Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 375
Filtrar
1.
ACS Nano ; 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39173188

RESUMEN

CRISPR/Cas-based molecular diagnosis demonstrates potent potential for sensitive and rapid pathogen detection, notably in SARS-CoV-2 diagnosis and mutation tracking. Yet, a major hurdle hindering widespread practical use is its restricted throughput, limited integration, and complex reagent preparation. Here, a system, microfluidic multiplate-based ultrahigh throughput analysis of SARS-CoV-2 variants of concern using CRISPR/Cas12a and nonextraction RT-LAMP (mutaSCAN), is proposed for rapid detection of SARS-CoV-2 and its variants with limited resource requirements. With the aid of the self-developed reagents and deep-learning enabled prototype device, our mutaSCAN system can detect SARS-CoV-2 in mock swab samples below 30 min as low as 250 copies/mL with the throughput up to 96 per round. Clinical specimens were tested with this system, the accuracy for routine and mutation testing (22 wildtype samples, 26 mutational samples) was 98% and 100%, respectively. No false-positive results were found for negative (n = 24) samples.

2.
Water Res ; 264: 122202, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39146849

RESUMEN

Surface waters are vulnerable to contamination by human and animal feces, posing risks to human health due to potential exposure to enteric pathogens. This research developed a colorimetric loop-mediated isothermal amplification (cLAMP) assay to detect sewage associated Bacteroides dorei HF183/BacR287 (HF183) marker in wastewater and environmental water samples. The host sensitivity and host specificity of the assay were evaluated, and their performance was compared to the Bacteroides HF183 qPCR assay using control materials (gBlocks), environmental water samples seeded with untreated sewage, and ambient environmental water samples. In serial dilutions of control materials, qPCR produced quantifiable data across all dilutions, while cLAMP detected the marker down to 0.001 pg/µL of control materials, which was two orders of magnitude less sensitive than qPCR. All untreated sewage samples (n = 12) tested positive for HF183 by both the qPCR and cLAMP assays, demonstrating a host sensitivity value of 1.00 (maximum value of 1.00). The host specificity by analysing 70 non-human fecal nucleic acid samples revealed cLAMP's specificity value of 0.81 compared to qPCR's 0.64. When testing sewage-seeded environmental water samples, both methods detected HF183 for the lowest amount of sewage, indicating similar detection sensitivity. The application of cLAMP for tracking sewage pollution in environmental waters showed promising results, with moderate agreement between cLAMP and qPCR (κ = 0.510). However, cLAMP occasionally missed detections compared to qPCR, particularly in low-concentration samples. Overall, the cLAMP HF183 assay demonstrated promising potential as a rapid and sensitive method for detecting sewage pollution, offering a viable alternative to qPCR in certain environmental monitoring scenarios.

3.
Front Cell Infect Microbiol ; 14: 1409078, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39176261

RESUMEN

Introduction: Mycoplasma pneumoniae (MP) is the major cause of respiratory infections that threaten the health of children and adolescents worldwide. Therefore, an early, simple, and accurate detection approach for MP is critical to prevent outbreaks of MP-induced community-acquired pneumonia. Methods: Here, we explored a simple and accurate method for MP identification that combines loop-mediated isothermal amplification (LAMP) with the CRISPR/Cas12b assay in a one-pot reaction. Results: In the current study, the whole reaction was completed within 1 h at a constant temperature of 57°C. The limit of detection of this assay was 33.7 copies per reaction. The specificity of the LAMP-CRISPR/Cas12b method was 100%, without any cross-reactivity with other pathogens. Overall, 272 clinical samples were used to evaluate the clinical performance of LAMP-CRISPR/Cas12b. Compared with the gold standard results from real-time PCR, the present method provided a sensitivity of 88.11% (126/143), specificity of 100% (129/129), and consistency of 93.75% (255/272). Discussion: Taken together, our preliminary results illustrate that the LAMP-CRISPR/Cas12b method is a simple and reliable tool for MP diagnosis that can be performed in resource-limited regions.


Asunto(s)
Sistemas CRISPR-Cas , Técnicas de Diagnóstico Molecular , Mycoplasma pneumoniae , Técnicas de Amplificación de Ácido Nucleico , Neumonía por Mycoplasma , Sensibilidad y Especificidad , Mycoplasma pneumoniae/genética , Mycoplasma pneumoniae/aislamiento & purificación , Técnicas de Amplificación de Ácido Nucleico/métodos , Humanos , Neumonía por Mycoplasma/diagnóstico , Neumonía por Mycoplasma/microbiología , Técnicas de Diagnóstico Molecular/métodos , Niño , Límite de Detección
4.
Farm Comunitarios ; 16(2): 46-53, 2024 Apr 15.
Artículo en Español | MEDLINE | ID: mdl-39156031

RESUMEN

This review focuses on describing new commercially available POC-type molecular diagnostic systems that can be easily implemented in community pharmacies and have the potential to expand the portfolio of pharmaceutical services and make a significant contribution to the improvement of public health.Knowledge of new molecular diagnostic techniques other than PCR is relatively unexplored. However, the available options are diverse and have reached sufficient technological maturity for large-scale use. The SARS-CoV-2 pandemic has brought diagnostic tests to market that, in some cases, have been used exclusively in research for decades.Isothermal nucleic acid amplification technology continues to evolve and it is likely that in the coming years we will witness an exponential increase in its use, as well as the development of new improvements that further simplify and reduce the cost of each assay.Furthermore, we cannot ignore the fact that during the COVID-19 pandemic, the public has become accustomed to self-diagnosing through mass distribution channels such as community pharmacies. Which can open the sector to other diseases - such as sexually transmitted diseases or animal health -, food control, water and air contamination (fungi) or the presence of allergens.Knowledge of them is an essential technological surveillance strategy for the pharmaceutical sector.

5.
Diagn Microbiol Infect Dis ; 110(2): 116446, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39096664

RESUMEN

COVID-19 has afflicted millions of lives worldwide. Although there are many rapid methods to detect it based on colorimetric loop-mediated isothermal amplification, there remains room for improvement. This study aims to 1) integrate multiple primers into a singleplex assay to enhance the diagnostic sensitivity, and 2) utilize a high-throughput smartphone-operatable AI-driven color reading tool to enable a rapid result analysis. This setup can improve the sensitivity by 10-100 times and can analyze approximately 6700 samples per minute. The assay is simpler than RT-qPCR, with a turnaround time of less than 75 min. It can detect various types of SARS-CoV-2 by targeting 3 genes, increasing the likelihood that it will remain effective even if the virus undergoes mutations in any single target gene. In summary, it affords potential for adaptation to detection of new/re-emerging diseases with the visual readout for maximum assay simplicity and AI-operated mode for large-scale testing.


Asunto(s)
COVID-19 , Colorimetría , Técnicas de Diagnóstico Molecular , Técnicas de Amplificación de Ácido Nucleico , SARS-CoV-2 , Sensibilidad y Especificidad , Colorimetría/métodos , Humanos , COVID-19/diagnóstico , COVID-19/virología , SARS-CoV-2/genética , SARS-CoV-2/aislamiento & purificación , Técnicas de Amplificación de Ácido Nucleico/métodos , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Diagnóstico Molecular/normas , Cartilla de ADN/genética , Prueba de Ácido Nucleico para COVID-19/métodos , Teléfono Inteligente , Prueba de COVID-19/métodos
6.
FASEB J ; 38(15): e23870, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39120151

RESUMEN

Hematopoietic stem and progenitor cells (HSPCs) are successfully employed for hematological transplantations, and impaired HSPC function causes hematological diseases and aging. HSPCs maintain the lifelong homeostasis of blood and immune cells through continuous self-renewal and maintenance of the multilineage differentiation potential. TMEM106B is a transmembrane protein localized on lysosomal membranes and associated with neurodegenerative and cardiovascular diseases; however, its roles in HSPCs and hematopoiesis are unknown. Here, we established tmem106bb-/- knockout (KO) zebrafish and showed that tmem106bb KO reduced the proliferation of HSPCs during definitive hematopoiesis. The differentiation potential of HSPCs to lymphoid lineage was reduced, whereas the myeloid and erythroid differentiation potentials of HPSCs were increased in tmem106bb-/- zebrafish. Similar results were obtained with morpholino knockdown of tmem106bb. Mechanistically, TMEM106B interacted with LAMP2A, the lysosomal associated membrane protein 2A, impaired LAMP2A-Cathepsin A interaction, and enhanced LAMP2A stability; tmem106bb KO or TMEM106B knockdown caused LAMP2A degradation and impairment of chaperone-mediated autophagy (CMA). Knockdown of lamp2a caused similar phenotypes to that in tmem106bb-/- zebrafish, and overexpression of lamp2a rescued the impaired phenotypes of HSPCs in tmem106bb-/- embryos. These results uncover a novel molecular mechanism for the maintenance of HSPC proliferation and differentiation through stabilizing LAMP2A via TMEM106B-LAMP2A interaction.


Asunto(s)
Diferenciación Celular , Proliferación Celular , Células Madre Hematopoyéticas , Proteína 2 de la Membrana Asociada a los Lisosomas , Proteínas de la Membrana , Pez Cebra , Animales , Proteína 2 de la Membrana Asociada a los Lisosomas/metabolismo , Proteína 2 de la Membrana Asociada a los Lisosomas/genética , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/citología , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Lisosomas/metabolismo , Humanos , Hematopoyesis/fisiología
7.
Sci Total Environ ; : 175440, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39153611

RESUMEN

Diverse enteric pathogens, transmitted through human and animal feces, can cause gastroenteritis. Enteric viruses, such as human Aichi virus, specifically A (AiV-A), are emerging pathogens that cause illnesses even at low doses and are spreading globally. This research developed a reverse transcription quantitative polymerase chain reaction (RT-qPCR) assay targeting the 3CD junction and a reverse transcription colorimetric loop-mediated isothermal amplification (RT-cLAMP) duplex assay targeting junctions 2BC and 3CD of the AiV-A genome for rapid and sensitive detection of AiV-A in metropolitan and regional wastewater samples. The performance of these assays was evaluated using control materials and by analyzing wastewater samples. In serially diluted control materials, RT-qPCR provided quantifiable data (mean 1.51 log10 GC/2 µL of nucleic acid) down to a dilution of 1 × 10-5 pg/µL. In comparison, the duplex RT-cLAMP assay detected down to 1 × 10-4 pg/µL, indicating that its sensitivity was one order of magnitude less than that of RT-qPCR. Of the 38 wastewater samples from 38 metropolitan and regional wastewater treatment plants (WWTPs) in Queensland, Australia, 21 (55.3 %) tested positive by RT-qPCR with concentrations in ranging from 3.60 to 6.23 log10 GC/L. In contrast, only 15 (39.5 %) of 38 wastewater samples were positive using the duplex RT-cLAMP assay. The methods demonstrated substantial qualitative agreement (κ = 0.730), with a concordance of 86.5 %, demonstrating the reliability of RT-cLAMP for detecting AiV-A in wastewater samples. The duplex RT-cLAMP assay, despite demonstrating reduced detection sensitivity, has proven effective and holds promise as a supplementary approach, especially in settings with limited resources where rapid and affordable testing is crucial.

8.
Photochem Photobiol ; 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39161063

RESUMEN

The study aimed to directly assess the ocular safety of 222-nm far-ultraviolet-C (UVC) irradiation in humans, given the limited clinical trials in this area. This wavelength offers the potential for safe and effective microbial inactivation in occupied spaces, but its safety profile for human eyes requires thorough investigation. This prospective, interventional study involved five subjects aged 29-47 years, who were exposed to 222-nm UVC at doses of 22, 50, and 75 mJ/cm2. The subjects were monitored using custom-made glasses with a UV-cut filter on one eye to serve as a control. UVC irradiation was conducted using a KrCl excimer lamp, and ocular examinations were performed prior to exposure, 24 h post-exposure, and at 1, 3, and 6 months. Parameters assessed included visual acuity, refractive error, corneal endothelial density, corneal erosion scores, and conjunctival hyperemia scores. The study found no clinically significant photokeratitis or long-term eye damage across the five subjects, even at the highest dose of 75 mJ/cm2. Temporary ocular discomfort, including sensations of dryness and epiphora, was reported, but these symptoms subsided within hours after irradiation. The findings indicate that 222-nm far-UVC irradiation up to 75 mJ/cm2 does not cause "clinically significant photokeratitis" or long-term ocular damage, though it may induce temporary discomfort. This supports the safe use of 222-nm UVC for germicidal applications in occupied environments, providing a basis for revised safety guidelines.

9.
Biosens Bioelectron ; 263: 116635, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39116629

RESUMEN

Epidermal growth factor receptor (EGFR) mutation status is pivotal in predicting the efficacy of tyrosine kinase inhibitor treatments against tumors. Among EGFR mutations, the E746-A750 deletion is particularly common and accurately quantifying it can guide targeted therapies. This study introduces a novel visual sensing technology using the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas12a system guided by ligation-initiated loop-mediated isothermal amplification (LAMP) to detect the del E746-A750 mutation in EGFR. Conventional LAMP primers were simplified by designing a pair of target-specific stem-loop DNA probes, enabling selective amplification of the target DNA. The CRISPR/Cas12a system was employed to identify the target nucleic acid and activate Cas12a trans-cleavage activity, thereby enhancing the specificity of the assay. Furthermore, the biosensor utilized high-performance nanomaterials such as triangular gold nanoparticles and graphdiyne, known for their large specific surface area, to enhance sensitivity effectively as a sensing platform. The proposed biosensor demonstrated outstanding specificity, achieving a low detection limit of 17 fM (S/N = 3). Consequently, this innovative strategy not only expands the application scope of CRISPR/Cas12a technology but also introduces a promising approach for clinical diagnostics in modern medicine.


Asunto(s)
Técnicas Biosensibles , Sistemas CRISPR-Cas , Receptores ErbB , Técnicas de Amplificación de Ácido Nucleico , Técnicas Biosensibles/métodos , Sistemas CRISPR-Cas/genética , Técnicas de Amplificación de Ácido Nucleico/métodos , Humanos , Receptores ErbB/genética , Técnicas Electroquímicas/métodos , Límite de Detección , Oro/química , Nanopartículas del Metal/química , Eliminación de Secuencia , Proteínas Bacterianas , Endodesoxirribonucleasas , Técnicas de Diagnóstico Molecular , Proteínas Asociadas a CRISPR
10.
Oman J Ophthalmol ; 17(2): 245-248, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39132125

RESUMEN

PURPOSE: The purpose of this study was to evaluate the amount of sensitivity and specificity of the slit-light (SL) method in the diagnosis of ocular cyclotorsion. MATERIALS AND METHODS: One hundred and twenty eyes of 60 individuals (10-60 years old), with mean visual acuity of 0.08 ± 0.14 LogMAR, were divided into two groups (normal and torsion groups). Individuals without ocular motility disorder were selected as normal and patients with extraocular motility disorders and oblique muscle dysfunctions as the torsion group. The sensitivity and specificity of SL in the diagnosis of ocular torsion were measured by masked investigators and compared to fundus photography (FP). Inter- and intraobserver variability of these techniques was also determined. RESULTS: The amounts of sensitivity and specificity of SL, measured by the first examiner, were 60% and 92% for intorsion and 50% and 96% for extorsion assessment, respectively. These amounts were 53% and 95% for intorsion, and 54% and 97% for extorsion by the second examiner. The contingency coefficient between the two examiners was 68.6% for SL. This amount was 61% between FP and SL for the first examiner and 63% for the second. The contingency coefficient for the repeatability of SL was 72.2% for the first examiner and 75.7% for the second. This amount was 71.2% between the two examiners. CONCLUSION: SL can be considered a useful method for the diagnosis of cyclotorsion.

11.
Diagn Microbiol Infect Dis ; 110(3): 116449, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39133998

RESUMEN

LAMP (Loop-mediated isothermal amplification) is a popular method for the molecular diagnostics of numerous pathogens, specifically useful for point-of-care testing. However, the efficacy and sensitivity of LAMP still need to be maximised for the best performance in clinical settings. Adding a novel fourth primer pair is a promising way to accelerate the LAMP speed. Here, we report PI primers that are part of inner primers and can be used in LAMP without a specific design. PI primers were tested in quantitative LAMP detecting SARS-CoV-2 and MS2. The new primers have increased the speed and sensitivity of quantitative LAMP, RT-LAMP, and duplex LAMP with artificial templates and RNA samples from nasal swabs. Adding PI primers could become a valuable option for LAMP optimisation, especially when a desirable LAMP target is a highly variable DNA sequence with a few conservative sites for primers.

12.
Front Immunol ; 15: 1396808, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39136032

RESUMEN

Introduction: Tertiary lymphoid structures (TLSs) are analogues of secondary lymphoid organs that contain various immune cells. The spatial distribution, maturation and composition of TLSs have differential effects on prognosis, and the roles of TLSs in gastric adenocarcinoma (GA) have not been revealed. Methods: Thus, we evaluated the prognostic value of TLSs in GA through analysis of bulk RNA sequencing(RNA-seq) data from public databases and validated our findings in tumour samples from the Fudan University Shanghai Cancer Center (FUSCC) cohort. The spatial distribution,maturation, and composition of TLSs in GA were analysed by reviewing H&E-stained sections and by multiplex immunofluorescence (mIF) staining. Results: We found that TLSs, especially TLSs with germinal centres (GCs) and TLSs located in the invasive margin (IM), were correlated with prolonged overall survival (OS). Second, analysis of public RNA-seq data showed that high dendritic cell (DC) scores were a favourable prognostic factor in GA patients with high scores for both TLSs and GCs. In the FUSCC cohort, DC-LAMP+ DCs weresignificantly enriched in IM-TLSs with GCs, suggesting a potential correlation between the tumour immune activation milieu and the DC abundance. Third, compared to that in TLSs without GCs, the proportion of FOXP3+CD8+ Treg cells was significantly decreased in IM-TLSs with GCs, and the percentage of PD1+CD20+ B cells was significantly increased in TLSs with GCs. Discussion: Our results demonstrate that the spatial arrangement and maturation of TLSs significantly affect prognosis and indicate that TLSs could be a new additional factor for histopathological evaluation.


Asunto(s)
Adenocarcinoma , Neoplasias Gástricas , Estructuras Linfoides Terciarias , Humanos , Neoplasias Gástricas/inmunología , Neoplasias Gástricas/patología , Neoplasias Gástricas/mortalidad , Neoplasias Gástricas/genética , Estructuras Linfoides Terciarias/inmunología , Estructuras Linfoides Terciarias/patología , Adenocarcinoma/inmunología , Adenocarcinoma/mortalidad , Adenocarcinoma/patología , Pronóstico , Masculino , Femenino , Persona de Mediana Edad , Células Dendríticas/inmunología , Anciano , Centro Germinal/inmunología , Centro Germinal/patología , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo , Microambiente Tumoral/inmunología
13.
Plant Methods ; 20(1): 119, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39103934

RESUMEN

BACKGROUND: Oak wilt disease, caused by Bretziella fagacearum is a significant threat to oak (Quercus spp.) tree health in the United States and Eastern Canada. The disease may cause dramatic damage to natural and urban ecosystems without management. Early and accurate diagnosis followed by timely treatment increases the level of disease control success. RESULTS: A rapid assay based on loop mediated isothermal amplification (LAMP) was first developed with fluorescence detection of B. fagacearum after 30-minute reaction time. Six different primers were designed to specifically bind and amplify the pathogen's DNA. To simplify the use of this assay in the field, gold nanoparticles (AuNPs) were designed to bind to the DNA amplicon obtained from the LAMP reaction. Upon inducing precipitation, the AuNP-amplicons settle as a red pellet visible to the naked eye, indicative of pathogen presence. Both infected and healthy red oak samples were tested using this visualization method. The assay was found to have high diagnostic sensitivity and specificity for the B. fagacearum isolate studied. Moreover, the developed assay was able to detect the pathogen in crude DNA extracts of diseased oak wood samples, which further reduced the time required to process samples. CONCLUSIONS: In summary, the LAMP assay coupled with oligonucleotide-conjugated gold nanoparticle visualization is a promising method for accurate and rapid molecular-based diagnosis of B. fagacearum in field settings. The new method can be adapted to other forest and plant diseases by simply designing new primers.

14.
Food Chem ; 460(Pt 3): 140659, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39111039

RESUMEN

Adulteration of meat is a global issue, necessitating rapid, inexpensive, and simple on-site testing methods. Therefore, the present study aimed to develop a one-minute toothpick-based DNA extraction method, a handheld microfluidic chip, and a smartphone-controlled portable analyzer for detecting multiple meat adulterations. A toothpick was inserted into the meat to promote DNA release and adsorption. Furthermore, a handheld microfluidic chip was designed for DNA elution on toothpicks and fluid distribution. Finally, a smartphone-actuated portable analyzer was developed to function as a heater, signal detector, and result reader. The portable device comprises a microcontroller, a fluorescence detection module, a step scanning unit, and a heating module. The proposed device is portable, and the app is user-friendly. This simple design, easy operation, and fast-response system could rapidly detect as little as 1% of simulated adulterated samples (following UK standards) within 40 min at a cost of less than USD 1 per test.

15.
Intern Med ; 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39111889

RESUMEN

Danon disease (DD) is a rare lysosomal storage disorder resulting from pathogenic variants of the lysosome-associated membrane protein type 2 (LAMP-2) gene. The disease is characterized by severe cardiomyopathy, which rapidly progresses to end-stage heart failure. This case, with DD caused by a missense variant, exhibited slow progressive cardiomyopathy and survived for an extended period despite being a male. A pathological analysis revealed that only a minority of the samples exhibited autophagic vacuoles with unique sarcolemmal features (AVSFs), which are typical of DD. Importantly, LAMP-2 expression was absent and the myocardial tissue contained a substantial amount of p62-positive aggregates.

16.
Methods Mol Biol ; 2838: 171-183, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39126632

RESUMEN

Reverse transcriptase loop-mediated isothermal amplification (RT-LAMP) is a molecular diagnostic assay that is particularly useful for the detection of viral diseases of livestock. A major advantage of RT-LAMP is that it can be used either as a rapid field test or as a high-throughput screening tool in veterinary laboratories, with sensitivity comparable to the real-time RT-PCR assay. Unlike conventional or qPCR, RT-LAMP uses a strand displacement polymerase and a set of four to six primers that bind to several regions of the target nucleic acid. Amplification occurs without thermal cycling, and coupled with the numerous primers, RT-LAMP offers a rapid and highly specific molecular assay. In this chapter, we describe the RT-LAMP protocol for the detection of epizootic hemorrhagic disease virus (EHDV) as a low-cost, specific, and sensitive screening tool in veterinary diagnostic laboratories. We also provide guidance on how to adapt the RT-LAMP assay for rapid field testing.


Asunto(s)
Virus de la Enfermedad Hemorrágica Epizoótica , Técnicas de Diagnóstico Molecular , Técnicas de Amplificación de Ácido Nucleico , Infecciones por Reoviridae , Técnicas de Amplificación de Ácido Nucleico/métodos , Animales , Virus de la Enfermedad Hemorrágica Epizoótica/genética , Virus de la Enfermedad Hemorrágica Epizoótica/aislamiento & purificación , Técnicas de Diagnóstico Molecular/métodos , Infecciones por Reoviridae/diagnóstico , Infecciones por Reoviridae/veterinaria , Infecciones por Reoviridae/virología , Sensibilidad y Especificidad , Cartilla de ADN/genética , ARN Viral/genética
17.
Microbiology (Reading) ; 170(8)2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39109421

RESUMEN

Shiga toxin-producing Escherichia coli (STEC) is an important waterborne pathogen capable of causing serious gastrointestinal infections with potentially fatal complications, including haemolytic-uremic syndrome. All STEC serogroups harbour genes that encode at least one Shiga toxin (stx1 and/or stx2), which constitute the primary virulence factors of STEC. Loop-mediated isothermal amplification (LAMP) enables rapid real-time pathogen detection with a high degree of specificity and sensitivity. The aim of this study was to develop and validate an on-site portable diagnostics workstation employing LAMP technology to permit rapid real-time STEC detection in environmental water samples. Water samples (n=28) were collected from groundwater wells (n=13), rivers (n=12), a turlough (n=2) and an agricultural drain (n=1) from the Corrib catchment in Galway. Water samples (100 ml) were passed through a 0.22 µm filter, and buffer was added to elute captured cells. Following filtration, eluates were tested directly using LAMP assays targeting stx1, stx2 and E. coli phoA genes. The portable diagnostics workstation was used in field studies to demonstrate the on-site testing capabilities of the instrument. Real-time PCR assays targeting stx1 and stx2 genes were used to confirm the results. The limit of detection for stx1, stx2 and phoA LAMP assays were 2, 2 and 6 copies, respectively. Overall, stx1, stx2 and phoA genes were detected by LAMP in 15/28 (53.6 %), 9/28 (32.2 %) and 24/28 (85.7 %) samples, respectively. For confirmation, the LAMP results for stx1 and stx2 correlated perfectly (100 %) with those obtained using PCR. The portable diagnostics workstation exhibited high sensitivity throughout the on-site operation, and the average time from sample collection to final result was 40 min. We describe a simple, transferable and efficient diagnostic technology for on-site molecular analysis of various water sources. This method allows on-site testing of drinking water, enabling evidence-based decision-making by public health and water management authorities.


Asunto(s)
Técnicas de Amplificación de Ácido Nucleico , Escherichia coli Shiga-Toxigénica , Microbiología del Agua , Técnicas de Amplificación de Ácido Nucleico/métodos , Escherichia coli Shiga-Toxigénica/genética , Escherichia coli Shiga-Toxigénica/aislamiento & purificación , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Diagnóstico Molecular/instrumentación , Sensibilidad y Especificidad , Ríos/microbiología , Toxina Shiga I/genética , Agua Subterránea/microbiología
18.
IMA Fungus ; 15(1): 23, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39113143

RESUMEN

Chrysomyxa rusts cause significant damage to spruce in both natural forests and plantations. Particularly, Three Chrysomyxa species, Chrysomyxa deformans, Chrysomyxa qilianensis, and Chrysomyxa rhododendri, listed as National Forest Dangerous Pests in China, have severely affected many economically and ecologically important spruce native species in China. Also, Chrysomyxa arctostaphyli, an important plant quarantine fungus, causes a damaging broom rust disease on spruce. Therefore, rapid, and efficient detection tools are urgently needed for proper rust disease detection and management. In this study, a sensitive, genus-specific loop-mediated isothermal amplification (LAMP) assay targeting the ITS-28S rRNA region was developed to detect the presence of Chrysomyxa in spruce needle and bud samples. After optimization and validation, the LAMP assay was found to be sensitive to detect as low as 5.2 fg/µL DNA, making it suitable for rapid on-site testing for rust infection. The assay was also specific to Chrysomyxa species, with no positive signals from other rust genus/species. The application of LAMP in the early detection of rust infections in spruce needles and buds was investigated, and spatial colonization profiles as well as the means of overwintering of Chrysomyxa woroninii in infected buds and branches were verified using the LAMP assay. This LAMP detection method will facilitate further studies on the characteristics of the life cycle and inoculation of other systemic rusts.

19.
Environ Sci Technol ; 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39133232

RESUMEN

Irradiation at far ultraviolet C (far-UVC) 222 nm by krypton chloride (KrCl*) excilamps can enhance microbial disinfection and micropollutant photolysis/oxidation. However, nitrate/nitrite, which absorbs strongly at 222 nm, may affect the formation of disinfection byproducts (DBPs). Herein, we evaluated model organic matter and real water samples and observed a substantial increase in the formation potential for trichloronitromethane (chloropicrin) (TCNM-FP), a nitrogenous DBP, by nitrate or nitrite after irradiation at 222 nm. At a disinfection dose of 100 mJ·cm-2, TCNM-FP of humic acids and fulvic acids increased from ∼0.4 to 25 and 43 µg·L-1, respectively, by the presence of 10 mg-N·L-1 nitrate. For the effect of nitrate concentration, the TCNM-FP peak was observed at 5-10 mg-N·L-1. Stronger fluence caused a greater increase of TCNM-FP. Similarly, the increase of TCNM-FP was also observed for wastewater and drinking water samples containing nitrate. Pretreatment using ozonation and coagulation, flocculation, and filtration or the addition of H2O2 can effectively control TCNM-FP. The formation potential of other DBPs was minorly affected by irradiation at 222 nm regardless of whether nitrate/nitrite was present. Overall, far-UVC 222 nm treatment poses the risk of increasing TCNM-FP of waters containing nitrate or nitrite at environmentally relevant concentrations and the mitigation strategies merit further research.

20.
BMC Infect Dis ; 24(1): 805, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39123117

RESUMEN

BACKGROUND: Globally, around 7 to 20 million people are believed to be suffering from coinfection with both hepatitis B virus (HBV) and hepatitis C virus (HCV). The loop-mediated isothermal amplification (LAMP) approach, introduced by Notomi and colleagues, has undergone substantial advancements as an effective molecular tool that enables the simultaneous analysis of multiple samples in a single tube. METHODS: The present study examined the simultaneous detection of HBV and HCV in a single tube using melt curve analysis multiplex LAMP (mLAMP), which is based on the identification of unique melting peak temperatures. Selected regions for primer design including the S gene of HBV and the UTR gene of HCV. Primer optimization is initially performed through individual HBV and HCV LAMP analysis. Following the optimization process, the mLAMP assay was evaluated by optimizing the multiplex reaction mixture, determining the reaction time, and analyzing the limit of detection (LOD). The results are also analyzed using lateral flow dipsticks (LFD), which enable the visual detection of HBV and HCV by adding 20 pmol FITC-labeled LF primers into the reaction mixture prior the mLAMP. RESULTS: The LOD for the mLAMP assay was determined as 10 copies/µl, and no cross-reactivity with other microorganisms was detected. The detection results obtained from patient plasma were also visually demonstrated using LFD, and displayed significant concordance with those obtained from Real-Time Polymerase Chain Assay. The mLAMP assay revealed a diagnostic sensitivity of 95% for detecting the HBV, and LOD is 90% for HCV. The overall diagnostic sensitivity of the mLAMP assay for both viruses was 85%. The assay confirmed a specificity of 100%. CONCLUSION: The mLAMP assay displays significant promise for analyzing coinfected samples by simultaneously detecting the dual targets HBV and HCV within a set temperature of 62 °C, all within a time frame of 1 h. Additionally, when paired with disposable LFD, the mLAMP assay enables rapid visual detection of assay results in a matter of minutes. The result contributes to the mLAMP assay being highly suitable for coinfection screening, particularly in field conditions.


Asunto(s)
Coinfección , Hepacivirus , Virus de la Hepatitis B , Hepatitis B , Hepatitis C , Técnicas de Diagnóstico Molecular , Técnicas de Amplificación de Ácido Nucleico , Sensibilidad y Especificidad , Humanos , Técnicas de Amplificación de Ácido Nucleico/métodos , Hepatitis C/diagnóstico , Hepatitis C/virología , Hepatitis C/complicaciones , Hepatitis B/diagnóstico , Hepatitis B/virología , Virus de la Hepatitis B/genética , Virus de la Hepatitis B/aislamiento & purificación , Hepacivirus/genética , Hepacivirus/aislamiento & purificación , Coinfección/diagnóstico , Coinfección/virología , Técnicas de Diagnóstico Molecular/métodos , Límite de Detección , Cartilla de ADN/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA