions and roles of protein targets and their connectivity bias in the prior knowledge networks. RESULTS: According to statistical analysis (negative binomial model), the combination of algorithm and network most significantly dictated the performance of causal reasoning algorithms, with the SigNet recovering the greatest number of direct targets. With respect to the recovery of signalling pathways, CARNIVAL with the Omnipath network was able to recover the most informative pathways containing compound targets, based on the Reactome pathway hierarchy. Additionally, CARNIVAL, SigNet and CausalR ScanR all outperformed baseline gene expression pathway enrichment results. We found no significant difference in performance between L1000 data or microarray data, even when limited to just 978 'landmark' genes. Notably, all causal reasoning algorithms also outperformed pathway recovery based on input DEGs, despite these often being used for pathway enrichment. Causal reasoning methods performance was somewhat correlated with connectivity and biological role of the targets. CONCLUSIONS: Overall, we conclude that causal reasoning performs well at recovering signalling proteins related to compound MoA upstream from gene expression changes by leveraging prior knowledge networks, and that the choice of network and algorithm has a profound impact on the performance of causal reasoning algorithms. Based on the analyses presented here this is true for both microarray-based gene expression data as well as those based on the L1000 platform.


Asunto(s)
Benchmarking , Perfilación de la Expresión Génica , Perfilación de la Expresión Génica/métodos , Algoritmos , Análisis por Micromatrices , Expresión Génica , Redes Reguladoras de Genes
4.
Int J Mol Sci ; 24(2)2023 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-36674506

RESUMEN

Multiple sclerosis (MS) is an autoimmune disease of the central nervous system still lacking a cure. Treatment typically focuses on slowing the progression and managing MS symptoms. Single-cell transcriptomics allows the investigation of the immune system-the key player in MS onset and development-in great detail increasing our understanding of MS mechanisms and stimulating the discovery of the targets for potential therapies. Still, de novo drug development takes decades; however, this can be reduced by drug repositioning. A promising approach is to select potential drugs based on activated or inhibited genes and pathways. In this study, we explored the public single-cell RNA data from an experiment with six patients on single-cell RNA peripheral blood mononuclear cells (PBMC) and cerebrospinal fluid cells (CSF) of patients with MS and idiopathic intracranial hypertension. We demonstrate that AIM2 inflammasome, SMAD2/3 signaling, and complement activation pathways are activated in MS in different CSF and PBMC immune cells. Using genes from top-activated pathways, we detected several promising small molecules to reverse MS immune cells' transcriptomic signatures, including AG14361, FGIN-1-27, CA-074, ARP 101, Flunisolide, and JAK3 Inhibitor VI. Among these molecules, we also detected an FDA-approved MS drug Mitoxantrone, supporting the reliability of our approach.


Asunto(s)
Esclerosis Múltiple , Humanos , Esclerosis Múltiple/tratamiento farmacológico , Esclerosis Múltiple/genética , Reposicionamiento de Medicamentos , Leucocitos Mononucleares/metabolismo , Reproducibilidad de los Resultados , Análisis de Expresión Génica de una Sola Célula , ARN/metabolismo
5.
J Orthop Surg Res ; 18(1): 27, 2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36627660

RESUMEN

PURPOSE: Steroid-induced osteonecrosis of the femoral head (SONFH) was a refractory orthopedic hip joint disease in the young and middle-aged people, but the pathogenesis of SONFH remained unclear. We aimed to identify the potential genes and screen potential therapeutic compounds for SONFH. METHODS: The microarray was obtained for blood tissue from the GEO database, and then it identifies differentially expressed genes (DEGs). The DEGs were analyzed to obtain the differences in immune cell infiltration. The gene functional enrichment analysis of SONFH was analyzed. The PPI of DEGs was identified through the STRING database, and the cluster modules and hub genes were ascertained using MCODE and CytoHubba, and the ROC curve of hub genes was analyzed, and the tissues distribution of hub genes was understood by the HPA, Bgee and BioGPS databases. The hub genes and target miRNAs and corresponding upstream lncRNAs were predicted by TargetScan, miRDB and ENCORI database. Subsequently, we used CMap, DGIdb and L1000FWD databases to identify several potential therapeutic molecular compounds for SONFH. Finally, the AutoDockTools Vina, PyMOL and Discovery Studio were employed for molecular docking analyses between compounds and hub genes. RESULTS: The microarray dataset GSE123568 was obtained related to SONFH. There were 372 DEGs including 197 upregulated genes and 175 downregulated genes by adjusted P value < 0.01 and |log2FC|> 1. Several significant GSEA enrichment analysis and biological processes and KEGG pathway associated with SONFH were identified, which were significantly related to cytoskeleton organization, nucleobase-containing compound catabolic process, NOD-like receptor signaling pathway, MAPK signaling pathway, FoxO signaling pathway, neutrophil-mediated immunity, neutrophil degranulation and neutrophil activation involved in immune response. Activated T cells CD4 memory, B cells naïve, B cells memory, T cells CD8 and T cells gamma delta might be involved in the occurrence and development of SONFH. Three cluster modules were identified in the PPI network, and eleven hub genes including FPR2, LILRB2, MNDA, CCR1, IRF8, TYROBP, TLR1, HCK, TLR8, TLR2 and CCR2 were identified by Cytohubba, which were differed in bone marrow, adipose tissue and blood, and which had good diagnostic performance in SONFH. We identified IRF8 and 10 target miRNAs that was utilized including Targetsan, miRDB and ENCORI databases and 8 corresponding upstream lncRNAs that was revealed by ENCORI database. IRF8 was detected with consistent expression by qRT-PCR. Based on the CMap, DGIdb and L1000FWD databases, the 11 small molecular compounds that were most strongly therapeutic correlated with SONFH were estradiol, genistein, domperidone, lovastatin, myricetin, fenbufen, rosiglitazone, sirolimus, phenformin, vorinostat and vinblastine. All of 11 small molecules had good binding affinity with the IRF8 in molecular docking. CONCLUSION: The occurrence of SONFH was associated with a "multi-target" and "multi-pathway" pattern, especially related to immunity, and IRF8 and its noncoding RNA were closely related to the development of SONFH. The CMap, DGIdb and L1000FWD databases could be effectively used in a systematic manner to predict potential drugs for the prevention and treatment of SONFH. However, additional clinical and experimental research is warranted.


Asunto(s)
MicroARNs , Osteonecrosis , ARN Largo no Codificante , Humanos , Biomarcadores , Cabeza Femoral/patología , Perfilación de la Expresión Génica , Factores Reguladores del Interferón , Simulación del Acoplamiento Molecular , Osteonecrosis/inducido químicamente , Osteonecrosis/genética , Esteroides
6.
Stem Cell Reports ; 18(1): 237-253, 2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36563689

RESUMEN

In the brain, the complement system plays a crucial role in the immune response and in synaptic elimination during normal development and disease. Here, we sought to identify pathways that modulate the production of complement component 4 (C4), recently associated with an increased risk of schizophrenia. To design a disease-relevant assay, we first developed a rapid and robust 3D protocol capable of producing large numbers of astrocytes from pluripotent cells. Transcriptional profiling of these astrocytes confirmed the homogeneity of this population of dorsal fetal-like astrocytes. Using a novel ELISA-based small-molecule screen, we identified epigenetic regulators, as well as inhibitors of intracellular signaling pathways, able to modulate C4 secretion from astrocytes. We then built a connectivity map to predict and validate additional key regulatory pathways, including one involving c-Jun-kinase. This work provides a foundation for developing therapies for CNS diseases involving the complement cascade.


Asunto(s)
Astrocitos , Células Madre Pluripotentes Inducidas , Astrocitos/metabolismo , Células Madre , Feto , Células Madre Pluripotentes Inducidas/metabolismo
7.
Cell Syst ; 13(11): 911-923.e9, 2022 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-36395727

RESUMEN

Morphological and gene expression profiling can cost-effectively capture thousands of features in thousands of samples across perturbations by disease, mutation, or drug treatments, but it is unclear to what extent the two modalities capture overlapping versus complementary information. Here, using both the L1000 and Cell Painting assays to profile gene expression and cell morphology, respectively, we perturb human A549 lung cancer cells with 1,327 small molecules from the Drug Repurposing Hub across six doses, providing a data resource including dose-response data from both assays. The two assays capture both shared and complementary information for mapping cell state. Cell Painting profiles from compound perturbations are more reproducible and show more diversity but measure fewer distinct groups of features. Applying unsupervised and supervised methods to predict compound mechanisms of action (MOAs) and gene targets, we find that the two assays not only provide a partially shared but also a complementary view of drug mechanisms. Given the numerous applications of profiling in biology, our analyses provide guidance for planning experiments that profile cells for detecting distinct cell types, disease phenotypes, and response to chemical or genetic perturbations.


Asunto(s)
Perfilación de la Expresión Génica , Humanos , Perfilación de la Expresión Génica/métodos , Fenotipo
8.
BMC Bioinformatics ; 23(1): 374, 2022 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-36100892

RESUMEN

The L1000 technology, a cost-effective high-throughput transcriptomics technology, has been applied to profile a collection of human cell lines for their gene expression response to > 30,000 chemical and genetic perturbations. In total, there are currently over 3 million available L1000 profiles. Such a dataset is invaluable for the discovery of drug and target candidates and for inferring mechanisms of action for small molecules. The L1000 assay only measures the mRNA expression of 978 landmark genes while 11,350 additional genes are computationally reliably inferred. The lack of full genome coverage limits knowledge discovery for half of the human protein coding genes, and the potential for integration with other transcriptomics profiling data. Here we present a Deep Learning two-step model that transforms L1000 profiles to RNA-seq-like profiles. The input to the model are the measured 978 landmark genes while the output is a vector of 23,614 RNA-seq-like gene expression profiles. The model first transforms the landmark genes into RNA-seq-like 978 gene profiles using a modified CycleGAN model applied to unpaired data. The transformed 978 RNA-seq-like landmark genes are then extrapolated into the full genome space with a fully connected neural network model. The two-step model achieves 0.914 Pearson's correlation coefficients and 1.167 root mean square errors when tested on a published paired L1000/RNA-seq dataset produced by the LINCS and GTEx programs. The processed RNA-seq-like profiles are made available for download, signature search, and gene centric reverse search with unique case studies.


Asunto(s)
Aprendizaje Profundo , Perfilación de la Expresión Génica , Humanos , RNA-Seq , Transcriptoma
9.
Front Cardiovasc Med ; 9: 842641, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35402570

RESUMEN

Conventional drug screening methods search for a limited number of small molecules that directly interact with the target protein. This process can be slow, cumbersome and has driven the need for developing new drug screening approaches to counter rapidly emerging diseases such as COVID-19. We propose a pipeline for drug repurposing combining in silico drug candidate identification followed by in vitro characterization of these candidates. We first identified a gene target of interest, the entry receptor for the SARS-CoV-2 virus, angiotensin converting enzyme 2 (ACE2). Next, we employed a gene expression profile database, L1000-based Connectivity Map to query gene expression patterns in lung epithelial cells, which act as the primary site of SARS-CoV-2 infection. Using gene expression profiles from 5 different lung epithelial cell lines, we computationally identified 17 small molecules that were predicted to decrease ACE2 expression. We further performed a streamlined validation in the normal human epithelial cell line BEAS-2B to demonstrate that these compounds can indeed decrease ACE2 surface expression and to profile cell health and viability upon drug treatment. This proposed pipeline combining in silico drug compound identification and in vitro expression and viability characterization in relevant cell types can aid in the repurposing of FDA-approved drugs to combat rapidly emerging diseases.

10.
Biotechnol J ; 17(1): e2100417, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34657375

RESUMEN

The use of anticancer peptides (ACPs) as an alternative/complementary strategy to conventional chemotherapy treatments has been shown to decrease drug resistance and/or severe side effects. However, the efficacy of the positively-charged ACP is inhibited by elevated levels of negatively-charged cell-surface components which trap the peptides and prevent their contact with the cell membrane. Consequently, this decreases ACP-mediated membrane pore formation and cell lysis. Negatively-charged heparan sulphate (HS) and chondroitin sulphate (CS) have been shown to inhibit the cytotoxic effect of ACPs. In this study, we propose a strategy to promote the broad utilization of ACPs. In this context, we developed a drug repositioning pipeline to analyse transcriptomics data generated for four different cancer cell lines (A549, HEPG2, HT29, and MCF7) treated with hundreds of drugs in the LINCS L1000 project. Based on previous studies identifying genes modulating levels of the glycosaminoglycans (GAGs) HS and CS at the cell surface, our analysis aimed at identifying drugs inhibiting genes correlated with high HS and CS levels. As a result, we identified six chemicals as likely repositionable drugs with the potential to enhance the performance of ACPs. The codes in R and Python programming languages are publicly available in https://github.com/ElyasMo/ACPs_HS_HSPGs_CS. As a conclusion, these six drugs are highlighted as excellent targets for synergistic studies with ACPs aimed at lowering the costs associated with ACP-treatment.


Asunto(s)
Antineoplásicos , Neoplasias , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Reposicionamiento de Medicamentos , Glicosaminoglicanos , Humanos , Neoplasias/tratamiento farmacológico , Péptidos
11.
Front Oncol ; 11: 762023, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34660328

RESUMEN

Transcriptional reprogramming contributes to the progression and recurrence of cancer. However, the poorly elucidated mechanisms of transcriptional reprogramming in tumors make the development of effective drugs difficult, and gene expression signature is helpful for connecting genetic information and pharmacologic treatment. So far, there are two gene-expression signature-based high-throughput drug discovery approaches: L1000, which measures the mRNA transcript abundance of 978 "landmark" genes, and high-throughput sequencing-based high-throughput screening (HTS2); they are suitable for anticancer drug discovery by targeting transcriptional reprogramming. L1000 uses ligation-mediated amplification and hybridization to Luminex beads and highlights gene expression changes by detecting bead colors and fluorescence intensity of phycoerythrin signal. HTS2 takes advantage of RNA-mediated oligonucleotide annealing, selection, and ligation, high throughput sequencing, to quantify gene expression changes by directly measuring gene sequences. This article summarizes technological principles and applications of L1000 and HTS2, and discusses their advantages and limitations in anticancer drug discovery.

12.
BMC Bioinformatics ; 22(1): 318, 2021 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-34116627

RESUMEN

BACKGROUND: Drug-drug interaction (DDI) is a serious public health issue. The L1000 database of the LINCS project has collected millions of genome-wide expressions induced by 20,000 small molecular compounds on 72 cell lines. Whether this unified and comprehensive transcriptome data resource can be used to build a better DDI prediction model is still unclear. Therefore, we developed and validated a novel deep learning model for predicting DDI using 89,970 known DDIs extracted from the DrugBank database (version 5.1.4). RESULTS: The proposed model consists of a graph convolutional autoencoder network (GCAN) for embedding drug-induced transcriptome data from the L1000 database of the LINCS project; and a long short-term memory (LSTM) for DDI prediction. Comparative evaluation of various machine learning methods demonstrated the superior performance of our proposed model for DDI prediction. Many of our predicted DDIs were revealed in the latest DrugBank database (version 5.1.7). In the case study, we predicted drugs interacting with sulfonylureas to cause hypoglycemia and drugs interacting with metformin to cause lactic acidosis, and showed both to induce effects on the proteins involved in the metabolic mechanism in vivo. CONCLUSIONS: The proposed deep learning model can accelerate the discovery of new DDIs. It can support future clinical research for safer and more effective drug co-prescription.


Asunto(s)
Aprendizaje Profundo , Diabetes Mellitus , Preparaciones Farmacéuticas , Análisis de Datos , Interacciones Farmacológicas , Humanos , Transcriptoma
13.
Brief Bioinform ; 22(6)2021 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-34013329

RESUMEN

The basis of several recent methods for drug repurposing is the key principle that an efficacious drug will reverse the disease molecular 'signature' with minimal side effects. This principle was defined and popularized by the influential 'connectivity map' study in 2006 regarding reversal relationships between disease- and drug-induced gene expression profiles, quantified by a disease-drug 'connectivity score.' Over the past 15 years, several studies have proposed variations in calculating connectivity scores toward improving accuracy and robustness in light of massive growth in reference drug profiles. However, these variations have been formulated inconsistently using various notations and terminologies even though they are based on a common set of conceptual and statistical ideas. Therefore, we present a systematic reconciliation of multiple disease-drug similarity metrics ($ES$, $css$, $Sum$, $Cosine$, $XSum$, $XCor$, $XSpe$, $XCos$, $EWCos$) and connectivity scores ($CS$, $RGES$, $NCS$, $WCS$, $Tau$, $CSS$, $EMUDRA$) by defining them using consistent notation and terminology. In addition to providing clarity and deeper insights, this coherent definition of connectivity scores and their relationships provides a unified scheme that newer methods can adopt, enabling the computational drug-development community to compare and investigate different approaches easily. To facilitate the continuous and transparent integration of newer methods, this article will be available as a live document (https://jravilab.github.io/connectivity_scores) coupled with a GitHub repository (https://github.com/jravilab/connectivity_scores) that any researcher can build on and push changes to.


Asunto(s)
Biología Computacional/métodos , Descubrimiento de Drogas/métodos , Reposicionamiento de Medicamentos/métodos , Perfilación de la Expresión Génica/métodos , Farmacogenética/métodos , Algoritmos , Biomarcadores , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Transcriptoma
14.
BMC Bioinformatics ; 22(1): 17, 2021 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-33413089

RESUMEN

BACKGROUND: Querying drug-induced gene expression profiles with machine learning method is an effective way for revealing drug mechanism of actions (MOAs), which is strongly supported by the growth of large scale and high-throughput gene expression databases. However, due to the lack of code-free and user friendly applications, it is not easy for biologists and pharmacologists to model MOAs with state-of-art deep learning approach. RESULTS: In this work, a newly developed online collaborative tool, Genetic profile-activity relationship (GPAR) was built to help modeling and predicting MOAs easily via deep learning. The users can use GPAR to customize their training sets to train self-defined MOA prediction models, to evaluate the model performances and to make further predictions automatically. Cross-validation tests show GPAR outperforms Gene set enrichment analysis in predicting MOAs. CONCLUSION: GPAR can serve as a better approach in MOAs prediction, which may facilitate researchers to generate more reliable MOA hypothesis.


Asunto(s)
Inteligencia Artificial , Farmacología , Programas Informáticos , Transcriptoma/genética , Biología Computacional , Bases de Datos Genéticas , Preparaciones Farmacéuticas
15.
Chem Biol Drug Des ; 97(3): 665-673, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33006799

RESUMEN

Adverse drug reactions (ADRs) are pharmacological events triggered by drug interactions with various sources of origin including drug-drug interactions. While there are many computational studies that explore models to predict ADRs originating from single drugs, only a few of them explore models that predict ADRs from drug combinations. Further, as far as we know, none of them have developed models using transcriptomic data, specifically the LINCS L1000 drug-induced gene expression data to predict ADRs for drug combinations. In this study, we use the TWOSIDES database as a source of ADRs originating from two-drug combinations. 34,549 common drug pairs between these two databases were used to train an artificial neural network (ANN), to predict 243 ADRs that were induced by at least 10% of the drug pairs. Our model predicts the occurrence of these ADRs with an average accuracy of 82% across a multifold cross-validation.


Asunto(s)
Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Redes Neurales de la Computación , Bases de Datos Factuales , Combinación de Medicamentos , Interacciones Farmacológicas , Humanos , Transcriptoma
16.
Aging (Albany NY) ; 12(19): 19022-19044, 2020 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-33044945

RESUMEN

RNA modifications modulate most steps of gene expression. However, little is known about its role in neuroblastoma (NBL) and the inhibitors targeting it. We analyzed the RNA-seq (n=122) and CNV data (n=78) from NBL patients in Therapeutically Applicable Research to Generate Effective Treatments (TARGET) database. The NBL sub-clusters (cluster1/2) were identified via consensus clustering for expression of RNA modification regulators (RNA-MRs). Cox regression, principle component analysis and chi-square analysis were used to compare differences of survival, transcriptome, and clinicopathology between clusters. Cluster1 showed significantly poor prognosis, of which RNA-MRs' expression and CNV alteration were closely related to pathologic stage. RNA-MRs and functional related prognostic genes were obtained using spearman correlation analysis, and queried in CMap and L1000 FWD database to obtain 88 inhibitors. The effects of 5 inhibitors on RNA-MRs were confirmed in SH-SY5Y cells. The RNA-MRs exhibited two complementary regulation functions: one conducted by TET2 and related to translation and glycolysis; another conducted by ALYREF, NSUN2 and ADARB1 and related to cell cycle and DNA repair. The perturbed proteomic profile of HDAC inhibitors was different from that of others, thus drug combination overcame drug resistance and was potential for NBL therapy with RNA-MRs as therapeutic targets.

17.
Front Pharmacol ; 11: 112, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32184722

RESUMEN

Synthetic lethality (SL), an important type of genetic interaction, can provide useful insight into the target identification process for the development of anticancer therapeutics. Although several well-established SL gene pairs have been verified to be conserved in humans, most SL interactions remain cell-line specific. Here, we demonstrated that the cell-line-specific gene expression profiles derived from the shRNA perturbation experiments performed in the LINCS L1000 project can provide useful features for predicting SL interactions in human. In this paper, we developed a semi-supervised neural network-based method called EXP2SL to accurately identify SL interactions from the L1000 gene expression profiles. Through a systematic evaluation on the SL datasets of three different cell lines, we demonstrated that our model achieved better performance than the baseline methods and verified the effectiveness of using the L1000 gene expression features and the semi-supervise training technique in SL prediction.

18.
Brief Bioinform ; 21(6): 2194-2205, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31774912

RESUMEN

The methodologies for evaluating similarities between gene expression profiles of different perturbagens are the key to understanding mechanisms of actions (MoAs) of unknown compounds and finding new indications for existing drugs. L1000-based next-generation Connectivity Map (CMap) data is more than a thousand-fold scale-up of the CMap pilot dataset. Although several systematic evaluations have been performed individually to assess the accuracy of the methodologies for the CMap pilot study, the performance of these methodologies needs to be re-evaluated for the L1000 data. Here, using the drug-drug similarities from the Drug Repurposing Hub database as a benchmark standard, we evaluated six popular published methods for the prediction performance of drug-drug relationships based on the partial area under the receiver operating characteristic (ROC) curve at false positive rates of 0.001, 0.005 and 0.01 (AUC0.001, AUC0.005 and AUC0.01). The similarity evaluating algorithm called ZhangScore was generally superior to other methods and exhibited the highest accuracy at the gene signature sizes ranging from 10 to 200. Further, we tested these methods with an experimentally derived gene signature related to estrogen in breast cancer cells, and the results confirmed that ZhangScore was more accurate than other methods. Moreover, based on scoring results of ZhangScore for the gene signature of TOP2A knockdown, in addition to well-known TOP2A inhibitors, we identified a number of potential inhibitors and at least two of them were the subject of previous investigation. Our studies provide potential guidelines for researchers to choose the suitable connectivity method. The six connectivity methods used in this report have been implemented in R package (https://github.com/Jasonlinchina/RCSM).


Asunto(s)
Biología Computacional , Reposicionamiento de Medicamentos , Perfilación de la Expresión Génica , Algoritmos , Biología Computacional/métodos , Bases de Datos Factuales , Perfilación de la Expresión Génica/métodos , Proyectos Piloto , Transcriptoma
19.
ALTEX ; 37(2): 187-196, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31707421

RESUMEN

The emergence of high throughput in vitro assays has the potential to significantly improve toxicological evaluations and lead to more efficient, accurate, and less animal-intensive testing. However, directly using all available in vitro assays in a model is usually impractical and inefficient. On the other hand, mechanistic knowledge has always been critical for toxicological evaluations and should not be ignored even with the increasing availability of data. In this paper, we illus­trate a promising approach to integrating mechanistic knowledge with multiple data sources for in vitro assays, using drug-induced liver injury (DILI) as an example. The adverse outcome pathway (AOP) framework was used as a source for mechanistic knowledge and as a selection tool for high throughput predictors. Our results confirm the value of AOPs as a knowledge source for understanding adverse events and show that the majority of drugs classified as most-DILI-concern were mapped to AOPs related to liver toxicity found in AOPwiki. AOPs were also used effectively to select a subset of assays from the Tox21 and L1000 projects as the predictors in predictive modeling of DILI risk. Together with previously published drug properties for daily dose, lipophilicity, and reactive metabolite formation, these assay endpoints were used to build a penalized logistic regression model for assessing DILI risk. This model obtained an accuracy of 0.91, thus confirming the potential power of integrating mechanistic knowledge with high throughput assays for toxicological evalu­ations. The results also provide a roadmap for data integration that could be used for other adverse effects.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Ensayos Analíticos de Alto Rendimiento , Alternativas a las Pruebas en Animales , Animales , Modelos Biológicos
20.
Biomolecules ; 9(11)2019 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-31684108

RESUMEN

Human high-mobility group A2 (HMGA2) encodes for a non-histone chromatin protein which influences a variety of biological processes, including the cell cycle process, apoptosis, the DNA damage repair process, and epithelial-mesenchymal transition. The accumulated evidence suggests that high expression of HMGA2 is related to tumor progression, poor prognosis, and a poor response to therapy. Thus, HMGA2 is an important molecular target for many types of malignancies. Our recent studies revealed the positive connections between heat shock protein 90 (Hsp90) and HMGA2 and that the Hsp90 inhibitor has therapeutic potential to inhibit HMGA2-triggered tumorigenesis. However, 43% of patients suffered visual disturbances in a phase I trial of the second-generation Hsp90 inhibitor, NVP-AUY922. To identify a specific inhibitor to target HMGA2, the Gene Expression Omnibus (GEO) database and the Library of Integrated Network-based Cellular Signatures (LINCS) L1000platform were both analyzed. We identified the approved small-molecule antifungal agent ciclopirox (CPX) as a novel potential inhibitor of HMGA2. In addition, CPX induces cytotoxicity of colorectal cancer (CRC) cells by induction of cell cycle arrest and apoptosis in vitro and in vivo through direct interaction with the AT-hook motif (a small DNA-binding protein motif) of HMGA2. In conclusion, this study is the first to report that CPX is a novel potential inhibitor of HMGA2 using a drug-repurposing approach, which can provide a potential therapeutic intervention in CRC patients.


Asunto(s)
Antifúngicos/farmacología , Antineoplásicos/farmacología , Ciclopirox/farmacología , Neoplasias Colorrectales/genética , Proteína HMGA2/antagonistas & inhibidores , Apoptosis/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/fisiopatología , Proteína HMGA2/genética , Proteína HMGA2/metabolismo , Humanos , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA